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Abstract
In this paper we introduce JuliaSim, a high-performance programming environment designed
to blend traditional modeling and simulation with machine learning. JuliaSim can build
accelerated surrogates from component-based models, such as those conforming to the FMI
standard, using continuous-time echo state networks (CTESN). The foundation of this envi-
ronment, ModelingToolkit.jl, is an acausal modeling language which can compose the trained
surrogates as components within its staged compilation process. As a complementary factor
we present the JuliaSim model library, a standard library with differential algebraic equations
and pre-trained surrogates, which can be composed using the modeling system for design, op-
timization, and control. We demonstrate the effectiveness of the surrogate-accelerated mod-
eling and simulation approach on HVAC dynamics by showing that the CTESN surrogates
accurately capture the dynamics of a HVAC cycle at less than 4% error while accelerating
its simulation by 340x. We illustrate the use of surrogate acceleration in the design process
via global optimization of simulation parameters using the embedded surrogate, yielding a
speedup of two orders of magnitude to find the optimum. We showcase the surrogate deployed
in a co-simulation loop, as a drop-in replacement for one of the coupled FMUs, allowing engi-
neers to effectively explore the design space of a coupled system. Together this demonstrates
a workflow for automating the integration of machine learning techniques into traditional
modeling and simulation processes.
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Abstract
In this paper we introduce JuliaSim, a high-performance
programming environment designed to blend traditional
modeling and simulation with machine learning. JuliaSim
can build accelerated surrogates from component-based
models, such as those conforming to the FMI standard,
using continuous-time echo state networks (CTESN). The
foundation of this environment, ModelingToolkit.jl, is an
acausal modeling language which can compose the trained
surrogates as components within its staged compilation
process. As a complementary factor we present the Ju-
liaSim model library, a standard library with differential-
algebraic equations and pre-trained surrogates, which can
be composed using the modeling system for design, opti-
mization, and control. We demonstrate the effectiveness
of the surrogate-accelerated modeling and simulation ap-
proach on HVAC dynamics by showing that the CTESN
surrogates accurately capture the dynamics of a HVAC
cycle at less than 4% error while accelerating its simu-
lation by 340x. We illustrate the use of surrogate ac-
celeration in the design process via global optimization
of simulation parameters using the embedded surrogate,
yielding a speedup of two orders of magnitude to find
the optimum. We showcase the surrogate deployed in a
co-simulation loop, as a drop-in replacement for one of
the coupled FMUs, allowing engineers to effectively ex-
plore the design space of a coupled system. Together this
demonstrates a workflow for automating the integration of
machine learning techniques into traditional modeling and
simulation processes.
Keywords: modeling, simulation, Julia, machine learning,
surrogate modeling, acceleration, co-simulation, Func-
tional Mock-up Interface

1 Introduction
With the dramatic success of artificial intelligence and
machine learning (AI/ML) throughout many disciplines,
one major question is how AI/ML will change the field
of modeling and simulation. Modern modeling and sim-
ulation involves the time integration of detailed multi-
physics component models, programmatically generated

by domain-specific simulation software. Their large com-
putational expense makes design, optimization and con-
trol of these systems prohibitively expensive (Benner,
Gugercin, and Willcox 2015). Thus one of the major pro-
posed avenues for AI/ML in the space of modeling and
simulation is in the generation of reduced models and
data-driven surrogates, that is, sufficiently accurate ap-
proximations with majorly reduced computational burden
(Willard et al. 2020; Ratnaswamy et al. 2019; Zhang et
al. 2020; Y. Kim et al. 2020; Hu et al. 2020). While the
research has shown many cross-domain successes, the av-
erage modeler does not employ surrogates in most projects
for a number of reasons: the surrogatization process is
not robust enough to be used blindly, it can be difficult
to ascertain whether the surrogate approximation is suffi-
ciently accurate to trust the results, and it is not automated
in modeling languages. This begs the question – how does
one develop a modeling environment that seamlessly inte-
grates traditional and machine learning approaches in or-
der to merge this newfound speed with the robustness of
stabilized integration techniques?

The difficulty of addressing these questions comes
down to the intricate domain-specific algorithms which
have been developed over the previous decades. Many
scientists and engineers practice modeling and simulation
using acausal modeling languages, which require sophis-
ticated symbolic algorithms in order to give a stable result.
Algorithms, such as alias elimination (Otter and Elmqvist
2017) and the Pantelides algorithm for index reduction
(Pantelides 1988), drive the backend of current Modelica
compilers like Dymola (Brück et al. 2002) and OpenMod-
elica (Fritzson, Aronsson, et al. 2005) and allow for large-
scale differential-algebraic equation (DAE) models to be
effectively solved. Notably, these compiler pipelines en-
code exact symbolic transformations. One can think of
generalizing this process by allowing approximate sym-
bolic transformations, which can thus include model re-
duction and machine learning techniques. As this pro-
cess now allows for inexact transformation, the modeling
language would need to allow users to interact with the
compiler. Moreover, it would have to allow users to swap
in and out approximations, selectively accelerate specific



submodels, and finally make it easy to check the results
against the non-approximated model.

To address these issues, we introduce JuliaSim — a
modeling and simulation environment, which merges ele-
ments of acausal modeling frameworks like Modelica with
machine learning elements. The core of the environment
is the open source ModelingToolkit.jl (Ma et al. 2021), an
acausal modeling framework with an interactive compila-
tion mechanism for including exact and inexact transfor-
mations. To incorporate machine learning, we describe
the continuous-time echo state network (CTESN) archi-
tecture as an approximation transformation of time series
data to a DAE component. Notably, the CTESN archi-
tecture allows for an implicit training to handle the stiff
equations common in engineering simulations. To demon-
strate the utility of this architecture, we showcase the
CTESN as a methodology for translating a Room Air Con-
ditioner model from a Functional Mock-up Unit (FMU)
binary to an accelerated ModelingToolkit.jl 1 model with
4% error over the operating parameter range, accelerat-
ing it by 340x. We then show how the accelerated model
can be used to speed up global parameter optimization by
over two orders of magnitude. As a component within
an acausal modeling framework, we demonstrate its abil-
ity to be composed with other models, here specifically
in the context of the FMI co-simulation environment. We
believe that these results indicate the promise of blending
machine learning surrogate methods in the broader mod-
eling and simulation workflow.

2 Overview of JuliaSim
The flow of the architecture (Figure 1) is described as fol-
lows. We start by describing the open ModelingToolkit.jl
acausal modeling language as a language with compos-
able transformation passes to include exact and approxi-
mate symbolic transformations. To incorporate machine
learning into this acausal modeling environment, we de-
scribe the CTESN, which is a learnable DAE structure that
can be trained on highly stiff time series to build a repre-
sentation of a component. To expand the utility of com-
ponents, we outline the interaction with the FMI standard
to allow for connecting and composing models. Finally,
we present the JuliaSim model library, which is a collec-
tion of acausal components that includes pre-trained sur-
rogates of models so that users can utilize the acceleration
without having to pay for the cost of training locally.

2.1 Interactive Acausal Modeling with Model-
ingToolkit.jl

ModelingToolkit.jl (Ma et al. 2021) (MTK) is a frame-
work for equation-based acausal modeling written in
the Julia programming language (Bezanson et al. 2017),
which generates large systems of DAEs from symbolic
models. MTK takes a different approach than Modia.jl2,

1https://github.com/SciML/ModelingToolkit.jl
2https://github.com/ModiaSim/Modia.jl

another Julia package for acausal modeling. For a compar-
ison between MTK, Modia and Modelica, the reader re-
ferred to this article 3 as well this section of the documen-
tation 4. Similarly to Modelica, MTK allows for build-
ing models hierarchically in a component-based fashion.
For example, defining a component in MTK is to define a
function which generates an ODESystem:

function Capacitor(;name, C = 1.0)
val = C
@named p = Pin(); @named n = Pin()
@variables v(t); @parameters C
D = Differential(t)
eqs = [v ~ p.v - n.v

0 ~ p.i + n.i
D(v) ~ p.i / C]

ODESystem(eqs, t, [v], [C],
systems=[p, n],
defaults=Dict(C => val),
name=name)

end

Systems can then be composed by declaring subsystems
and defining the connections between them. For instance,
the classic RC circuit can be built from standard electrical
components as:

@named resistor = Resistor(R=100)
@named capacitor = Capacitor(C=0.001)
@named source = ConstantVoltage(V=10)
@named ground = Ground()
@named rc_model = ODESystem([

connect(source.p, resistor.p)
connect(resistor.n, capacitor.p)
connect(capacitor.n, source.n,

ground.g)],
t, systems=[resistor, capacitor,

source, ground])

The core of MTK’s utility is its system of trans-
formations, where a transformation is a function
which takes an AbstractSystem type to another
AbstractSystem type. Given this definition, trans-
formations can be composed and chained. Transfor-
mations, such as dae_index_lowering, transform
a higher-index DAE into an index-1 DAE via the Pan-
telides algortithm (Pantelides 1988). Nonlinear tear-
ing and alias_elimination (Otter and Elmqvist
2017) are other commonly used transformations, which
match the workflow of the Dymola Modelica compiler
(Brück et al. 2002) (and together are given the alias
structural_simplify). However, within this sys-
tem the user can freely compose transformations with
domain- and problem-specific transformations, such as
“exponentiation of a variable to enforce positivity” or “ex-
tending the system to include the tangent space”. After

3http://www.stochasticlifestyle.com/modelingtoolkit-modelica-and-
modia-the-composable-modeling-future-in-julia/

4https://mtk.sciml.ai/stable/comparison/



Figure 1. Compiler passes in the JuliaSim Modeling and Simulation system. Ordinarily, most systems simulate equation-based
models, described in the “Training Data Preparation” and the “Simulation or Co-simulation” phases. We provide an additional set
of steps in our compiler to compute surrogates of models. Blue boxes represent code transformations, yellow represents user source
code, gray represents data sources, and gold represents surrogate models. The dotted line indicates a feature that is currently work
in progress.

transformations have been composed, the ODEProblem
constructor compiles the resulting model to a native Ju-
lia function for usage with DifferentialEquations.jl (Rack-
auckas and Nie 2017).

2.2 Representing Surrogates as DAEs with
Continuous-Time Echo State Networks

In order to compose a trained machine learning model
with the components of ModelingToolkit.jl, one needs to
represent such a trained model as a set of DAEs. To this
end, one can make use of continuous machine learning
architectures, such as neural ODEs (Chen et al. 2018)
or physics-informed neural networks (Raissi, Perdikaris,
and Karniadakis 2019). However, prior work has demon-
strated that such architectures are prone to instabilities
when being trained on stiff models (Wang, Teng, and
Perdikaris 2020). In order to account for these difficul-
ties, we have recently demonstrated a new architecture,
CTESNs, which allows for implicit training in parame-
ter space to stabilize the ill-conditioning present in stiff
systems (Anantharaman et al. 2021). For this reason,
CTESNs are the default surrogate algorithm of JuliaSim
and will be the surrogate algorithm used throughout the
rest of the paper. We provide an overview of the CTESN
here, but for more details on the method, we refer the
reader to (Anantharaman et al. 2021).

The CTESN is a continuous-time generalization of
echo state networks (ESNs) (Lukoševičius 2012), a
reservoir computing framework for learning a nonlin-
ear map by projecting the inputs onto high-dimensional

spaces through predefined dynamics of a nonlinear system
(Lukoševičius and Jaeger 2009). CTESNs are effective at
learning the dynamics of systems with widely separated
time scales because their design eliminates the require-
ment of training via local optimization algorithms, like
gradient descent, which are differential equation solvers
in a stiff parameter space. Instead of using optimization,
CTESNs are semi-implicit neural ODEs where the first
layer is fixed, which results in an implicit training process.

To develop the CTESN, first a non-stiff dynamical sys-
tem, called the reservoir, is chosen. This is given by the
expression

r′ = f
(
Ar+Whybx(p∗, t)

)
(1)

where A is a fixed random sparse NR×NR matrix, Whyb
is a fixed random dense NR×N matrix, and x(p∗, t) is a so-
lution of the system at a candidate set of parameters from
the parameter space, and f is an activation function.

Projections (Wout) from the simulated reservoir time se-
ries to the truth solution time series are then computed,
using the following equation:

x(t) = g(Woutr(t)) (2)

where g is an activation function (usually the identity),
r(t) represents the solution to the reservoir equation, and
x(t) represents the solution to full model. This projec-
tion is usually computed via least-squares minimization



using the singular value decomposition (SVD), which is
robust to ill-conditioning by avoiding gradient-based opti-
mization. A projection is computed for each point in the
parameter space, and a map is constructed from the pa-
rameter space P to each projection matrix Wout (in our ex-
amples, we will use a radial basis function to construct this
map). Thus our final prediction is the following:

x̂(t) = g(Wout(p̂)r(t)) (3)

For a given test parameter p̂, a matrix Wout(p̂) is com-
puted, the reservoir equation is simulated, and then the
final prediction x̂ is a given by the above matrix multipli-
cation.

While the formulation above details linear projec-
tions from the reservoir time series (Linear Projection
CTESN or LPCTESN), nonlinear projections in the form
of parametrized functions can also be used to project from
the reservoir time series to the reference solution (Nonlin-
ear Projection CTESN). For this variation, a radial basis
function can be applied to model the nonlinear projection
r(t) 7→ x(t) in equation 2. The learned polynomial coeffi-
cients βi from radial basis functions are used, and a map-
ping between the model parameter space and coefficients
βi’s is constructed.

rbf(βi)(r(t))≈ x(pi, t) ∀i ∈ {1, . . . ,k} (4)
rbf(pi)≈ βi ∀i ∈ {1, . . . ,k} (5)

where k is the total number of parameter samples used
for training. Finally, during prediction, first the coeffi-
cients are predicted and a radial basis function for the pre-
diction of the time series is constructed:

β̂ = rbf(p̂) (6)

x̂(t) = rbf(β̂ )(r(t)) (7)

Notice that both the LPCTESN and the NPCTESN rep-
resent the trained model as a set of DAEs, and thus can
be represented as an ODESystem in MTK, and can be
composed similarly to any other DAE model.

A significant advantage of applying NPCTESNs over
LPCTESNs is the reduction of reservoir sizes, which cre-
ates a cheaper surrogate with respect to memory usage.
LPCTESNs often use reservoirs whose dimensions reach
an order of 1000. While this reservoir ODE is not-stiff,
and is cheap to simulate, this leads to higher memory re-
quirements. Consider the surrogatization of the Robertson
equations (Robertson 1976), a canonical stiff benchmark
problem:

ẏ1 =−0.04y1 +104y2 · y3 (8)

ẏ2 = 0.04y1−104y2 · y3−3 ·107y2
2 (9)

ẏ3 = 3 ·107y2
2 (10)

where y1, y2, and y3 are the concentrations of three rea-
gants. This system has widely separated reaction rates
(0.04,104,3 · 107), and is well-known to be very stiff
(Gobbert 1996; Robertson and Williams 1975; Robertson
1976). It is commonly used as an example for evaluat-
ing integrators of stiff ODEs (Hosea and Shampine 1996).
Finding an accurate surrogate for this system is difficult
because it needs to capture both the stable slow-reacting
system and the fast transients. This breaks many data-
driven surrogate methods, such as PINNs and LSTMs
(Anantharaman et al. 2021). We shall now demonstrate
training a surrogate of this system with the reaction rates
as inputs/design parameters.

Table 1 shows the result of surrogatization using the
LPCTESN and the NPCTESN, while considering the fol-
lowing ranges of design parameters corresponding to the
three reaction rates: (0.036,0.044), (2.7 · 107,3.3 · 107)
and (0.9 ·104,1.1 ·104). We observe three orders of mag-
nitude smaller reservoir equation size, resulting in a com-
putationally cheaper surrogate model.

Table 1. Comparison between LPCTESN and NPCTESN on
surrogatization of the Robertson equations. “Res” stands for
reservoir.

Model Res. ODE size Avg Rel. Err %
LPCTESN 3000 0.1484
NPCTESN 3 0.0200

2.3 Composing with External Models via the
FMI Standard

While these surrogatized CTESNs can be composed with
other MTK models, more opportunities can be gained by
composing with models from external languages. The
Functional Mock-up Interface (FMI) (Blochwitz et al.
2011) is an open-source standard for coupled simulation,
adopted and supported by many simulation tools5, both
open source and commercial. Models can be exported
as Functional Mock-up Units (FMUs), which can then be
simulated in a shared environment. Two forms of coupled
simulation are standardized. Model exchange uses a cen-
tralized time-integration algorithm to solve the coupled
sets of differential-algebraic equations exported by the in-
dividual FMUs. The second approach, co-simulation, al-
lows FMUs to export their own simulation routine, and
synchronizes them using a master algorithm. Notice that
as DAEs, the FMU interface is compatible with Modeling-
Toolkit.jl components and, importantly, trained CTESN
models.

JuliaSim can simulate an FMU in parallel at different
points in the design space. For each independent simu-
lation, the fmpy package6 was used to run the FMU in
ModelExchange with CVODE (Cohen, Hindmarsh, and
Dubois 1996) or co-simulation with the FMUs exported

5https://fmi-standard.org/tools/
6https://github.com/CATIA-Systems/FMPy
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Figure 2. Surrogate prediction of the room temperature of the RAC model in blue, while the ground truth is in red. This is a
prediction for points over which the surrogate has not been trained. Relative error is calculated throughout the time span at 1000
uniformly spaced points. The CTESN surrogate was trained on a timespan of an entire day, using data from 100 simulations. The
simulation parameters were sampled from a chosen input space using Latin hypercube sampling. The simulation time span goes
from 188 days to 189 days at a fixed step size of 5 seconds. Table 3 presents the list of and ranges of inputs the surrogate has been
trained on. The relative error usually peaks at a point with a discontinuous derivative in time, usually induced by a step or ramp
input (which, in this case, is the parametrized compressor speed ramp input.). Another feature of the prediction error above is that it
is sometimes stable throughout the time span (such as with the compressor shaft power, top right). This is a feature of how certain
outputs vary through the parameter space. Sampling the space with more points or reducing the range of the chosen input space
would reduce this error. Table 2 shows the maximum relative error computed for many other outputs of interest. Figure 3 computes
and aggregates maximum errors across a 100 new test points from the space.

Figure 3. Performance of surrogate when tested on 100 test parameters from the parameter space. The test parameters were chosen
via Sobol low discrepancy sampling, and maximum relative error across the time span was calculated for all output quantities. The
average maximum error across all output quantities was then plotted as a histogram. Our current test points may not be maximally
separated through the space, but we anticipate similar performance with more test examples and a maximal sampling scheme.



Table 2. Relative errors when the surrogate is tested on parameters it has not been trained on. HEX stands for “heat exchanger”
and LEV stands for “linear expansion valve”.

Output quantity Max. Rel. Err % Output quantity Max. Rel. Err %

Air temp. in room 0.033 Rel. humidity in room 0.872
Outdoor dry bulb temp. 0.0001 Outdoor rel. humidity 0.003
Compressor inlet pressure 4.79 Compressor outlet pressure 3.50
LEV inlet pressure 3.48 LEV outlet pressure 4.84
LEV refrigerant outlet enthalpy 1.31 Compressor refrigerant mass flow rate 4.51
Evaporator refrigerant saturation temp. 0.205 Evaporator refrigerant outlet temp. 0.145
Total heat dissipation of outdoor HEX 8.15 Sensible heat load of indoor HEX 0.892
Latent heat load of indoor HEX 3.51 Outdoor coil outlet air temperature 0.432
Indoor coil outlet air temperature 0.070 Compressor shaft power 3.04

Table 3. Surrogate Operating Parameters. The surrogate is ex-
pected to work over this entire range of design parameters.

Input Parameter Range

Compressor Speed (ramp) Start Time - (900, 1100) s
Start Value - (45, 55) rpm

Offset - (9, 11) rpm
LEV Position (252, 300)
Outdoor Unit Fan Speed (680, 820) rpm
Indoor Unit Fan Speed (270, 330) rpm
Radiative Heat Gain (0.0, 0.1)
Convective Heat Gain (0.0, 0.1)
Latent Heat Gain (0.3, 0.4)

solver. The resultant time series was then fitted to cu-
bic splines. Integration with state-of-the-art solvers from
DifferentialEquations.jl (Rackauckas and Nie 2017) for
simulating ModelExchange FMUs is planned in future re-
leases.

2.4 Incorporating Surrogates into the Ju-
liaSim Model Library

Reduced order modeling and surrogates in the space of
simulation have traditionally targeted PDE problems be-
cause of the common reuse of standard PDE models such
as Navier-Stokes equations. Since surrogates have a train-
ing cost, it is only beneficial to use them if that cost is
amortized over many use cases. In equation-based model-
ing systems, such as Modelica or Simulink, it is common
for each modeler to build and simulate a unique model.
While at face value this may seem to defeat opportuni-
ties for amortizing the cost, the composability of compo-
nents within these systems is what grants a new opportu-
nity. For example, in Modelica it is common to hierar-
chically build models from components originating in li-
braries, such as the Modelica standard library. This means
that large components, such as high-fidelity models of
air conditioners, specific electrical components, or phys-
iological organelles, could be surrogatized and accelerate

enough workflows to overcome the training cost7. In addi-
tion, if the modeler is presented with both the component
and its pre-trained surrogate with known accuracy statis-
tics, such a modeler could effectively use the surrogate
(e.g., to perform a parameter study) and easily swap back
to the high- fidelity version for the final model. This al-
lows users to test the surrogate in their downstream appli-
cation, examine the resulting behaviour, and make a de-
cision on whether the surrogate is good enough for their
task. A discussion of error dynamics of the surrogate is
left to future work.

Thus to complement the JuliaSim surrogatization archi-
tecture with a set of pre-trained components, we devel-
oped the JuliaSim Model Library and training infrastruc-
ture for large-scale surrogatization of DAE models. Ju-
liaSim’s automated model training pipeline can serve and
store surrogates in the cloud. It consists of models from
the Modelica Standard Library, CellML Physiome model
repository (Yu et al. 2011), and other benchmark problems
defined using ModelingToolkit. In future work, we shall
demonstrate workflows using these surrogates for acceler-
ated design and development.

Each of the models in the library contains a source form
which is checked by continuous integration scripts, and
surrogates are regenerated using cloud resources when-
ever the source model is updated8. For some models, cus-
tom importers are also run in advance of the surrogate
generation. For instance, the CellMLToolkit.jl importer
translates the XML-based CellML schema into Model-
ingToolkit.jl. Components and surrogates from other
sources, such as Systems Biology Markup Language li-
braries (SBML), are scheduled to be generated. Addition-
ally, for each model, a diagnostic report is generated de-
tailing:

1. the accuracy of the surrogate across all outputs of in-
terest

7We note that an additional argument can be made for pre-trained
models in terms of user experience. If a user of a modeling software
needs a faster model for real-time control, then having raised the total
simulation cost to reduce the real-time user cost would still have a net
benefit in terms of the application

8https://buildkite.com/



2. the parameter space which was trained on

3. and performance of the surrogate against the original
model

is created to be served along with the models. With this in-
formation, a modeler can check whether the surrogatized
form matches the operating requirements of their simula-
tion and replace the usage of the original component with
the surrogate as necessary. Note that a GUI exists for users
of JuliaSim to surrogatize their own components through
this same system.

3 Accelerating Building Simulation
with Composable Surrogates

To demonstrate the utility of the JuliaSim architecture, we
focus on accelerating the simulation of energy efficiency
of buildings. Sustainable building simulation and design
involves evaluating multiple options, such as building en-
velope construction, Heating Ventilation, Air Condition-
ing and Refrigeration (HVAC/R) systems, power systems
and control strategies. Each choice is modeled indepen-
dently by specialists drawing upon many years of develop-
ment, using different tools, each with their own strengths
(Wetter 2011). For instance, the equation-oriented Model-
ica language (Elmqvist, Mattsson, and Otter 1999; Fritz-
son and Engelson 1998) allows modelers to express de-
tailed multi-physics descriptions of thermo-fluid systems
(Laughman 2014). Other tools, such as EnergyPlus, DOE-
2, ESP-r, TRNSYS have all been compared in the litera-
ture (Sousa 2012; Wetter, Treeck, and Hensen 2013).

These models are often coupled and run concurrently
to make use of results generated by other models at run-
time (Nicolai and Paepcke 2017). For example, a build-
ing energy simulation model computing room air temper-
atures may require heating loads from an HVAC supply
system, with the latter coming from a simulation model
external to the building simulation tool. Thus, integration
of these models into a common interface to make use of
their different features, while challenging (Wetter, Treeck,
and Hensen 2013), is an important task.

While the above challenge has been addressed by FMI,
the resulting coupled simulation using FMUs is com-
putationally expensive due to the underlying numerical
stiffness (Robertson and Williams 1975) widely prevalent
in many engineering models. These simulations require
adaptive implicit integrators to step forward in time (Wan-
ner and Hairer 1996). For example, building heat transfer
dynamics has time constants in hours, whereas feedback
controllers have time constants in seconds. Thus, surro-
gate models are often used in building simulation (West-
ermann and Evins 2019).

In the following sections, we describe surrogate gener-
ation of a complex Room Air Conditioner (RAC) model,
which has been exported as an FMU. We then use the sur-
rogate to find the optimal set of design parameters over

which system performance is maximized, yielding two or-
ders of magnitude speedup over using the full model. Fi-
nally, we discuss the deployment of the surrogate in a co-
simulation loop coupled with another FMU.

3.1 Surrogates of Coupled RAC Models
We first consider surrogate generation of a Room Air Con-
ditioner (RAC) model using JuliaSim, consisting of a cou-
pled room model with a vapor compression cycle model,
which removes heat from the room and dissipates it out-
side. This model was provided to us by a user as-is,
and a maximum relative error tolerance of 5% was cho-
sen. The vapor compression cycle itself consists of de-
tailed physics-based component models of a compressor,
an expansive valve and a finite volume, and a staggered-
grid dynamic heat exchanger model (Laughman 2014).
This equipment is run open-loop in this model to sim-
plify the interactions between the equipment and the ther-
mal zone. The room model is designed using components
from the Modelica Buildings library (Wetter, Zuo, et al.
2014). The room is modeled as a volume of air with in-
ternal convective heat gain and heat conduction outside.
The Chicago O’Hare TMY3 weather dataset9 is imported
and is used to define the ambient temperature of the air
outside. This coupled model is written and exported from
Dymola 2020x as a co-simulation FMU.

The model is simulated with 100 sets of parameters
sampled from a chosen parameter space using Latin hy-
percube sampling. The simulation timespan was a full day
with a fixed step size of 5 seconds. The JuliaSim FMU
simulation backend runs simulations for each parameter
set in parallel and fits cubic splines to the resulting time
series outputs to continuously sample points from parts of
the trajectory. Then the CTESN algorithm computes pro-
jections from the reservoir time series to output time series
at each parameter set. Finally, a radial basis function cre-
ates a nonlinear map between the chosen parameter space
and the space of projections. Figure 2 and Table 2 show
the relative errors when the surrogate is tested at a param-
eter set on which it has not been trained. To demonstrate
the reliability of the surrogate through the chosen param-
eter space, 100 further test parameters were sampled from
the space, and the errors for each test were compiled into a
histogram, as shown in 3. At any test point, the surrogate
takes about 6.1 seconds to run, while the full model takes
35 minutes, resulting in a speedup of 344x.

This surrogate model can then be reliably deployed for
design and optimization, which is outlined in the follow-
ing section.

3.2 Accelerating Global Optimization
Building design optimization (Nguyen, Reiter, and Rigo
2014; Machairas, Tsangrassoulis, and Axarli 2014) has
benefited from the use of surrogates by accelerating opti-
mization through faster function evaluations and smooth-

9https://bcl.nrel.gov/node/58958



Figure 4. Comparison of global optimization while using the full model and the surrogate. Loss is measured using the full model’s
objective function. (Left) Convergence of loss with number of function evaluations (Right) Convergence of loss with wall clock
time. The optimization using the surrogate converged much before the result from the first function evaluation of the full model is
over. This is why the blue line appears translated horizontally in time.

ing objective functions with discontinuities (Westermann
and Evins 2019; Wetter and Wright 2004).

The quantity to be maximized (or whose negative value
is to be minimized) is the average coefficient of perfor-
mance (COP) across the time span. We calculate this us-
ing output time series from the model by means of the
following formula:

COP(t) =
Qtot(t)

max(0.01,CSP(t))
(11)

COPavg =
∑

Nt
n=1COP(tn)

Nt
(12)

where COP refers to the coefficient of performance,
COPavg refers to the average coefficient of performance
across the time interval (the quantity to optimize), Qtot the
total heat dissipation from the coupled model, CSP(t) is
the compressor shaft power, and Nt represents the number
of points in time sampled from the interval (720).

We use an adaptive differential evolution global opti-
mization algorithm, which does not require the calcula-
tion of gradients or Hessians (Price, Storn, and Lampinen
2006). We chose this algorithm because of its ability to
handle black-box objective functions. We use the differen-
tial optimizers in BlackBoxOptim.jl10 for this experiment.

Figure 4 shows that the surrogate produces a series of
minimizers, which eventually converge to within 1% of
the reference minimum value chosen, but two orders of
magnitude faster. The surrogate does take more function
evaluations to converge than the true model, but since each
function value is relatively inexpensive, the impact on wall
clock time is negligible.

10https://github.com/robertfeldt/BlackBoxOptim.jl

3.3 Co-simulation with Surrogates
Next we examine a co-simulation loop with two coupled
FMUs and replace one of the FMUs with a surrogate. Co-
simulation is a form of coupled simulation where a mas-
ter algorithm simulates and synchronizes time dependent
models models at discrete time steps. An advantage of
co-simulation over model exchange is that the individ-
ual FMUs can be shipped with their own solvers. These
FMU solver calls are abstracted away from the master al-
gorithm, which only pays heed to initialization and syn-
chronization of the FMUs.

We examine a simplified example of an HVAC system
providing cooling to a room from the Modelica Buildings
library (Wetter, Bonvini, et al. 2015). Both the HVAC sys-
tem and room models have been exported as FMUs, which
are then imported into JuliaSim and then coupled via co-
simulation. At each step of the co-simulation, the mod-
els are simulated for a fixed time step, and the values of
the coupling variables are queried and then set as inputs
to each other, before the models are simulated at the next
time step.

JuliaSim then generates a surrogate of the HVAC sys-
tem by training over the set of inputs received during the
co-simulation loop. It is then deployed in a “plug and
play” fashion, by coupling the outputs of the surrogates
to the inputs of the room and vice versa. The resultant
output from the coupled system is shown in Figure 5. The
above co-simulation test has been conducted at the same
set of set of design parameters as the original simulation.
11 While the individual models in this test are simplified,

11We tried to simulate this coupled system at different design pa-
rameters, but were unable to, for reasons currently unknown to us,
change certain parameters on Dymola 2020x. We were also not able
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Figure 5. Coupled co-simulation of a surrogate and an FMU. The blue line represents the ground truth, which is the output from
the co-simulation of two coupled FMUs, and the red line represents the output from the coupled surrogate and an FMU. While
the prediction smooths over transients found in the ground truth, it does so at a relative error of less than 1.5%. This result also
empirically suggests that the output from the surrogate is bounded over the set of inputs it has received over co-simulation. The
surrogate was trained over a sample of 100 inputs received from the room model. The error over the transients can be reduced by
sampling more inputs from the co-simulation.

they serve as a proof of concept for a larger coupled sim-
ulation, either involving more FMUs or involving larger
models, which may be prohibitively expensive (Wetter,
Fuchs, and Nouidui 2015).

4 Conclusion
We demonstrate the capabilities of JuliaSim, a software
for automated generation of deployment of surrogates for
design, optimization and coupled simulation. Our surro-
gates can reproduce outputs from detailed multi-physics
systems and can be used as stand-ins for global opti-
mization and coupled simulation. Our results show the
promise of blending machine learning surrogates in Ju-
liaSim, and we believe that it can enable a machine
learning-accelerated workflow for design and develop-
ment of complex multi-physical systems.

There are many avenues for this work to continue. Fur-
ther work to deploy these embedded surrogates as FMUs
themselves is underway. This would allow JuliaSim to
ship accelerated FMUs to other platforms. Other surro-
gate algorithms, such as proper orthogonal decomposi-
tion (Chatterjee 2000), neural ordinary differential equa-
tions (Chen et al. 2018; S. Kim et al. 2021), and dynamic
mode decomposition (Schmid 2010) will be added in up-
coming releases and rigorously tested on the full model
library. Incorporating machine learning in other fashions,
such as within symbolic simplification algorithms, is simi-

to change those parameters having exported the constituent models as
co-simulation FMUs. We shall aim to debug this issue and complete
this story in future work.

larly being explored. But together, JuliaSim demonstrates
that future modeling and simulation software does not
need to, and should not, eschew all of the knowledge of
the past equation-based systems in order to bring machine
learning into the system.
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