
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
https://www.merl.com

Safe Learning-based Observers for Unknown Nonlinear
Systems using Bayesian Optimization

Chakrabarty, Ankush; Benosman, Mouhacine

TR2021-101 September 16, 2021

Abstract
Data generated from dynamical systems with unknown dynamics enable the learning of state
observers that are: robust to modeling error, computationally tractable to design, and capable
of operating with guaranteed performance. In this paper, a modular design methodology is
formulated, that consists of three design phases: (i) an initial robust observer design that
enables one to learn the dynamics without allowing the state estimation error to diverge
(hence, safe); (ii) a learning phase wherein the unmodeled components are estimated using
Bayesian optimization and Gaussian processes; and, (iii) a re-design phase that leverages the
learned dynamics to improve convergence rate of the state estimation error. The potential
of our proposed learning-based observer is demonstrated on a benchmark nonlinear system.
Additionally, certificates of guaranteed estimation performance are provided.

Automatica 2021

c© 2021 MERL. This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission
to copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes provided
that all such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi
Electric Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and
all applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall
require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139





Safe Learning-based Observers for Unknown Nonlinear Systems using Bayesian
Optimization

Ankush Chakrabartya,˚, Mouhacine Benosmana,˚˚

aMitsubishi Electric Research Laboratories, Cambridge, MA, USA.

Abstract

In this paper, a modular observer design methodology is formulated for nonlinear systems with partial model knowledge.
Our design consists of three design phases: (i) an initial robust observer design that enables one to learn the dynamics
without allowing the state estimation error to diverge (hence, safe); (ii) a learning phase wherein the unmodeled com-
ponents are estimated using Gaussian process-based Bayesian optimization; and, (iii) a re-design phase that leverages
the learned dynamics to improve convergence rate of the state estimation error. The potential of our proposed learning-
based observer is demonstrated on a benchmark nonlinear system. Additionally, certificates of guaranteed estimation
performance are provided.
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1. Introduction

With modern dynamical systems growing in complex-
ity, learning for state estimation has gained relevance and
provides a suitable solution for problems with incomplete
model knowledge, such as systems with unknown or un-
modeled dynamics. Leveraging data generated from these
systems and employing function approximators allows one
to design estimators despite incomplete model descriptions
by identifying the unknown dynamics. While the most
common applications of learning via function approxima-
tors are in identifying dynamical systems from measure-
ment data [1, 2], approximating control laws using offline
data [3, 4], or adapting with data to generate optimal con-
trol policies online [5, 6], the utility of data and approxi-
mators for state estimation in nonlinear systems with un-
modeled dynamics remains relatively unexplored.

Some early investigations into data-driven observers, for
example, in [7] assume model availability. However, the
current wave of data-driven control has demonstrated the
effectiveness of approximators in controlling systems with
partial models or, in some cases, a ‘model-free’ manner.
Data-driven observers in the model-free setting were ex-
plored almost two decades ago in [8], where the authors
proposed an adaptation rule for learning the weights of a
linear-in-parameter neural network (LPNN) that results in
uniformly ultimately bounded estimation error dynamics.
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Although this work has been adopted in multiple applica-
tions such as robot control [9, 10], rotors [11], and more
recently, wind turbines [12], the inherent assumptions and
theory have hardly evolved. In most of these methodolo-
gies, the activation functions are considered to be radial
basis functions, there is no measurement noise, and the
theoretical guarantees of learning performance remain the
same; an exception is [12] where the authors investigate
input-to-state stability (ISS) observers for the known com-
ponent of the model, but the learner performance is not
ISS, and the learner’s weights require manual tuning.

In [13], the authors studied the problem of learning-
based observer design for a class of partial differential
equations (PDEs). The idea is based on designing a robust
controller with respect to the structured model uncertain-
ties, complemented with a learning layer, to auto-tune the
observer gains, using a data-driven extremum seeking al-
gorithm. However, the model uncertainties were compen-
sated for by a robust estimation approach, and no online
estimation of the model was proposed in this work. In [14],
the authors proposed a learning-based observer design for
the particular case of the Boussinesq PDE equations with
parametric uncertainties, for a thermo-fluid application.
The main idea is to construct a nominal observer which
ensures ISS between the state estimation error and the
parameter estimation error. The parameters are then es-
timated online using an extremum seeking method. The
result was limited to the specific case of Boussinesq equa-
tions with structured parametric uncertainties.

In [15], the problem of adaptive observer design for a
class of nonlinear systems was studied. The authors pro-
posed to use shallow neural nets, with Lipschitz activation
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functions, to estimate the unknown parts of the model.
The use of Lipschitz constants of these activation func-
tions simplifies the data-driven observer design procedure
via new LMI conditions, ensuring pre-computable robust
stability guarantees on the resulting state estimation er-
ror. The learning results, however, are model-based in
the sense that the adaptation laws designed to learn the
neural net coefficients are based on the model structure,
similar to an indirect model-based adaptation approach,
which limits the validity of the learning laws to a specific
class of models; see for example [16] for a discussion about
model-based and model-free learning and adaptation.

In [17], the authors propose to formulate the problem of
observer design for a class of partially known linear and
nonlinear systems as an optimal problem with quadratic
cost over an infinite time support. Then the authors pro-
pose to use adaptive dynamic programming to solve this
equivalent optimal control problem. However, this leads
to a bounded integral cost of the estimation error, rather
than, the usual sought for convergence result to a zero es-
timation error. This method also requires a specific struc-
ture on the output matrix that is not always available.

In [18], the authors propose, in the context of interval
observers, a Gaussian process-based observer for a class
of partially known nonlinear autonomous systems. The
Gaussian process is used to approximate the unknown part
of the model, which assumed to be a Lipschitz continuous
function.

Contributions

In this paper, we extend the ideas from [14, 15] to the
general case of partially known nonlinear models, where
we propose to approximate the unknown part using neu-
ral networks, under a robustness design constraint in the
form of local input-to-state stability between the state es-
timation error and the model parametric estimation er-
ror. This approach allows us to obtain a safe learning
of the model, in the sense of maintaining boundedness of
the state estimation error at all time, even during learning.
After convergence of the learning algorithm, we propose to
add a redesign step, which takes into account the learned
model to improve the observer performance.

Organization

The rest of the paper is organized as follows. Section 2
describes the overall problem we are solving in this paper,
along with assumptions. Section 3 introduces a method
for generating initial robust observer gains, and a method
for learning the unmodeled dynamics via Bayesian opti-
mization is discussed in Section 4. An optional re-design
of the observer gain is presented in Section 5 for improving
the convergence rate by exploiting the learned nonlinear-
ity, and the potential of our proposed approach is demon-
strated using a numerical example in Section 6. Conclu-
sions are drawn in Section 7.

Notation

We denote by R the set of real numbers, R` as the set
of positive reals, and N as the set of natural numbers. In
a metric space pX, ρq, we denote an open ball centered at
x0 P X with radius ε as Bεpx0q :“ tx P X | ρpx, x0q ă εu.
The symbols Ep¨q and Vp¨q denote the expectation and vari-
ance operators of a random variable, respectively. The
notation ln represents the natural logarithm. A function
fpxq P Cn if it is n-times differentiable and all its deriva-
tives are continuous, and f is L-Lipschitz continuous (or
L-Lipschitz, for brevity) if }fpxq ´ fpyq} ď L}x ´ y} for
some L ą 0 and any px, yq pair in its domain. A function
f P L8 if }fp¨q} ă 8 on its domain. A continuous func-
tion f : r0,8q Ñ r0,8q belongs to class K if it is strictly
increasing and fp0q “ 0 and of class K8 if it is of class K
and unbounded (with range extended to r0,8s). A con-
tinuous function f belongs to class KL if, for each fixed
t, the mapping fpt, xq belongs to class K with respect to
t and, for each fixed x, the mapping fpt, xq is decreasing
with respect to t and fpt, xq Ñ 0 as t Ñ 8. For a square
matrix M , its largest and smallest eigenvalue are denoted
by λmaxpMq and λminpMq, respectively. The transpose of
a real-valued matrix M is denoted MJ, and its Frobenius
norm is denoted }M}. The quadratic form is shortened to
be }x}2Q :“ xJQx.

2. Problem Statement

2.1. Preliminaries

We consider nonlinear systems modeled by

xt`1 “ Axt `But ` φpqtq, (1a)

yt “ Cxt, (1b)

qt “ Cqxt, (1c)

where t P R is the time index, x P Rnx denotes the sys-
tem state, u P Rnu the known control input, y P Rny the
measured output, and qt P Q Ă Rnq the argument of the
nonlinearity φ. The pair pA,Bq is stabilizable, the pair
pA,Cq is observable, and the set of arguments Q is com-
pact. Our knowledge of the system is summarized in the
following assumption.

Assumption 1. The system matrices A, B, and C are
known. The nonlinearity’s argument matrix Cq is known.
The nonlinearity φ is completely unknown.

We also add a boundedness and Lipschitz assumption
on the nonlinearity.

Assumption 2. The unknown nonlinearity is bounded:
there exists a scalar φ ą 0 such that φpqq ď φ for all
q P Q. Furthermore, φ is Lipschitz continuous on Q.

Assumption 3. The discrete Cauchy problem (1) admits
a bounded1 solution for any initial condition x0 P Rnx .

1as defined in [19], Definition 1.1
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Since every Lipschitz continuous nonlinearity is a for-
tiori continuous, and the domain of φ (namely, Q) is com-
pact by assumption, one can use a wide range of function
approximators to express φ as a basis expansion. These
approximators need only induce functions that are dense
in the space of continuous functions such as polynomials
(recall the Stone-Weierstrass Theorem) or ‘universal ap-
proximators’ like shallow/deep neural networks with ap-
propriate activation functions [20, 21]. Therefore, we can
rewrite the nonlinearity φ in the basis expansion form

φpqq “ pJ‹ ψpqq`εφpqq, (1d)

where p‹ denotes a Nb ˆ nx matrix of true coefficients of
the basis expansion, ψ denotes a Nb-dimensional vector of
C1 basis/activation functions, and εφ denotes a bounded
approximation error; that is, }εφpqq} ď ε̄φ for any q P Q.
This basis function form is also referred to in the litera-
ture as a neural approximator [17]. We note that the C1

nature of ψ implies that it is Lipschitz continuous on Q;
we denote it’s Lipschitz constant as Lψ. Note that (1d),
together with Assumption 2 and the boundedness of p‹ on
Q, implies boundedness of ψ on Q.

Assumption 4. There exists a known positive scalar p̄‹
such that }p‹} ď p̄‹.

Assumption 4 is admittedly strong, but if such a p̄‹ is
not known exactly, a good estimate of p̄‹ is rarely needed
in practice, as we shall see in the remainder of the paper.
In fact, this assumption mainly ensures good robustness
properties of the initial observer. As data is obtained, the
learning algorithm will overcome the conservativeness of
the estimate and p̄‹ will be computed (not guessed) for
the redesign.

The system (1) motivates a state observer of the form

x̂t`1 “ Ax̂t `But ` p
J
t ψpq̂tq ` L0pCx̂t ´ ytq, (2a)

q̂t “ Cqx̂t, (2b)

with gain matrix L0 P Rnxˆny . The error dynamics of the
observer (2) with et :“ x̂t ´ xt and ept “ pt ´ p‹ is given
by

et`1 “ ALet ` ψpq̂tq
Jept ` p

J
‹ ∆ψt ´ εφpqtq, (3)

where AL “ A`L0C and ∆ψt “ ψpq̂tq´ψpqtq. Our initial
step is to design a learning algorithm and the observer gain
L0 such that

et Ñ Bεp0q and pt Ñ p‹ as tÑ8,

and then switch to a more precise observer, once we have
learned the model uncertainties.

To reiterate, our data-driven observer operates in three
design modes: (i) in the data collection mode, we de-
sign L0 such that the error dynamics are locally input-
state stable (L-ISS) between the parameter estimation er-
ror pJt ´ p‹ and the state estimation error et, setting the

stage for safe learning; (ii) in the safe learning mode, we
leverage Bayesian optimization to learn the coefficients pt;
and, (iii) as the learning terminates, we redesign L0 tak-
ing the learned nonlinearity into account to improve the
performance of the observer, based on the learned model.

3. Nominal ISS observer design

The main idea of the nominal observer is to design the
gain L0 such that one can guarantee a local ISS property
between the parameter estimation error and the state esti-
mation error. In this section, we present conditions that, if
satisfied, enable the design of a suitable L0. Consequently,
we propose a simple convex programming formulation for
computing an L0 that satisfies these conditions.

3.1. Conditions for initial design
We begin with the following definitions from [22].

Definition 1 (L-ISS). A discrete-time nonlinear system

ξt`1 “ ϕpξt, νtq (4)

is locally input-to-state stable (L-ISS) with respect to the
exogenous input νt, if there exist scalars %ξ ą 0, %ν ą 0,
γ P K8 and a function βp¨, ¨q P KL such that for all }x0} ď
%ξ and }ν}8 ď %ν , the condition

}ξpt, ξ0, νq} ď βpt, }ξ0}q ` γp}ν}8q

is satisfied, for all t P N.

Definition 2 (L-ISS Lyapunov function). Let the set
G Ă Rn contain the origin in its interior. A Lipschitz
continuous function V : G Ñ r0,8q is called a local ISS
Lyapunov function for a system (4) on G if there exist K8
functions γ1p¨q, γ2p¨q, γp¨q and βp¨q such that

γ1p}ξ}q ď V pξq ď γ2p}ξ}q (5a)

V pϕpξ, νqq ´ V pξq ď ´γp}ξ}q ` βp}ν}q (5b)

is satisfied, for all ξ P G and ν P Ξ.

Lemma 1. If the system (4) admits a locally ISS Lya-
punov function, then it is locally ISS w.r.t. ν.

Proof. See [23, Theorem 4] . l

The following theorem provides conditions for designing
L0 such that pA ` L0Cq is Schur (stable), and the state
estimation error e is L-ISS with respect to the parameter
estimation error ep and the neural approximation error εφ.

Theorem 1. Recall AL “ A ` L0C. Let Lψ :“

maxQ }∇qψ̂} and Assumptions 1–4 hold. Suppose there
exist matrices P “ PJ ą 0, Q “ QJ ą 0, and an initial
observer gain L0 such that

AJLPAL ´ P `Q “ 0, (6a)

4λmaxpP qp̄
2
‹L

2
ψ}Cq}

2 ` 8p̄‹Lψ}PAL}}Cq} ď λminpQq

(6b)
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then the error system (3) is L-ISS w.r.t.
”

ept
J
, εφ

J

ıJ

.

Proof. We consider a candidate of L-ISS Lyapunov func-
tion V defined by

Vt “ eJt Pet, (7)

For quadratic V , the condition (5a) is satisfied with γ1 “
λminpP q}e}

2 and γ2 “ λmaxpP q}e}
2. Taking the time dif-

ference ∆Vt :“ Vt`1 ´ Vt of (7) along the solution of (3),
we obtain

∆Vt “
6
ÿ

`“1

v`, (8)

where

v1 “ eJt pA
J
LPAL ´ P qet “ ´e

J
t Qet,

v2 “ pp
J
‹ ∆ψt ` ψpq̂q

Jept q
JP ppJ‹ ∆ψt ` ψpq̂q

Jept q,

v3 “ εJφPεφ,

v4 “ 2pALetq
JP ppJ‹ ∆ψt ` ψpq̂q

Jept q,

v5 “ ´2εJφPALet,

v6 “ ´2εJφP pp
J
‹ ∆ψt ` ψpq̂q

Jept q.

where the rightmost equation of v1 is obtained by replacing
with Q using (6a).

Before further analysis, note that we can bound the
norms of pJ‹ ∆ψt and ψpq̂qJept as follows:

}pJ‹ ∆ψt} ď p̄‹Lψ}qt ´ q̂t} ď p̄‹Lψ}Cq}}et},

}ψpq̂qJept } ď }ψpq̂q}}e
p
t } “ }ψ̄}}e

p
t },

where the first bound is a consequence of the Lipschitz
property of ψ and the second due to Q being compact
and ψ being bounded on Q. Using these bounds, we can
proceed with bounded the v` terms. Concretely,

v1 ď ´λminpQq}et}
2,

v2 ď λmaxpP q
`

p̄2‹L
2
ψ}Cq}

2}et}
2 ` ψ̄2}ept }

2
˘

,

v3 ď λmaxpP q}εφ}
2,

v4 ď 2p̄‹Lψ}PAL}}Cq}}et}
2 ` 2ψ̄}PAL}}e

p
t }}et},

v5 ď 2ε̄φ}PAL}}et},

v6 ď 2p̄‹ε̄φLψ}P }}Cq}}et} ` 2ψ̄}ept }.

Collecting relevant terms, we can write

∆Vt ď ´a0}et}
2 ` a1}et}

2 ` a2}et} ` a3}e
p
t }

2 ` a4}εφ}
2,

where

a0 “
1
2λminpQq ą 0,

a1 “ ´
1
4λminpQq ` λmaxpP qp̄

2
‹L

2
ψ}Cq}

2 ` 2p̄‹Lψ}PAL}}Cq},

a2 “ ´
1
4λminpQq}et} ` p2}PAL} ` 2p̄‹Lψ}P }}Cq}qε̄φ

` 2ψ̄}PAL}}e
p
t },

a3 “ λmaxpP qψ̄
2 ą 0,

a4 “ λmaxpP q ą 0.

Since the observer gain L0 satisfies the condition (6b), we
get a1 ď 0. Therefore, if a2 ď 0, that is, if

}ept } ď
λminpQq

8ψ̄}PAL}
}et} ´

}PAL} ` p̄‹Lψ}P }}Cq}

ψ̄}PAL}
}εφ},

then
∆Vt ď ´a0}et}

2 ` a3}e
p
t }

2 ` a4}εφ}
2, (9)

which satisfies the condition (5b) with ν replaced by
”

ept
J
, εφ

J

ıJ

. l

3.2. Computing the initial observer gain
We begin with the following theorem that provides a de-

sign procedure for L0 for a fixed Lψ. Such an Lψ could be
known, or, if unknown, one could design an observer for a
maximal Lψ (obtained via a line search) such that the con-
ditions (6) are satisfied. The following convex relaxation
is proposed.

Theorem 2. For fixed p̄‹ and Lφ, if there exist matrices
P “ PJ, Q “ QJ, K P Rnxˆny, and scalars βκ ą 0,
κ1 ą 0, κ2 ą 0, and κ3 ą 0 such that

min
P,K,Q,κ0,κ1,κ2,κ3

κ0 ` βκpκ1 ` κ2 ` κ3q (10a)

subject to:
„

´P `Q` κ0I ‹

PA`KC P



ĺ 0 (10b)

Q ľ κ1I (10c)

0 ă P ĺ κ2I (10d)

}PA`KC} ď κ3 (10e)

4p̄2‹L
2
ψ}Cq}

2κ2 ` 8p̄‹Lψ}Cq}κ3 ´ κ1 ď 0 (10f)

has an optimal solution with κ0 “ 0, then an observer of
the form (2) with gain L0 “ P´1K yields error dynam-
ics (3) that are L-ISS.

Proof. We begin by noting K :“ PL0 and substituting K
into (6). This yields

pPA`KCqJP´1pPA`KCq ´ P `Q “ 0, (11)

4λmaxpP qp̄
2
‹L

2
ψ}Cq}

2 ` 8p̄‹Lψ}PA`KC}}Cq} ď λminpQq.
(12)

We relax the equality (11) with the inequality

pPA`KCqJP´1pPA`KCq ´ P `Q ĺ ´κ0I. (13)
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Taking Schur complements of (13) yields (10b). Condi-
tions (10c)–(10e) provide bounds on λminpQq, λmaxpP q,
and }PA `KC}: with these bounds κ1, κ2, and κ3, one
can explicitly write the constraint (12) as (10f). If the op-
timal value of κ0 “ 0, then the equality (11) is exact, and
the conditions in (6) are satisfied. l

Remark 1. Note that, for a fixed Lφ and p̄‹, the prob-
lem (10) is convex, and therefore can be solved efficiently
using standard convex solvers such as CVX/YALMIP.

Remark 2. The scalar βκ is a regularization parameter
that should be kept small enough to promote the compu-
tation of unique solutions while ensuring the focus of the
objective function is to force κ « 0.

Remark 3. One can use the conditions in (10) to perform
a grid search for the largest Lipschitz constant and the
largest coefficient bound for which a feasible solution to (6)
exists. Concretely, by solving the problem

pL̂ψ, ˆ̄p‹q :“ arg maxpLψ ` p̄‹q subject to: (10) (14)

and ensuring κ0 “ 0 for the optimal solution of (14) gen-

erates L̂ψ and ˆ̄p‹ and L0 such that the error dynamics (3)

are L-ISS, as long as these are overestimates; i.e. L̂ψ ě Lψ
and ˆ̄p‹ ě p̄‹. Of course, if either one is known a priori,
then one can perform a line search for the other.

4. Learning via Bayesian optimization

The previous section described a method for starting
with a safe initial state estimator: one whose error trajec-
tory does not diverge despite learning, as long as the coef-
ficients pt of the parametric model are not unbounded. In
this section, we provide a data-driven method for updating
the model from on-line data using Bayesian optimization.

4.1. Data collection and reward

Let T` denote the horizon over which measurements and
state estimates are collected, and p0 denote the initial
guess for the model coefficients. We begin with no data,
and an initial observer gain L0. We run the observer (2)
over the learning horizon t0, 1, . . . , T` ´ 1u and compute
the reward

J ppjq :“ ´

˜

T`´1
ÿ

t“0

}Cx̂t ´ yt}
2
W1
`

1

T`
}pj}

2
W2

¸

(15)

with reward weighting matrices W1 ą 0 and W2 ľ 0. The
objective of the second term in this reward function is to
promote a unique solution by regularizing the learned co-
efficients; typically W2 is small. From this batch of mea-
surements, we get a data sample

`

p0,J pp0q
˘

. With the
j-th iteration dataset

Dj “
`

p0:j´1,J pp0:j´1q
˘

,

we use Bayesian optimization to compute a solution to the
problem

p8 “ arg max
pPP

J ppq, (16)

where P is an admissible compact and convex set of pa-
rameters.

Since the gradient of J cannot be evaluated analyti-
cally, and the data could have inherent noise, one can-
not use standard gradient-based tools to compute p8. In-
stead, we resort to learning a surrogate model of J using
Gaussian process (GP) regression [24], and exploiting the
statistics of the learned surrogate to inform exploration
and exploitation; that is, how to choose pj based on the
current dataset Dj´1. In particular, we use the expected-
improvement (EI) method for acquiring subsequent pj val-
ues. The combination of GP modeling and EI acquisition
is referred to herein as GP-EI, and is the topic of the next
subsection.

4.2. Bayesian Optimization with the GP-EI algorithm

We formally reiterate our assumptions on J and p‹ in
the following assumption.

Assumption 5. The reward function J is continuous
with respect to its argument p for every p P P. Further-
more, the function has a unique global maximizer p‹ on
the set P.

Since J is assumed continuous, we leverage the data at
the j-th iteration to construct a surrogate GP model of
the reward, given by

Ĵj :“ GP
`

µpp;Djq, σpp, p1;Djq
˘

, (17)

where µp¨q is the predictive mean function, and σp¨, ¨q is
the predictive variance function. Typically, the variance is
expressed through the use of kernels. A commonly used
kernel is the squared exponential (SE) kernel

KSE “ σ2
0 exp

ˆ

´
1

2
r2
˙

, (18)

with

r2 ” r2pp, p1q “
}p´ p1}2

σ2
1

and hyperparameters σ0 (the output variance) and σ1 (the
length scale). However, the SE kernel sometimes results
in overtly smooth functions; to avoid this, another class
of kernels called Matérn kernels have gained popularity, of
which the Matérn 5/2 kernel has the form

KM52 “ σ0

ˆ

1`
?

5r `
5

3
r2
˙

exp
´

´
?

5r
¯

. (19)

At the j-th learning iteration, for a new query sample p P
P, the GP model predicts the mean and variance of the
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reward to be

µppq “ kjppq
JK´1

j´1J0:j´1

σppq “ Kpp, pq ´ kjppqK´1
j´1kjppq

J,

where

kjppq “
“

Kpp0, pq Kpp1, pq ¨ ¨ ¨ Kppj´1, pq
‰

,

Kj´1 “

»

—

–

Kpp0, p0q ¨ ¨ ¨ Kpp0, pj´1q

...
. . .

...
Kppj´1, p0q ¨ ¨ ¨ Kppj´1, pj´1q

fi

ffi

fl

.

In Bayesian optimization, we use the mean and variance
of the surrogate model Ĵj in (17) to construct an acquisi-
tion function to inform the selection of a pj that maximizes
the likelihood of improving the current best reward

Ĵ ‹j :“ max
pPP

Ĵjppq.

To this end, we define an improvement function

I :“ Ipp, jq “ maxt0,J ppq ´ Ĵ ‹j u,

whose likelihood function, based on a Gaussian posterior
distribution N pµ, σ2q, is given by

LpIq “ 1
?

2πσppq
exp

¨

˚

˝

´
1

2

´

µppq ´ Ĵ ‹j ´ I
¯2

σ2ppq

˛

‹

‚

.

Taking an expectation of the likelihood function yields

EIpp, jq “ EpIpp, jqq

“

ż 8

0

I
?

2πσppq
exp

¨

˚

˝

´
1

2

´

µppq ´ Ĵ ‹j ´ I
¯2

σ2ppq

˛

‹

‚

dI.

Performing a change of variables and integrating by parts
yields

EIpp, jq “

#

σppqγpzq ` pµppq ´ Ĵ ‹j qΓpzq, if σppq ą 0,

0 if σppq “ 0.

where

z “
µppq ´ Ĵ ‹j
σppq

,

and γp¨q, Γp¨q are the PDF and the CDF of the mean-zero
unit-variance normal distribution, respectively.

In the j-th iteration of learning, we use the data Dj to
construct the EI acquisition function using the surrogate
Ĵj . Subsequently, we sample on P and obtain

pj “ arg max
pPP

EIpp, jq, (20)

which serves as the estimate of the model coefficients pt

in (2) until the next learning iteration. We terminate the
learning algorithm when

EIpp, jq ă εEI, @ p P P (21)

for some small threshold εEI ą 0. The terminal set of
coefficients is defined p8.

Remark 4. We do not explicitly write a hyperparameter
selection procedure as it is beyond the scope of this work.
Standard methods such as log-marginal-likelihood maxi-
mization is used for implementation purposes to find good
GP variances and length scales. For more details, we refer
the interested reader to [24, Chapter 5].

4.3. Regret analysis

In this subsection, we quantify the performance of the
GP-EI learning algorithm in terms of the cumulative regret

RN :“
N
ÿ

j“0

J pp‹q ´ J ppjq, (22)

where N P N denotes the number of learning/training it-
erations. Specifically, we will demonstrate that the regret
associated with GP-EI in our learning-based observer is
sublinear, and therefore, RN{N Ñ 0 as N Ñ8.

Proposition 1 ([25]). Suppose Assumption 5 holds. Let
δ P p0, 1q and εEI be a fixed termination threshold. As-
sume that J lies in the reproducible kernel Hilbert space
HKpPq corresponding to the kernel Kpp, p1q, and that the
noise corrupting the reward function has zero mean condi-
tioned on the noise history, and is bounded almost surely.
Let }J }2K ď BJ and ζt :“ 2BJ ` 300χt log3

pt{δq, where
χt is a kernel-dependent constant depending on t. Then
the GP-EI algorithm with termination criterion (21) has
a probabilistic bound

Pr
´

RN ď
a

NζNχN

¯

ě 1´ δ (23)

on the cumulative regret over N learning iterations.

Using the results of Theorem 1 and Proposition 1, under
Assumptions 1–5, it is easy to write that the estimation
error bound satisfies

}etpξ0, νq} ď βpt, }ξ0}q ` γp}νptq}8q, (24)

where νptq “
”

ept
J
, εφ

J

ıJ

, and ept satisfies the probabilistic

bound of Proposition 1.
Except for the case where the learning cost is assumed

to be strongly locally convex in a neighborhood of p‹, the
regret bound (23) in general, does not allow us to write
an explicit bound on the parameter estimation error ep.
However, due to the continuity of the RN in the variable
ep, one can use classical arguments from transformation
theory of random variables, e.g. ([26], p. 68), to conclude
about the boundedness of the parameter estimation error
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ep. This, together with (24), allows us to guarantee the
safety, in the form of boundedness of the state estimation
error e, of the observer during the learning iterations.

Remark 5. For squared exponential kernels, the constant
χN is of the order plogpT qqnp`1, where np denotes the di-
mensionality of P. For 5/2 Matérn kernels, χN is of the

order T
nppnp`1q

5`nppnp`1q logpT q. For both, the cumulative regret
is sublinear as per the bound in Proposition 1.

5. Observer gain redesign

Upon completion of the Bayesian optimization stage, we
have learned the unmodeled components of the dynamical
system to some accuracy. Therefore, one can (optionally)
leverage this newly acquired model knowledge to update
the observer gains from the initial design.

Let p8 denote the value of pt which minimizes simple
regret over all learning iterations. We propose a redesigned
observer of the form

x̂t`1 “ Ax̂t `But ` p8ψpq̂tq ` LpCx̂t ´ ytq, (25)

where the redesigned observer gain is L. The error dy-
namics of this redesigned observer can be rewritten as

et`1 “ pA` LCqet ` p
J
8∆ψ ` ψpqtq

Jep8 ´ εφpqtq, (26)

where ep8 “ p8 ´ p‹ is a constant parameter estimation
error. In this case, the estimated value p8 will be used to
redesign the observer gains. The following theorem encap-
sulates the redesign conditions.

Theorem 3. If there exist matrices K, P “ PJ ą 0, and
Q “ QJ ą 0 such that

»

–

´P `Q` L2
ψC

J
q Cq ˚ ˚

PA`KC ´P 0
pPA`KCqpJ8 0 p8Pp

J
8 ´ I

fi

fl ĺ 0, (27)

then the redesigned observer (25) with gain L “ P´1K
makes the error dynamics (3) L-ISS with respect to

rep8
J
, εφ

JsJ.

Proof. Let Vt “ eJt Pet and replace PA`KC by P pA`LCq
by substituting L “ P´1K. Then taking successive Schur
complements of the inequality in (27) yields

„

Ω`Q ˚

P pA` LCqpJ8 p8Pp
J
8 ´ I



`

„

L2
ψC

J
q Cq 0

0 ´I



ĺ 0,

(28)
with

Ω “ pA` LCqJP pA` LCq ´ P.

Taking a congruence transform with
“

eJt ∆ψJ
‰J

yields

eJt Ωet ` 2eJt pA` LCq
JPpJ8∆ψ `∆ψJp8Pp

J
8∆ψ

` L2
ψ∆qJ∆q ´∆ψJ∆ψ ď ´eJt Qet.

Since Lψ is a Lipschitz constant of ψ, the above inequality
implies that

Ṽ ď ´eJt Qet, (29)

where

Ṽ :“ eJt Ωet ` 2eJt pA` LCq
JPpJ8∆ψ `∆ψJp8Pp

J
8∆ψ.

Let Vt “ eJt Pet. Then,

∆Vt “ Ṽ `
3
ÿ

`“1

ṽ`,

where

ṽ1 “
`

ψpqtq
Jep8 ´ εφpqtq

˘J
P
`

ψpqtq
Jep8 ´ εφpqtq

˘

,

ṽ2 “ 2eJt pA` LCq
JP

`

ψpqtq
Jep8 ´ εφpqtq

˘

,

ṽ3 “ 2∆ψJp8P
`

ψpqtq
Jep8 ´ εφpqtq

˘

.

Following similar arguments as the proof of Theorem 1,
we can bound these terms as

ṽ1 ď λmaxpP q}ψpqtq
Jep8 ´ εφpqtq}

2

ď λmaxpP q
`

ψ̄2}ep8}
2 ` }εφ}

2
˘

,

ṽ2 ď 2}P pA` LCq}}et}
`

ψ̄}ep8} ` }εφ}
˘

,

ṽ3 ď 2p8}P }}Cq}Lψ}et}
`

ψ̄}ep8} ` }εφ}
˘

.

These bounds, along with (29), yields

∆Vt ď ´δ0}et}
2 ` δ1}e

p
8}

2 ` δ2}εφ}
2 ` δ3}et}

where δ0 “ 1
2λminpQq, δ1 “ λmaxpP qψ̄

2, and δ2 “

λmaxpP q, and δ3 ď 0 if

}ep8} ď
λminpQq

4ψ̄ p}P pA` LCq} ` p8Lψ}P }}Cq}q
}et} ´

1

ψ̄
}εφ}.

The rest of the proof is identical to the proof of Theo-
rem 1. l

Remark 6. Taking advantage of the learned coefficients
p8, we obtain simpler LMI conditions in (27). Fur-
thermore, from the L-ISS definition, we deduce that re-
designing the observer with a smaller parameter estima-
tion error ep8 leads to a smaller state estimation error.

A complete pseudocode is provided in the Appendix.

6. Numerical Example

Consider the van der Pol oscillator system

9x “

„

0 1
´1 1



x`

„

0
´1



x21x2, y “ x1.

We begin by Euler discretization of the continuous-time
dynamics with a sampling time of τ “ 0.01 s. Comparing
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with (1), we have

A “

„

1 τ
τ 1´ τ



, B “

„

0
´τ



, C “
“

1 0
‰

, Cq “ I,

and φpqq “ q21q2. We know A, B, Cq, and C, as per As-
sumption 1. Owing to limit cycle behaviour of the oscil-
lator, Assumption 3 holds. Furthermore, the nonlinearity
φ is locally Lipschitz, with unknown Lipschitz constant.
Data is collected by using forward simulations of the os-
cillator system T` “ 40 s from an initial condition r1, 1sJ.

We design the initial observer gain by solving the prob-
lem (14), assuming p̄‹ “ 10´2. We run a golden-section
search for Lφ P r0, 10s, which yields an initial observer gain
of

L0 “
“

1.1727 7.3679
‰J

for L̂ψ “ 4.332. The observer initial conditions are set to
zero.

Figure 1: Comparison of state estimates and error norms with and
without learning from data.

For fairness, we choose Legendre polynomials as basis
functions and not monomials, which would perfectly fit
the nonlinearity φpqq with very few coefficients. Our basis
functions are

ψpq̂q “ 10

»

—

—

—

—

–

p3q̂21 ´ 1qp3q̂22 ´ 1q
p3q̂21 ´ 1qq̂2
q̂1p3q̂

2
2 ´ 1q

p5q̂31 ´ 3q̂1q
p5q̂32 ´ 3q̂2q

fi

ffi

ffi

ffi

ffi

fl

,

where the scaling helps find good coefficients despite the
strong bound on p̄‹. Performing Bayesian optimization
with the GP-EI method using a weighting matrix W1 “

200, W2 “ 1, and termination threshold εEI “ 0.01 yields

p8 “ 10´3 ˆ

»

—

—

—

—

–

´0.6077
8.4930
´9.2877
1.8897
9.8417

fi

ffi

ffi

ffi

ffi

fl

in N “ 200 training iterations, with 1000 uniformly ran-
dom samples on r´p̄‹, p̄‹s

5 to select pj at each j using (20).
The surrogate GP model is constructed at each time us-
ing sklearn in Python or MATLAB’s fitrgp function in
the Statistics and Machine Learning Toolbox. We use the
Matérn ARD-52 kernel and select hyperparameters using
BFGS on the log-likelihood function at each training iter-
ation. The effects of model learning is illustrated in Fig-
ure 1. Prior to learning, the initial observer design pro-
vides bounded error dynamics (red continuous line), but
the error is considerably reduced after learning is com-
pleted (green continuous line).

Figure 2: Comparison of state estimates and error norms with and
without final redesign of the observer gains.

With the learned nonlinearity in a neural approxima-
tor/basis expansion form pJ8ψpq̂q, we select Q “ r´5, 5s2

and use the kernelized Lipschitz estimation method in [27]

to compute L̂ψ “ 24.537, with which we can solve (27)

to get L “
“

39.3221 958.7488
‰J

. As seen from Figure 2,
the redesign results in further reduction of state estimation
error.

In order to demonstrate the effectiveness of the proposed
algorithm, we compare the performance of our learning-
based observer with well-known robust and adaptive ob-
servers in the literature. The observers we compare against
include: the robust adaptive observer (RA) described
in [28, Chapter 5], the high-gain (HG) observer described
in [29], and the recurrent neural network (RNN) learning-
based observer proposed in [30]. In all cases, we make
multiple simplifications regarding knowledge of the model
dynamics, since these observers failed to converge with
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completely unknown dynamics. In the first two observers,
one requires a ‘nominal model’ for φpqq, which we assume
to be x̂21x̂2 ` 0.2 ˚ sinpx̂2q to emulate a bounded distur-
bance on the model knowledge. For the neural observer,

we start with an initial condition
“

0.5 0.5
‰J

which is close
to the true system state, because starting from the origin
results in the neural approximator diverging. A compari-
son of the state estimation error in the unmeasured state,
that is, |e2| is illustrated in Fig. 3. Clearly, our proposed
observer (purple line) outperforms the others despite the
simplifications made to help the other observer architec-
tures. The RA observer (amber line) demonstrates good
performance, but slow convergence rate, despite extensive
hand-tuning - another drawback of this observer is that the
observer state-space 8-dimensional and there are multiple
hyperparameters and gains that need hand-tuning. The
HG observer (green line), expectedly, has high state esti-
mation error initially, although the steady-state estimation
norm is smaller than RA and RNN, albeit larger than our
proposed observer. Finally, the RNN observer (magenta
line) exhibits significantly worse performance with time,
and sometimes the estimation error grows large; this is
because the observer estimation error dynamics are uni-
formly ultimately bounded, but not ISS, so large approx-
imation errors in the recurrent neural network result in
poor quality of the state estimates.

Figure 3: Comparative study of our proposed method with robust
and adaptive observers in the literature. RA = Robust adaptive
observer [28, Chapter 5], HG = High-gain observer [29], RNN =
Recurrent neural network observer [30]. RA and HG have knowledge
of the nonlinearity φ, and RNN state is initialized near the system’s
initial state.

7. Conclusions

In this paper, we provide a design methodology for con-
structing state estimators with unmodeled dynamics. We
generate an initial observer that is robust to the learning
error, in thes sense of ISS guarantees, and use this con-
servative initial state estimator to iteratively learn the un-
modeled dynamics via Bayesian optimization in a purely

data-driven manner. Once a suitable estimate of the com-
plete model is achieved, based on an information measure,
we redesign the observer using the learned dynamics to
reduce conservatism. Furthermore, the proposed modular
design, based on a model-based part ensuring the safety
of the learning via ISS guarantees, added to a data-driven
optimization part, allows us to plug-in any data-driven
optimization approach with convergence guarantees, e.g.
Bayesian optimization, extremum seekers, etc.

Further investigations will be conducted to deal with
the case of output measurement noise, which can enter
the system both at the observer feedback level or at the
learning cost function measurement level.

References

[1] K. S. Narendra, K. Parthasarathy, Identification and control of
dynamical systems using neural networks, IEEE Transactions
on Neural Networks 1 (1990) 4–27.

[2] E. B. Kosmatopoulos, M. M. Polycarpou, M. A. Christodoulou,
P. A. Ioannou, High-order neural network structures for iden-
tification of dynamical systems, IEEE Transactions on Neural
Networks 6 (1995) 422–431.

[3] A. Chakrabarty, V. Dinh, M. J. Corless, A. E. Rundell, S. H.
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Appendix: Implementation

Algorithm 1 Bayesian Learning-based Observer

Require: Initial conditions x0, x̂0
Require: System matrices A, B, C
Require: Function argument matrix Cq Ź default: I
Require: Basis functions ψ
Require: Initial coefficients p0 Ź default: 0
Require: Upper bound on coefficients p̄‹ Ź default: 0.01
Require: Range of L̂ψ to perform line search
Require: Batch size for learning T`
Require: Cost function weights W1,W2 Ź p.s.d. matrices
Require: Kernel K for GP regression Ź default: Matérn 52
Require: Acquisition Function Ź default: EI
Require: Termination threshold εEI Ź default: 0.001

Initial L-ISS observer design

1: Select A such that pA,Cq is observable
2: L̂ψ, L0 Ð perform line search (14) Ź involves solving

SDP (10) for L0 corresponding to L̂ψ
3: Parameterize initial observer (2) with L0 and p0

Safe learning from online data

4: for j “ 0 : N ´ 1 do
5: Collect batch data (estimated states tx̂u and measure-

ments tyu) from system
6: J ppjq Ð compute via (15)
7: Learn surrogate GP model from data tpj ,J ppjqu
8: µ, σ Ð use GP to compute on samples drawn from P
9: pj`1 Ð obtain via acquisition function (20)

10: Re-parameterize observer (2) with L0 and pt Ð pj`1

11: Terminate if condition (21) holds

12: p8 Ð terminal value of pj`1

Observer gain redesign

13: LÐ redesigned observer gain in (27)
14: Parameterize re-designed observer (25) with L and p8
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