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Abstract

Connected and automated vehicles (CAVs) have shown the potential to improve safety, in-
crease throughput, and optimize energy efficiency and emissions in complicated traffic scenar-
ios. This paper presents a mixed-integer linear programming (MILP) method for scheduling
and coordination of CAVs in a highly dynamic environment that consists of multiple human-
driven vehicles and multiple conflict zones, such as merging points and intersections. The
proposed approach ensures safety, high throughput and energy efficiency by solving a cen-
tralized high-level decision making problem. The solution provides a feasible and optimal
time schedule through road segments and conflict zones for the automated vehicles, by using
information from the position, velocity, and destination of the manual vehicles, which cannot
be directly controlled. The performance and computational load of the proposed method are
assessed in closed-loop simulations on an illustrative scenario. Despite MILP having combi-
natorial complexity, the proposed formulation appears feasible for realtime implementation,
e.g., in mobile edge computers (MECs).
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Abstract— Connected and automated vehicles (CAVs) have
shown the potential to improve safety, increase throughput,
and optimize energy efficiency and emissions in complicated
traffic scenarios. This paper presents a mixed-integer linear
programming (MILP) method for scheduling and coordination
of CAVs in a highly dynamic environment that consists of
multiple human-driven vehicles and multiple conflict zones,
such as merging points and intersections. The proposed ap-
proach ensures safety, high throughput and energy efficiency
by solving a centralized high-level decision making problem.
The solution provides a feasible and optimal time schedule
through road segments and conflict zones for the automated
vehicles, by using information from the position, velocity, and
destination of the manual vehicles, which cannot be directly
controlled. The performance and computational load of the
proposed method are assessed in closed-loop simulations on
an illustrative scenario. Despite MILP having combinatorial
complexity, the proposed formulation appears feasible for real-
time implementation, e.g., in mobile edge computers (MECs).

I. INTRODUCTION

Automated transportation systems, even in the case of
partial automation, lead to reduced road accidents and more
efficient usage of the road network [1]. Therefore, connected
and automated vehicles (CAVs) show large promises for
improving safety and traffic flow, and as a consequence
for reducing congestion, travel time, emissions and energy
consumption [2]. While this has been known for decades,
most of the successful developments have been accomplished
in recent years due to the technological advances in sensing,
computing, control and connectivity. While the on-road sce-
narios often are highly dynamic, i.e, the vehicle participants
and their behavior changes rapidly and significantly, vehicle-
to-vehicle (V2V) and vehicle-to-infrastructure (V2I) com-
munication, also known as vehicle-to-everything (V2X) for
short, enables advanced and efficient planning and decision
making by providing access to real-time information on all
the vehicles in a certain planning area [3], [4].

Significant progress has been made in planning and control
for automated driving [5], which typically involves a multi-
layer on-board guidance and control architecture [6]. At the
highest level, an intelligent navigation system finds a route
through the transportation network from the current vehicle
position to the requested destination [7]. A decision maker
selects the appropriate driving behavior at any point of time,
given the route plan, the current environment condition, and
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the behavior of other traffic participants, e.g., using automata
combined with set reachability [8] or formal languages
and optimization [9]. Given the target behavior, a motion
planning algorithm computes a dynamically feasible and safe
trajectory that can be tracked in real-time by a low-level
controller. A popular approach uses the combination of a
sampling-based motion planner [10] and model predictive
control (MPC) for reference tracking [11]. For CAVs, the
guidance and control architecture may look similar, but some
of the modules are implemented in the infrastructure, e.g.,
in mobile edge computers (MECs) and provide decisions to
multiple vehicles in the area, while other modules are still
implemented on board of each vehicle individually [3], [4].

This paper focuses on the centralized scheduling and
coordination of CAVs [12], which provides targets and opera-
tional information to a motion planning and tracking system
implemented separately in each automated vehicle, and in
the presence of on-road vehicles that are human-driven,
i.e., manual, referred to as non-controlled vehicles (NCVs).
Recently, coordination strategies for intersection control have
been proposed using nonlinear optimization in [13] or using
mixed-integer linear programming (MILP) in [14]. The latter
has been extended to a distributed MILP algorithm for
scheduling a grid of interconnected intersections in [15]. An
MILP-based approach for on-ramp merging of CAVs was
proposed in [3]. Alternative techniques for coordination of
CAVs can be found in [1], and references therein, where it
can be also noted that the intersection and merging control
problems are very similar in nature.

In this paper, we propose an MILP approach for central-
ized coordination of vehicles in an interconnected network
of generalized conflict zones, including both intersections
and merging points. Unlike the work in [13], [14] for all-
autonomous vehicle coordination, we focus on the more
realistic scenario that includes mixed traffic of both CAVs
and human-driven NCVs. As discussed in [14], physical
traffic lights and/or standard priority rules are needed for
human-driven vehicles to cross intersections in the mixed
traffic scenario. The proposed formulation directly incorpo-
rates the transportation of people and goods, given a real-time
sequence of vehicle routing information.

The proposed MILP approach computes a schedule con-
sisting of target velocities and times to enter and exit the
road segments in a prediction window for each vehicle
towards its desired destination, under safety constraints for
conflict zones and occupancy constraints for road segments,
and while optimizing the overall time and energy efficiency
across all controlled vehicles. As opposed to some of the



previously cited works, the proposed approach supports

« a transportation network of multiple conflict zones, i.e.,
merging points and/or intersections,

o mixed traffic including both autonomous and human-
driven vehicles, where position, speed and heading for
each vehicle is available through V2X communication,
but only some of the vehicles are controlled,

o minimization of multiple objectives, e.g., travel time,
waiting time and energy efficiency,

« routing information for transport of people and goods.

The operation, performance and real-time feasibility of the
proposed MILP-based implementation is validated based on
closed-loop simulation results on an illustrative scenario.

The rest of the paper is organized as follows. Section II
introduces the problem setup. Section III presents the pro-
posed MILP for coordination of connected vehicles. The per-
formance and real-time feasibility are illustrated on closed-
loop simulations in Section IV, followed by our conclusions
and future outlook in Section V.

II. PROBLEM SETUP FOR CENTRALIZED COORDINATION
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Fig. 1. Tllustration of problem setup for centralized coordination, including
both controlled (CAVs) and non-controlled vehicles (NCVs) in a local area
of multiple interconnected conflict zones and road segments.

The road network is composed of ng road segments, with
indices in the set Js = {1,...,ns}. The set C C Js denotes
the index set of road segments that are conflict zones, such
as intersections and merge points, that can be occupied by
a single vehicle at all times. The set 7 C J; denotes the
index set of road segments that are conflict-free zones, e.g.,
standard driving lanes that may be occupied by multiple
vehicles at the same time. Hence, 7 = J,\C and J;, = FUC.

Differently from the fully autonomous case, for the CAV
case, the target behavior for the motion planner is not com-
puted separately for each vehicle by an on-board decision
making algorithm, e.g., in [8], [9], but rather for all vehicles
at the same time in a centralized coordination and scheduling
module. Specifically, given real-time information on the en-
vironment from the mapping and navigation module, on each
CAV’s state, and on the routing of each CAYV, the centralized
vehicle coordination and scheduling module determines the
target behaviors for all CAVs in the area, at the same time.

As illustrated in Figure 1, we consider a scenario where
both CAVs (in red) and NCVs (in blue) are present. Let n.
be the number of CAVs, with index set Z. = {1,...,n.},
and n,. be the number of NCVs, with index set Z,. =
{n.+1,...,nc+nny}. Hence, in total we consider n¢ + nye
vehicles, with index set Z, = Z. U Z,..

The information for the centralized vehicle coordination
and scheduling module is assumed to be available through
communication between vehicles and infrastructure, i.e.,
V2X, of data acquired by sensors in both CAVs and NCVs,
and possibly in the infrastructure too, e.g., see [16]. Specif-
ically, the inputs to the vehicle coordination system are

o map information M for the transportation network that
is considered by the coordination module, including
lane information for each road segment and conflict
zone, i.e., merging points and/or intersections.

« for each vehicle o, i € Z,, i.e., both CAVs and NCVs,
the current position p’ and velocity v°.

o for each NCV af, i € I, a possibly short-
term route prediction defined as a sequence @' =
600,
Js, where nfb is the route length in terms of segments.

o for each CAV o, i € T, a relatively long-term route
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of road segment indices, ¢'(j) € Js, where nfﬁ is the
route length in terms of segments.

o for each CAV of, i € Z., and for each segment
in its planned route j € ¢’ a set of planned stop
durations for each segment along the route f.

wait
—
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Similarly, the output information from the centralized MILP-
based coordination module is

,(;Sl(nfz))] of road segment indices, ¢(j) €

plan determined as sequence ¢’ =

,fivait(né)} , e.g., for transportation.

o for each CAV o, i € 7., the sequence of average ve-
locities v* = [vi(l), . ,v"'(nfﬁ)} for the road segments
along its planned route ¢°.

o for each CAV o', v € Z., the sequence of expected
entering times ! = [t! (1),... ,tfn(nfz,)} for the road
segments along its planned route ¢'.

o for each CAV o', 1 € Z., the sequence of expected
exit times t! , = [tf)ut(l), e 7téut(”f;s)] for the road

segments along its planned route ¢°.

Depending on the system, obtaining a precise prediction
for the NCV route may prove challenging. Because of
this, the vehicle coordination and scheduling module is
implemented in a receding horizon fashion based on the
most recent information. An approximate short-term route
prediction, n; < né, for all i € Ty, j € Z., for NCVs
is sufficient, e.g., until the next conflict zone, and any
discrepancies in the predictions are adjusted by the intrinsic
feedback mechanism of the receding horizon strategy. An up-
date period of 1—5 seconds allows for real-time computation
of the scheduling, while providing sufficiently fast updates
to account for erroneous prediction of NCV behaviors.



III. MIXED-INTEGER PROGRAMMING FORMULATION

Next, we describe the MILP formulation that needs to be
solved to implement the centralized vehicle coordination and
scheduling module.

A. Parameters and Decision Variables

We make a few simplifications for ease of implementation
and for clarity. First, we consider routes that do not involve
loops, so that each segment j € J; is included in ¢ at
most once, for all ¢ € Z,. This condition could be removed
simply by adding more index values to the same road
segment. Second, while we can directly control only CAVs,
for obtaining a simple structure in the formulation of the
optimization problem we define variables for all the vehicles,
i.e., CAVs and NCVs, and then formulate the problem so that
the NCVs behave according to their prediction. As discussed
further, the latter additionally ensures that a feasible solution
always exists for the proposed MILP. Finally, by considering
a simple kinematic model with constant segment velocity v,
the distance d travelled from time ¢;, to time t.y; with an
intermediate stopping time fq;; 1S

a =v- (tout — tin — Ewait)' (1)

Thus, the decision variables are:

. té’gt’ i € Ly, j € Js, the predicted time at which vehicle
, 1 € I, exits segment j € Js,

o tm .1 €1, 5 € Js, the predicted time at which vehicle
o', i € L, enters segment j € Jg,
o v i €I, j€ Js the inverse of the velocity, i.e.,

1/v, of vehicle i € Z,, on segment j € J,

o VR e 0,1}, i€Z, ke {{ e, £ <i—1}UT,,
j € Js is the binary variable that determines whether
vehicle ¢ crosses segment j ahead of vehicle k.

The input data for the optimization problem is obtained
from the available road and vehicle data, see Section II, and
it includes the following:

« the routes ¢*, i € T, i.e., each with length nfﬁ, which is

long for CAVs and usually short for NCVs, respectively.

« the maximum velomty v x» for each segment j € Js.

o the wait times 7,2, i € Z,, j € J. for any planned

stop of vehicle 7 € Iv in segment j € J;, e.g., for
transportation, where twaut =0 for all 1 € 7.

« the distance d'”’ , 1 €1, 7 € Js that vehicle 7 € Z,

must travel in segment j € Js to reach its end, where

dm‘{ﬂ, if j¢o
=12

if jeg¢' ’
d’ is the total length of segment j € Ji, and D7 (p)
is the progress already accomplished in segment j €
Js according to the position p, and D?(p) = 0 if the
position p is not in segment j € J.
« the current velocity 7, i € I, for each vehicle.

o 2
—DI(p') @

As previously mentioned, the problem includes time and
velocity variables for both controlled and non-controlled
vehicles. The formulation is such that the time schedule

and velocity for NCVs is equal to their current prediction,
unless a particular vehicle is required to slow down due to
traffic conditions. For example, the proposed MILP would
predict that an NCV following a slower vehicle, will reduce
its velocity if necessary to avoid collision. On the other
hand, the MILP can choose any feasible time schedule and
corresponding average velocities for each of the CAVs in
order to minimize the global objective function.

B. Constraints and Objective Function

We introduce the constraints for the MILP problem that
enforce each of the requirements for the vehicle coordination
and scheduling module.

1) Vehicle motion model: The kinematic one-dimensional
motion model (1), where we take as variables the entering
and exiting time %, tout and the inverse of the velocity vi,y,
results in the linear equality constraints

o — 1 =d 7ol + T i€, je T )

lIlV

The maximum velocity constraints for each controlled vehi-
cle in each segment also result in

0< — <, 1€L,j€Ts (4a)
vmax
1 » . .
0< g < U;AJW 1€ Ine,j € Js, (4b)
where T* is the current velocity for vehicle at, i € Ty,

because the MILP is only allowed to predict a slowdown for
non-controlled vehicles to ensure feasibility.

2) Timing constraints of route plan: The route plan ¢' =
[¢"(1),...,¢"(n})] for each vehicle i € Z, enforces the
order between exiting and entering subsequent road segments
¢'(k — 1) and ¢(k) as follows

(ti,aﬁi(k—l) _ tii

out

S0y <0 e, keZbt. ()

We additionally introduce the following compact notation
() to denote the next segment, after segment j, in the
route plan for vehicle ¢. Therefore, in case of two subsequent
road segments j and [ = v*(j) for vehicle i, there exists an
index k such that j = ¢*(k) and [ = ¢*(k + 1).

3) Safety constraints for conflict zones: Each CAV cannot
enter a conflict zone while another vehicle is present in that
same zone. This results in the following constraints

(<t =) v (i<l ©
for scheduling the order between vehicle ¢ and k within the
conflict zone j € C, where i € 7, i.e., o' is a CAV, and k €
{{ €L, £ <i—1}UT, is either a CAV or a NCV, where
we just need to enforce the constraints for the vehicles with
a higher index, and where ¢ denotes a tolerance on timing.

The constraints in (6) are implemented using auxiliary binary
variables b*7'F and the big-M formulation

VieIC,jeC, ke{leZ, L<i—1}UZy:

(5t M) < a2
(t011t_t,j+Mb2]k)<M_€ (7b)



where M is a larger number compared to the other terms
in the constraints. Note that the uniqueness constraint in (6)
can be conservative in certain situations, e.g., if the vehicles
motions allow them to share the intersection without causing
conflicts. Such situations can be accounted for by enforcing
constraint (6) only when two vehicles motions through the
conflict zone do not allow for them to share it.

4) Occupancy constraints for free road segments: In this
work, we consider roads with a single lane per direction, and
hence overtaking maneuvers are not allowed, as common in
city driving. Thus, the order between vehicles needs to be
preserved across two subsequent road segments resulting in
the following vehicle order constraint

(tf;{ <thT e NI <t e A< b )
k,j i k,l i,l (8)
v (tir;] ST =€ A towe Stow —€ Aty St — 6) ,

within each conflict-free segment j € F for two vehicles o,
ok i eI, ke{l e, ¢ <i—1}UT,, if a subsequent
segment [ exists for which [ = 1?(j) = ¥ (j). The constraint
in (8) can be implemented again using the binary variables
b3k and the big-M formulation

VieZ, jeF, ke{lel, t<i—1}UZL,,

L=3'() = ") :

(th — 5T — M bRy < ¢, (9a)
(t t) + MbWk) < M —e, (9b)
(ot — toift Mb7k) < —e, (%)
(t o’ui —tode + MVIR) < M — e, (9d)
(t — ! = MbIF) < —, (%)
(5L — B MR < M — e (9f)

5) Objective function terms: We consider an objective
function with several terms modeling different goals

J(T,V) = (T, V)+Ju(T,V)+Jp(T,V)+ (T, V),

where 7 = {tl;lj’tout}'LEIVJEJS and V =
are defined. The first objective term

(10)

{vil Yiez, jea,

i z¢(k)

TV 70‘}122 out

i€Lc k=1 tot

(1)

where Ezokt = Zle 3779 denotes the total distance trav-
eled until the end of the k™ segment in the route plan for
CAV o', i € I, and it aims at minimizing the travel time
to reach the end of each segment in the route plan with
corresponding weight value w; > 0 and normalized by the
traveled distance for each CAV. The term

w(T, V) —wzzZ(m ) _ ou;(kfl))

1€L, k=2 (12)

TL

-HMZZ( bt ()

1€Lne k=2

m"(k—l))
t

aims at minimizing the sum of waiting times between two
subsequent road segments ¢'(k — 1) and ¢‘(k) for each
vehicle ¢ with weights wo > 0 and wy > 0 for CAVs and
NCVs, respectively. To prevent predicting unrealistic changes
to the speed of the NCVs, the term

(T,V) = ws Z vav

1€Tne JETs

13)

aims at maximizing the velocity of NCVs. By setting w3 >
wp, p=1,2,4,5, together with constraint (4b) that sets the
NCVs velocity upper bounds at their predicted velocity, this
forces the MILP solution to plan NCVs velocities at their
predicted values, unless the NCVs must necessarily slow
down for feasibility, e.g., in case of slow traffic ahead.

A final term of the cost function can penalize any changes
in the velocity from one segment to the next,

(k) z¢(k 1)

T V = Wws Z Z Viny Viny (14)
€T, k=1
where v 01(0) 77;, i.e., it denotes the inverse of the current

mv

velocity for vehicle o, i € TI,, in an effort to reduce
accelerations/decelerations and increase energy efficiency,
with corresponding weight value ws > 0.

Remark 1: The summation over vehicles in the objective
terms of eqs. (11)-(14) could be replaced by the maximum
operator. The latter corresponds to using the ¢, instead of
the 1 norm and still results in an MILP. For simplicity, we
further restrict to the summation-based ¢; formulation.

C. Problem Dimensions and Redundant Variables
The complete MILP has following dimensions:

« # of continuous optimization variables: 31 (nc + M),
including time and inverse velocity variables for each
vehicle 7 € Z, on each road segment j € Jj,

o # of binary optimization variables: ng n. ( e L ) ,
including one binary variable for each unique pair of
vehicles on each road segment,

o # of equality constraints: ng (ne + nne),

« # of inequality constraints (excluding simple bounds):
S (= 1) + e QICI+617]) (e + 255),

where | - | denotes the cardinality of a set, i.e., |C| and |F
are the total number of conflict and conflict-free segments,
respectively. For practical applications of vehicle coordina-
tion in a receding horizon implementation, it is desirable
for the MILP to have fixed dimensions for a certain upper
bound of vehicles and road segments. Redundant optimiza-
tion variables are removed automatically by the pre-solve
routine in MILP solvers as discussed in [17], or they can be
fixed explicitly by adjusting the corresponding simple bounds
for each redundant optimization variable in the MILP.

Note that the inverse velocity optimization variables are re-
moved by the pre-solve routine in state of the art solvers such
as Gurobi [18], based on the equality constraints in (3).
Therefore, these variables do not affect the computational
complexity of solving the MILP in practice.




IV. CLOSED-LOOP SIMULATION RESULTS

In this section, we present closed-loop simulation results
to illustrate the performance and real-time feasibility of
the proposed approach for centralized vehicle coordination,
based on a Matlab implementation that uses Gurobi [18]
to solve the MILP at each sampling time 73 =1 s.

A. Map and Scenario Generation

The same map information as shown in Figure 1 is used for
the closed-loop simulations, consisting of 13 road sections
(4 conflict zones and 9 conflict-free segments). Vehicles
can move into and out of the considered area through 4
of the conflict-free exit segments in the north, east, south
and west side of the map as illustrated in Figure 1. Each
segment contains one or multiple lanes in which the vehicles
can move and each lane connects two adjacent segments,
except for the exit segments. Each CAV o', i € I is
provided with a route plan that is defined as an ordered
sequence ¢’ of segments. To validate the performance of the
proposed vehicle coordination module, we use closed-loop
simulations with randomly generated scenarios, including
different starting positions and routes for each vehicle.

B. Closed-loop Simulations

The results of a closed-loop simulation for a randomly
generated scenario are illustrated in Figure 2 based on four
time frames of interest. Similar to Figure 1, CAVs are
depicted in red and NCVs in blue, while road segments in
grey are conflict-free and the ones in red denote conflict
zones. The number above each vehicle shows its current
velocity as a normalized value. The first snapshot in Figure 2
shows the vehicle positions after 2.4 seconds in the closed-
loop simulation. One of the CAVs is moving behind a NCV
and the CAV has slowed down to a normalized speed value
of 0.3, in order to reduce the waiting time for the CAV as
the vehicle is predicted to stop at the conflict zone until the
NCV moves out of the zone. Then, the CAV reaches the
conflict zone and waits at the edge of the conflict zone until
the conflict zone has been cleared by the NCV. In the third
snapshot of Figure 2, it can be observed that the CAV enters
the conflict zone and moves at a normalized speed of 0.5 as
there are no obstacles. In the fourth snapshot of Figure 2, we
can see an example of more complicated queuing behavior
of both CAVs and NCVs at an intersection.

In addition, Figure 3 presents time trajectories of a closed-
loop simulation for a scenario of 10 NCVs and 4 CAVs with
a relatively shortened route plan for illustration purposes. It
shows the percentage of task completion, i.e., of reaching the
target destination, and whether the CAV is waiting or not at
each time step in the closed-loop simulation.

C. Vehicle Coordination Performance

Next, the performance of the proposed vehicle coor-
dination module is illustrated in Table I for closed-loop
simulations of 120 s using 100 randomly generated scenarios
with 8 NCVs and 3 CAVs. In addition, the simulation for
each scenario was executed multiple times with different
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Fig. 2. Four time frames of interest in closed-loop simulation results of
the centralized MILP-based vehicle coordination module for a particular
scenario of 10 NCVs and 4 CAVs on the map in Figure 1.

values for the weights w; and ws in the terms (11) and (12)
of the MILP objective (10), respectively. More specifically,
Table I shows the average and maximum values of the total
waiting time and travel time over all of the CAVs and over
all of the randomly generated scenarios. Table I additionally
shows values for the normalized travel time and for the
average inverse velocity, i.e., the total travel time divided
by the total traveled distanced and the total distance divided
by the total moving time for each CAV, respectively. Note
that the total travel time is equal to the sum of the total
waiting time and the total moving time. The weight values
(w1, wq) are chosen to be equal to either (100,1), (1,1)
or (1,100) to illustrate the effect of both objective terms
in (10). The remaining weight values are chosen to be equal
to w3 = 1000, ws = 1000 and ws = 0.

It can be observed from Table I that the total wait time is
reduced when increasing the weight value wo in (12). With
larger values for ws, the vehicle coordination module may
instruct a CAV to slow down when it approaches a conflict
zone, in order to reduce its overall waiting time when the
conflict zone is predicted to be occupied. However, it can
also be observed that the travel time may slightly increase
due to the latter behavior, e.g., a CAV may miss its chance
to pass through the conflict zone at the time when a NCV
is detected to approach the same conflict zone. Finally, as
expected, the average inverse velocity values in Table I can
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Fig. 3. Time trajectories for a closed-loop simulation of 10 NCVs and

4 CAVs with a shortened route plan for illustration purposes: percentage of
task completion and waiting times for each CAV.

be seen to decrease when increasing the weight value w; in
the first objective term (11).

TABLE 1
CLOSED-LOOP SIMULATION RESULTS WITH 8 NCVs AND 3 CAVS:
WAITING AND TRAVEL TIME FOR DIFFERENT VALUES OF wj AND w2
IN (10). TUNING (w1,w2) — 1:(100,1); 2:(1,1); 3:(1,100)

Tuning 2

mean | max

Tuning 3

. Tuning 1
Performance metric &
mean | max

mean | max

WAITING TIME (5) | 10.58 | 42.00 | 6.52 |36.30 | 0.75 | 10.50
| 54.11 | 99.90 | 54.93 | 103.40 | 54.92 | 103.30

TRAVEL TIME (S)

NORMALIZED

TRAVEL TIME ‘ 2.52 ‘ 5.39 ‘ 2.56 ‘ 5.39 ‘ 2.56 ‘ 5.39

INVERSE VELOCITY | 2.00 |2.17 |221 [3.23 |3.04 |27.09

D. Real-time Feasibility

Finally, we investigate the computation times for the
MILP solver on a modern computer, based on running 100
randomly generated closed-loop simulations of 120 s and
with different numbers of CAVs (2 — 4) and NCVs (5 — 20).
Specifically, we are interested in the worst-case computation
times that are needed for Gurobi to solve the MILP at each
sampling time that the vehicle coordination module is called.
The overall worst-case computation time is below 0.08 s and
therefore well below the sampling time of Ty = 1 s that is
used in the closed-loop simulations. This indicates that the
proposed implementation can be real-time feasible when the
vehicle coordination module is executed in the infrastructure,
such as in mobile edge computers (MECs).

V. CONCLUSIONS

This paper proposed an MILP approach for centralized
coordination of CAVs in a highly dynamic environment
that consists of multiple human-driven, i.e., manual vehicles
in an interconnected network of conflict zones, such as

Computation times were obtained on a modern computer that is equipped
with a 2.3 GHz 8-Core Intel Core i7 processor.

merging points and intersections. The high-level decision
making method provides direct support for transportation
routing, while ensuring safety and optimizing time and
energy efficiency for each of the CAVs. The performance
and real-time feasibility of the MILP-based implementation
is validated based on closed-loop simulation results on an
illustrative scenario. High-fidelity simulations and real-world
experiments, based on the multi-layer guidance and control
architecture, are part of ongoing work.
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