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Abstract

We consider the global optimization of nonconvex mixed-integer quadratic pro-
grams with linear equality constraints. In particular, we present a new class of convex
quadratic relaxations which are derived via quadratic cuts. To construct these quadratic
cuts, we solve a separation problem involving a linear matrix inequality with a special
structure that allows the use of specialized solution algorithms. Our quadratic cuts
are nonconvex, but define a convex feasible set when intersected with the equality con-
straints. We show that our relaxations are an outer-approximation of a semi-infinite con-
vex program which under certain conditions is equivalent to a well-known semidefinite
program relaxation. The new relaxations are implemented in the global optimization
solver BARON, and tested by conducting numerical experiments on a large collection
of problems. Results demonstrate that, for our test problems, these relaxations lead to
a significant improvement in the performance of BARON.

1 Introduction

We address the global optimization of problems of the form:

min
x∈Rn

xTQx+ qTx

s.t. Ax = b
xi ∈ Si, ∀i ∈ [n] := {1, . . . , n}

(1)

where Q ∈ Rn×n is a symmetric matrix which may be indefinite, q ∈ Rn, A ∈ Rm×n and
b ∈ Rm. For each i ∈ [n], we assume that Si is a bounded set given by the union of finitely
many closed intervals in R.

The formulation in (1) subsumes many classes of problems such as nonconvex quadratic
programs (QPs) and mixed-integer quadratic programs (MIQPs), which arise in applications
including facility location and quadratic assignment [9], molecular conformation [15] and
max-cut problems [7].

State-of-the-art global optimization solvers rely on branch-and-bound algorithms to
solve (1) to global optimality. The efficiency of these algorithms depends to a large extent
on the tightness and the computational cost of the relaxations solved for lower bounding.
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Commonly used relaxations for (1) are polyhedral relaxations constructed via factorable pro-
gramming [11, 18, 21] and reformulation-linearization techniques (RLT) [17], semi-definite
programming (SDP) relaxations [2, 4, 19], and convex quadratic relaxations which can
be obtained via separable programming [14], d.c. programming [22], or quadratic convex
reformulation methods [3].

In a recent paper [12], we derived convex quadratic relaxations of (1) by convexifing
the objective function through uniform diagonal perturbations of Q. These perturbations
were constructed by solving eigenvalue and generalized eigenvalue problems involving Q and
A. Through numerical experiments, we demonstrated that these relaxations are not only
inexpensive to solve, but can also provide very tight bounds, significantly improving the
performance of branch-and-bound algorithms. Motivated by these results, in the current
paper, we consider a related class of convex quadratic relaxations. In particular, we investi-
gate quadratically constrained programming (QCP) relaxations for (1). These relaxations
are derived via quadratic cuts obtained from nonuniform diagonal perturbations of Q. We
show that these relaxations are at least as tight as the spectral relaxations in [12], and
provide a very good approximation of the bounds given by certain SDP relaxations of (1).

An SDP relaxation for (1) obtained after adding RLT inequalities was considered by
Saxena et al. [16], who proposed a procedure to project the feasible region of this relaxation
onto the space of the original variables. This projection relies on convex quadratic cuts
derived from an SDP separation program which is solved by applying a sub-gradient-based
algorithm. Even though the relaxations generated through this approach are nearly as tight
as the original SDP formulation, the separation problem used to derive the quadratic cuts
can be very expensive to solve.

Dong [5] used a different SDP relaxation for (1) which only includes the diagonal RLT
inequalities and showed that this SDP is equivalent to a particular semi-infinite program.
This semi-infinite formulation served as a motivation to construct convex QCP relaxations
for (1) via convex quadratic cuts derived from a semidefinite separation problem. To en-
sure that the solution of the separation problem is finitely attained, Dong [5] proposed a
regularized version of this semidefinite program, and demonstrated that it can be solved
very efficiently through a specialized coordinate descent algorithm. Our work is partially
inspired by the ideas proposed by Dong [5]. We refine his approach in several directions
and make various theoretical and algorithmic contributions.

Our first contribution is a new class of convex QCP relaxations for (1) constructed by
using information from both Q and the equality constraints Ax = b. These relaxations
are derived from a semi-infinite program that generalizes the semi-infinite programming
formulation proposed in [5]. Under our approach, we use the matrix ATA in order to modify
the semidefinite constraint of the separation problem solved in [5]. This modification allows
us to construct convex QCP relaxations which are at least as tight as those considered in [5].
Unlike the quadratic cuts introduced in [5], the quadratic cuts obtained with our approach
are nonconvex. However, as we show in §2.1, these nonconvex quadratic cuts define a convex
feasible set when intersected with the equality constraints Ax = b, resulting in a convex
relaxation of (1).

In our second contribution, we provide conditions under which our semi-infinite pro-
gramming formulation is equivalent to a well-known SDP relaxation of (1). Moreover, we
show that this SDP is the best relaxation in the class of SDP relaxations considered in this
paper.

In our third contribution, we present a new analysis of the separation problem used
to derive our quadratic cuts. In particular, we provide results on the finite attainment of
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this SDP by using its dual formulation. These results also apply to the separation problem
in [5], which is a special case of ours.

In our fourth contribution, we propose a new regularization approach for the semidef-
inite separation problem and modify the coordinate descent algorithm introduced in [5]
accordingly. Through numerical experiments, we show that the quadratic cuts derived from
our regularized separation problem provide a much better approximation of certain SDP
bounds than the quadratic cuts obtained from the regularized separation problem proposed
in [5].

In order to assess the computational benefits of the proposed techniques, we implement
the new quadratic relaxations in the global optimization solver BARON. These relaxations
are incorporated into BARON’s portfolio of relaxations and invoked according to a dynamic
relaxation selection strategy introduced in [12]. We test our implementation on a large set
of problems. Numerical results show that the new quadratic relaxations lead to a significant
improvement in the performance of BARON, resulting in a new version of this solver which
outperforms other state-of-the-art solvers such as CPLEX and GUROBI for many of our
test problems.

The remainder of this paper is organized as follows. In §2 we introduce the relaxations
considered in this paper and investigate their theoretical properties. In §3, we provide a
new analysis on the finite attainment of the semidefinite separation problem and present
our regularization approach. In §4 we introduce the version of coordinate minimization
algorithm used to solve our regularized separation problem. This is followed by a description
of our implementation in §5. In §6, we present an extensive computational study which
investigates the effectiveness of our regularization approach, the impact of the proposed
relaxations on the performance of BARON, and the relative performance of several state-
of-the-art global optimization solvers. Finally, in §7 we present conclusions from this work.

In what follows, we denote by R and R≥0, the set of real numbers and nonnegative
real numbers, respectively. We use 1 ∈ Rn to denote a vector of ones. For a matrix
A ∈ Rm×n, we use Ai·, A·j and Aij to denote its i-th row, j-th column and (i, j)-th entry,
respectively. Let M,N ∈ Sn, where Sn is the set of n × n real, symmetric matrices, and
N � 0. We use λmin(M) to represent the smallest eigenvalue of M . Similarly, we denote by
λmin(M,N) the smallest generalized eigenvalue of the problem Mv = λNv, where v ∈ Rn.
The inner product between matrices M,P ∈ Sn is denoted by 〈M,P 〉 =

∑n
i=1

∑n
j=1MijPij .

Throughout this paper, we assume that A has rank m and use Z ∈ Rn×m to denote an
orthonormal basis for the nullspace of A.

2 Construction and theoretical analysis of convex quadratic
relaxations

2.1 A family of semi-infinite programming relaxations

We start by considering the following reformulation of (1):

min
x,y,v

v + qTx

s.t. v ≥ xT (Q+ diag(d))x− dT y + α‖Ax− b‖2
Ax = b
(xi, yi) ∈ Ci, ∀i ∈ [n]

 (2)
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where y ∈ Rn, v ∈ R, d ∈ Rn is a vector used to perturb the diagonal entries of Q, α ∈ R≥0,
and Ci := {(xi, yi) ∈ R2 : xi ∈ Si, yi = x2

i }. Define Li := min{s ∈ R : s ∈ Si} and
Ui := max{s ∈ R : s ∈ Si}. It is simple to show that the convex hull of Ci is given by (see
Proposition 1 in [5]):

conv(Ci) = {(xi, yi) ∈ R2 : Li ≤ xi ≤ Ui, li(xi) ≤ yi ≤ ui(xi)} (3)

where li(·) is the tightest convex extension of x2
i when xi is restricted to Si (see [20] for

convex extensions) and ui(·) is the concave envelope of x2
i over [Li, Ui]. By replacing Ci

with conv(Ci) in (2), we obtain the following relaxation of (1):

min
(x,y)∈F ,v

v + qTx

s.t. v ≥ xT (Q+ diag(d))x− dT y + α‖Ax− b‖2

}
(4)

where F = {x, y ∈ Rn : Ax = b, (xi, yi) ∈ conv(Ci), ∀i ∈ [n]}. Let Dα := {d ∈ Rn :
Q + diag(d) + αATA < 0}. Clearly, (4) is a convex problem for any vector d ∈ Dα. By
considering all such vectors, we obtain the following semi-infinite convex program (SICP):

min
(x,y)∈F ,v

v + qTx (5a)

s.t. v ≥ xT (Q+ diag(d))x− dT y + α‖Ax− b‖2, ∀d ∈ Dα. (5b)

Since any solution feasible in (2), is feasible in (5) as well, this SICP also is a re-
laxation of (1). To illustrate this, let (x̄, ȳ, v̄) be feasible to (2). For each i ∈ [n], we
have (x̄i, ȳi) ∈ Ci ⊆ conv(Ci). Moreover, since ȳi = x̄2

i , ∀i ∈ [n], and Ax̄ = b, we have
v̄ = x̄T (Q+ diag(d)) x̄ − dT ȳ + α‖Ax̄ − b‖2 = x̄TQx̄. By replacing (x̄, ȳ, v̄) in (5b), it is
easy to see this inequality is satisfied ∀d ∈ Dα.

The quadratic term α‖Ax − b‖2 in (5b) vanishes for any x feasible in (5). As a result,
we can drop this term from (5b) in order to obtain the following simplified version of (5):

min
(x,y)∈F ,v

v + qTx (6a)

s.t. v ≥ xT (Q+ diag(d))x− dT y, ∀d ∈ Dα. (6b)

The quadratic cuts (6b) are not necessarily convex because, for d ∈ Rn and α ∈ R≥0, the
condition Q+diag(d)+αATA < 0 does not necessarily imply that Q+diag(d) < 0. However,
the quadratic cuts (6b) need not be convex in order for (6) to be a convex optimization
problem. As we show in the next proposition, the quadratic cuts (6b) define a convex
feasible set when intersected with the constraints Ax = b, making (6) a convex relaxation
of (1).

Proposition 1. The semi-infinite program (6) is a convex optimization problem.

Proof. This proof relies on the projection of the feasible set of (6) onto the nullspace of
A. Let H = {x ∈ Rn : Ax = b}. Clearly, any point satisfying Ax = b can be expressed
as x = x̂ + Zxz, where x̂ ∈ H and xz ∈ Rn−m. By using this transformation, (6) can be
equivalently written as:

min
xz ,y,v

v + qT (x̂+ Zxz) (7a)

s.t. v ≥ (x̂+ Zxz)
T (Q+ diag(d)) (x̂+ Zxz)− dT y, ∀d ∈ Dα (7b)

4



Li ≤ x̂i + eTi Zxz ≤ Ui, ∀i ∈ [n] (7c)

li
(
x̂i + eTi Zxz

)
≤ yi ≤ ui

(
x̂i + eTi Zxz

)
, ∀i ∈ [n]. (7d)

To prove that (7) is convex, it suffices to show that ZT (Q+ diag(d))Z is positive semidef-
inite. By definition, any vector d ∈ Dα satisfies:

wT
(
Q+ diag(d) + αATA

)
w ≥ 0, ∀w ∈ Rn. (8)

Let w = Zwz, where wz ∈ Rn−m. For this choice of w, (8) becomes

wTz Z
T (Q+ diag(d))Zwz ≥ 0, wz ∈ Rn−m. (9)

Clearly, (9) holds for all vectors wz ∈ Rn−m. Hence, ZT (Q+ diag(d))Z is positive semidef-
inite for any d ∈ Dα. This completes the proof.

By setting α = 0 in (6), we obtain the following SICP relaxation of (1) which was
considered in [5]:

min
(x,y)∈F ,v

v + qTx (10a)

s.t. v ≥ xT (Q+ diag(d))x− dT y, ∀d ∈ D0 (10b)

where D0 := {d ∈ Rn : Q + diag(d) < 0}. The formulation in (10) served as a motivation
in [5] to develop an algorithm to construct convex relaxations for (1) by using a finite
number of quadratic cuts of the form (10b). As we demonstrate in §2.4, a similar algorithm
can be devised based on the SICP (6).

In (6), the set Dα is parameterized by the scalar α. An interesting question that arises
in this context is how we can choose α to obtain the tightest relaxation of the form (6).
This question is addressed by the following proposition.

Proposition 2. Let α1 and α2 be real scalars such that 0 ≤ α1 ≤ α2. Denote by µSICPda1

and µSICPda2 the optimal objective function values in the SICP (6) for α1 and α2, respec-
tively. Define D∞ := {d ∈ Rn : ZT (Q+ diag(d))Z < 0}. Then, the following holds:

(i) µSICPda2 ≥ µSICPda1.

(ii) The tightest relaxation of the form (6) is obtained when α→∞.

(iii) limα→∞Dα = D∞.

Proof. We start with the proof of (i). Let Dα1 and Dα2 be the sets of diagonal perturbations
parameterized by α1 and α2, respectively. To prove the claim in (i), it suffices to show that
Dα1 ⊆ Dα2 . Let d̄ ∈ Dα1 . By definition, d̄ satisfies:

wT
(
Q+ diag(d̄) + α1A

TA
)
w ≥ 0, ∀w ∈ Rn. (11)

As ATA < 0 and α2 − α1 ≥ 0, we have that (α2 − α1)wTATAw ≥ 0, ∀w ∈ Rn. This
condition combined with (11) implies

wT
(
Q+ diag(d̄) + α2A

TA
)
w ≥ 0, ∀w ∈ Rn. (12)
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It follows that d̄ ∈ Dα2 . Hence, Dα1 ⊆ Dα2 , which completes the proof of (i). The claim in
(ii) follows directly from (i). To prove (iii), it suffices to show that, for any d̄ ∈ D∞, the
following condition holds:

lim
α→∞

wT
(
Q+ diag(d̄) + αATA

)
w ≥ 0, ∀w ∈ Rn. (13)

Clearly, any w ∈ Rn can be written as w = wA + Zwz, where wA ∈ range(AT ) and
wz ∈ Rn−m. Suppose that wA 6= 0. Then, wTATAw = wTAA

TAwA > 0, and it is easy to
show that (13) holds in the limit as α→∞. Now, assume that wA = 0. Since AZ = 0, the
left-hand side of (13) reduces to wTz Z

T
(
Q+ diag(d̄)

)
Zwz, which is nonnegative because

d̄ ∈ D∞. This proves the claim in (iii).

A direct consequence of Proposition 2(i) is that, for any α > 0, the bound provided
by (6) is at least as large as that given by (10).

2.2 Relationship between the semi-infinite and semi-definite formulations

In [5], it was shown that the SICP (10) is equivalent to the following SDP relaxation of (1)
(see Section 2 in [5] for details):

min
(x,y)∈F ,X

〈Q,X〉+ qTx (14a)

s.t. X − xxT < 0 (14b)

Xii = yi, ∀i ∈ [n]. (14c)

Motivated by this result, in this section we investigate the relationship between the SICP (6)
and the following SDP relaxation of (1):

min
(x,y)∈F ,X

〈Q,X〉+ qTx (15a)

s.t. X − xxT < 0 (15b)

Xii = yi, ∀i ∈ [n] (15c)

〈ATA,X〉 − 2(AT b)Tx+ bT b = 0. (15d)

We start by showing that, for any α ≥ 0, the optimal solution of the SICP (6) is bounded
by the optimal solutions of the SDPs (14) and (15).

Proposition 3. Assume that α ≥ 0 in (6). Denote by µSICPda, µSDPd and µSDPda the opti-
mal objective function values in (6), (14) and (15), respectively. Then, µSDPd ≤ µSICPda ≤
µSDPda.

Proof. We start by proving that µSDPd ≤ µSICPda. Let µSICPd be the optimal solution of the
SICP (10). Since α ≥ 0, Proposition 2(i) implies that µSICPd ≤ µSICPda. By Theorem 1 in [5]
we have that µSICPd = µSDPd. Hence, µSDPd ≤ µSICPda. To prove that µSICPda ≤ µSDPda,
it suffices to show that for any (x̄, ȳ, X̄) feasible in (15) and d̄ ∈ Dα, the following condition
holds:

〈Q, X̄〉 ≥ x̄T (Q+ diag(d̄))x̄− d̄T ȳ. (16)

To this end, consider the following inequality:

〈Q+ diag(d̄) + αATA, X̄ − x̄x̄T 〉 ≥ 0 (17)
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which is valid by the feasibility of x̄ and X̄ in (15) and the self-duality of the positive
semi-definite cone. This inequality can be equivalently written as:

〈Q, X̄〉 ≥ x̄T (Q+ diag(d̄))x̄−
n∑
i=1

diX̄ii − α〈ATA, X̄〉+ αx̄TATAx̄. (18)

From the feasibility of (x̄, ȳ, X̄) in (15), it follows that X̄ii = ȳi, ∀i ∈ [n], and 〈ATA, X̄〉 =
2bTAx̄− bT b. Then, the inequality in (18) becomes:

〈Q, X̄〉 ≥ x̄T (Q+ diag(d̄))x̄− d̄T ȳ + α(Ax̄− b)T (Ax̄− b) . (19)

Since Ax̄− b = 0, (19) is equivalent to (16), which completes the proof.

Now, we consider the case in which α→∞ in the SICP (6). By Proposition 2(iii), the
resulting SICP can be written as:

min
(x,y)∈F ,v

v + qTx (20a)

s.t. v ≥ xT (Q+ diag(d))x− dT y, ∀d ∈ D∞. (20b)

Proposition 2(ii) implies that (20) is the tightest relaxation of the form (6) that can be
constructed for (1). Moreover, from Proposition 3, we know that (15) provides an upper
bound on the optimal solution of (20). Therefore, an important question is the existence
of conditions under which these two relaxations are equivalent. This question is addressed
in the remainder of this section.

In [5], the equivalence between the SICP (10) and the SDP (14) was established by
applying strong duality to the SDP (14). However, unlike the SDP (14), the SDP (15)
does not admit a strictly feasible solution. To illustrate this, note that, for any x satisfying
Ax = b, (15d) can be equivalently written as:

〈ATA,X〉 −
(
2AT b

)T
x+ bT b+ 〈ATA, xxT 〉 − 〈ATA, xxT 〉 = 0 (21a)

=⇒ 〈ATA,X − xxT 〉 = 0 (21b)

which implies that X−xxT cannot be positive definite for the pairs (x,X) that are feasible
in (15). It follows that we cannot apply strong duality to (15). As a result, in order to show
the equivalence between the SICP (20) and the SDP (15), we will rely on an auxiliary SDP
which we will derive from (15).

We begin by characterizing the set of symmetric matrices X ∈ Sn which are feasible
in (15).

Proposition 4. Let the x̄ ∈ Rn and X̄ ∈ Sn be feasible in the SDP (15). Then X̄ has the
form X̄ = x̄x̄T + ZW̄zZ

T , where W̄z ∈ Sn−m and W̄z � 0.

Proof. For any (x̄, X̄) feasible in (15) we can express X̄ as X̄ = x̄x̄T + X̃ with X̃ ∈ Sn and
X̃ � 0. As mentioned previously, the constraint (15d) implies that 〈ATA, X̄ − x̄x̄T 〉 = 0,
which can be equivalently written as 〈ATA, X̃〉 = 0. Let the eigenvalue decomposition of X̃
be given by X̃ =

∑p
i=1 λiviv

T
i , where p ≤ n. Since X̃ � 0, we have that λi > 0, ∀i = 1, . . . , p.

By using this decomposition in 〈ATA, X̃〉 = 0 we obtain

〈ATA, X̃〉 =

p∑
i=1

λi||Avi‖2 = 0 (22a)
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=⇒ Avi = 0, ∀i = 1, . . . , p. (22b)

This shows that X̃ is of the form ZW̄zZ
T with W̄z ∈ Sn−m and W̄z � 0.

Now, let H = {x ∈ Rn : Ax = b}. Clearly, any point satisfying Ax = b can be expressed
as

x = x̂+ Zxz (23)

where x̂ ∈ H and xz ∈ Rn−m. From Proposition 4 we know that any X feasible in (15)
is of the form X = xxT + ZWzZ

T , where Wz ∈ Sn−m and Wz � 0. By using (23) in the
expression for X we obtain X = x̂x̂T + x̂(Zxz)

T + (Zxz)x̂
T + Zxzx

T
z Z

T + ZWzZ
T . Define

Xz := Wz + xzx
T
z with Xz ∈ Sn−m. Then X can be expressed as

X = x̂x̂T + x̂(Zxz)
T + (Zxz)x̂

T + ZXzZ
T . (24)

By substituting (23) and (24) in (15), we can cast this SDP as follows:

min
xz ,y,Xz

〈
Q,ZXzZ

T
〉

+ (2Qx̂+ q)T (Zxz) + x̂TQx̂+ qT x̂ (25a)

s.t. Xz − xzxTz < 0 (25b)

x̂2
i + 2x̂i

(
eTi Zxz

)
+ eTi ZXzZ

T ei = yi, ∀i ∈ [n] (25c)

Li ≤ x̂i + eTi Zxz ≤ Ui, ∀i ∈ [n] (25d)

li
(
x̂i + eTi Zxz

)
≤ yi ≤ ui

(
x̂i + eTi Zxz

)
, ∀i ∈ [n]. (25e)

As we show later in this section, under certain conditions, the SDP in (25) admits a strictly
feasible solution. Based on this key observation, in the next theorem we rely on strong
duality holding for (25) in order to show the equivalence between the SICP (20) and the
SDP (15).

Theorem 1. Let µSDPda and µSICPda∞ denote the optimal objective function values in (15)
and (20), respectively. Assume that the SDP (25) admits a strictly feasible solution. Then,
µSDPda = µSICPda∞.

Proof. To prove that µSDPda = µSICPda∞, we rely on the SDP (25) and its dual. Denote
by µSDPdaz and µDSDPdaz, the optimal objective function values of the SDP (25) and its
dual, respectively. Since (25) admits a strictly feasible solution, Slater’s condition is satisfied
by (25), which implies that strong duality holds for this SDP and its dual. Hence, µSDPdaz =
µDSDPdaz. Moreover, as the SDPs (15) and (25) are equivalent, we have that µSDPda =
µSDPdaz = µDSDPdaz.

Now, we construct the dual of (25). Let di ∈ R, i ∈ [n], be the multipliers associated
with the constraints (25c). Then, the dual of (25) is given by

max
d∈Rn



min
xz ,y,Xz

〈Qd,Z , Xz〉+ qTd,x̂(Zxz) + kd,x̂ − dT y

s.t. Xz − xzxTz < 0

Li ≤ x̂i + eTi Zxz ≤ Ui, ∀i ∈ [n]

li
(
x̂i + eTi Zxz

)
≤ yi ≤ ui

(
x̂i + eTi Zxz

)
, ∀i ∈ [n]


(26)

where Qd,Z = ZTQdZ, Qd = Q + diag(d), qd,x̂ = 2Qdx̂ + q, and kd,x̂ = x̂TQdx̂ + qT x̂.
For the minimization problem in (26) to be bounded below, we need to choose d such that
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Qd,Z < 0, i.e. d ∈ D∞ := {d ∈ Rn : ZT (Q + diag(d))Z < 0}. This restriction on d implies
that Xz = xzx

T
z holds at any optimal solution to the inner minimization problem. As a

result, the dual problem in (26) can be simplified as:

max
d∈D∞


min
xz ,y

(x̂+ Zxz)
T Qd (x̂+ Zzx) + qT (x̂+ Zxz)− dT y

s.t. Li ≤ x̂i + eTi Zxz ≤ Ui, ∀i ∈ [n]

li
(
x̂i + eTi Zxz

)
≤ yi ≤ ui

(
x̂i + eTi Zxz

)
, ∀i ∈ [n].

 (27)

Since strong duality holds for (25) and its dual (27), both problems attain their optimal
objective functions values. This implies that ∃ d∗ ∈ D∞ such that:

µDSDPdaz = min
xz ,y,v

v + qT (x̂+ Zxz)

s.t. v ≥ (x̂+ Zxz)
T (Q+ diag(d∗)) (x̂+ Zxz)− d∗T y

Li ≤ x̂i + eTi Zxz ≤ Ui, ∀i ∈ [n]

li
(
x̂i + eTi Zxz

)
≤ yi ≤ ui

(
x̂i + eTi Zxz

)
, ∀i ∈ [n].


(28)

It is easy to show that (28) is a relaxation of (20). To this end, note that by replacing x
and D∞ in (20) with x̂ + Zxz and {d∗}, respectively, we obtain (28). Hence, µSICPda∞ ≥
µDSDPdaz = µSDPdaz = µSDPda. Combining this condition with the result of Proposition 3,
we obtain µSICPda∞ = µDSDPda, which completes the proof.

The key assumption in Theorem 1 is the existence of a strictly feasible solution for the
SDP (25). In the next proposition, we provide a set of sufficient conditions under which a
strictly feasible solution can be constructed for (25).

Proposition 5. Define X := {x ∈ Rn : Ax = b, Li < xi < Ui, ∀i ∈ [n]}. Assume that X
is nonempty and that the following conditions hold:

(i) eTi Z 6= 0, ∀i ∈ [n].

(ii) ∃ x̃ ∈ X such that li(x̃i) = x̃2
i and li(x̃i) < ui(x̃i), ∀i ∈ [n].

Then, the SDP (25) admits a strictly feasible solution.

Proof. Define the scalar δ as:

δ := min
i∈[n]

ui(x̃i)− li(x̃i)
eTi ZZ

T ei
. (29)

From assumption (i), it follows that eTi ZZ
T ei > 0, ∀i ∈ [n]. Moreover, assumption (ii)

implies that ui(x̃i) − li(x̃i) > 0, ∀i ∈ [n]. Hence, 0 < δ < ∞. Let x̂ = x̃, x̄z = 0,
ȳi = x̃2

i + εeTi ZZ
T ei, i ∈ [n], and X̄z = εIn−m, where x̃ satisfies the condition in (ii), and

0 < ε < δ. It is simple to check that this choice is feasible in the SDP (25), and further, the
inequalities (25b), (25d) and (25e) are satisfied strictly. This completes the proof.

If for a given index i assumption (i) in Proposition 5 fails to hold, then xi must be a
fixed variable in the original problem. To illustrate this, note that any x ∈ Rn satisfying
Ax = b can be written as x = x̂ + Zxz, where x̂ satisfies Ax̂ = b and xz ∈ Rn−m. The
condition eTi Z = 0 means that eTi Zxz = 0, which in turn implies that xi = x̂i. Hence, for
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all the indices i for which eTi Z = 0, the corresponding variables can be eliminated from the
original problem in order to obtain a reduced problem for which assumption (i) holds.

The satisfaction of assumption (ii) in Proposition 5 depends on the form of the functions
li(xi) and ui(xi). It is easy to show that ui(xi) is an affine function given by ui(x) = (Li +
Ui)xi−LiUi. On the other hand, the form of li(xi) depends on the structure of the set Si. If
Si is given by a closed interval, then li(xi) = x2

i , and in this case assumption (ii) is satisfied
provided that there exists a vector x ∈ Rn such that Ax = b and Li < xi < Ui, ∀i ∈ [n].
If Si is given by a set of two discrete points, then li(xi) = ui(xi), ∀xi ∈ [Li, Ui], and
assumption (ii) fails to hold. This occurs, for example, when xi is binary, i.e., Si = {0, 1},
because in this case li(xi) = ui(xi) = xi, ∀xi ∈ [0, 1].

2.3 Further insights into the semidefinite relaxation

The SDP relaxation (15) can be derived from (14) by adding the valid equality (Ax −
b)T (Ax− b) = 0 and lifting it into the space of (x,X). Clearly, we can construct other SDP
relaxations for (1) by including other classes of constraints derived from Ax = b. In general,
we can apply the following procedure:

(R1) identify a (possibly empty) set J of quadratic functions of the form fj(x) = xTCjx+
cTj x + γj , where Cj ∈ Sn, cj ∈ Rn, γj ∈ R, such that fj(x) = 0 for x ∈ Ω := {x ∈
Rn |Ax = b};

(R2) construct an SDP relaxation for (1) as

min
(x,y)∈F ,X

〈Q,X〉+ qTx (30a)

s.t. X − xxT < 0 (30b)

Xii = yi, ∀i ∈ [n] (30c)

〈Cj , X〉+ cTj x+ γj = 0, ∀j ∈ J (30d)

where the constraints (30d) are obtained by lifting the valid equalities xTCjx+ cTj x+
γj = 0, ∀j ∈ J into the space of (x,X).

There are different types of functions fj(x) that satisfy the condition in (R1). Some ex-
amples that have been considered in the literature are [6]: (xj(Ai·x− bi)), and ((Aj·x− bj)(Ai·x− bi)),(
xTATj·Ai·x− bjbi

)
. A natural question in this context is whether we can improve on the

bound given by (15) when restricted to the class of relaxations in (30). We address this
question in the remainder of this section by showing that (15) is the best relaxation among
the class of relaxations in (30).

We start by recalling the properties of the functions satisfying (R1). The following result
follows from Theorem 1 in [6].

Proposition 6. Let f(x) = xTCx + cTx + γ be a quadratic function. Then, f(x) = 0 for
all x ∈ Ω := {x ∈ Rn |Ax = b} if and only if C = ATW T + WA, c = ATβ − 2Wb, and
γ = −bTβ for some W ∈ Rn×m and β ∈ Rm.

Based on Proposition 6, we can assume without loss of generality that Cj = ATW T
j +

WjA for some Wj ∈ Rn×m. In the next proposition, we show that the feasible set of (15)
is a subset of the feasible set of (30). Moreover, we provide conditions on the choice of
quadratic functions in J for these two feasible sets to be identical.
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Proposition 7. Let FSDPda and FSDPdaJ denote the feasible regions of the SDPs in (15)
and (30), respectively. Then, the following holds:

(i) FSDPda ⊆ FSDPdaJ.

(ii) If ∃ωj , j ∈ J such that
∑

j∈J ωjWj = AT then FSDPda = FSDPdaJ.

Proof. We first prove (i). From Proposition 4, any (x̄, X̄) ∈ FSDPda satisfies X̄ = x̄x̄T +
ZW̄zZ

T , where W̄z ∈ Sn−m and W̄z � 0. Then, for any (x̄, ȳ, X̄) ∈ FSDPda and ∀j ∈ J we
have:

〈Cj , X̄〉+ cTj x̄+ γj (31a)

= 〈Cj , X̄ − x̄x̄T 〉+ x̄TCj x̄+ cTj x̄+ γj (31b)

= 〈Cj , X̄ − x̄x̄T 〉 = 〈ATW T
j +WjA,ZW̄zZ

T 〉 = 0 (31c)

where (31b) follows from adding and subtracting x̄TCj x̄, the first equality in (31c) follows
from (R1), the second equality in (31c) from Proposition 6 and the final equality from the
fact that Z is a basis for the nullspace of A. Thus (x̄, ȳ, X̄) ∈ FSDPdaJ proving the claim in
(i).

Now, we prove the claim in (ii). Assume that there exist ωj , j ∈ J such that the
condition in (ii) holds. By performing a linear combination of the inequalities in (30d)
using ωj , we obtain that for any (x̄, ȳ, X̄) ∈ FSDPdaJ:

0 =
∑
j∈J

ωj
(
〈Cj , X̄〉+ cTj x̄+ γj

)
(32a)

=
∑
j∈J

ωj
(
〈Cj , X̄ − x̄x̄T 〉+ x̄TCj x̄+ cTj x̄+ γj

)
(32b)

=
∑
j∈J

ωj〈Cj , X̄ − x̄x̄T 〉 = 2〈ATA, X̄ − x̄x̄T 〉 (32c)

where (32b) follows from adding and subtracting x̄TCj x̄, the first equality in (32c) follows
from (R1), the second equality in (32c) from Proposition 6 and the condition in (ii). Thus
(x̄, ȳ, X̄) ∈ FSDPda proving the claim in (ii).

Now, we are ready to present the main result of this section.

Theorem 2. Suppose that J is chosen such that (R1) holds. Let µSDPda, µSICPda∞, and
µSDPdaJ be the optimal objective function values in (15), (20), and (30), respectively. Then,
the following hold:

(i) µSDPdaJ ≤ µSDPda

(ii) If the assumption in Theorem 1 holds, then µSDPdaJ ≤ µSICPda∞.

Proof. The claim in (i) follows from Proposition 7. If the assumption in Theorem 1 holds,
then µSDPda = µSICPda∞ and the claim in (ii) follows from (i).

11



2.4 Cutting Surface Algorithm

By replacing Dα in (6b) with a set D(k)
α of finite dimension, we can devise an iterative

cutting surface algorithm which allows us to derive convex QCP relaxations for (1). At the
k-th iteration of this algorithm, the following relaxation is solved:

min
(x,y)∈F ,v

v + qTx (33a)

s.t. v ≥ xT (Q+ diag(d))x− dT y, ∀d ∈ D(k)
α . (33b)

This iterative approach is described in Algorithm 1. At each iteration of this algorithm, a
separation problem is solved in order to construct a new quadratic cut of the form (33b). As
the number of quadratic cuts increases, the resulting QCP relaxations become tighter. The
algorithm terminates when either the maximum number of iterations MaxNC is reached
or the new quadratic cut derived at iteration k does not violate the solution of the QCP
relaxation constructed at iteration k − 1.

Note that the parameter α is fixed during the execution of this algorithm. Proposition 2
suggests that we should select a large value of α in order to improve the bound given by (33).
We describe a procedure to determine such a value of α in §5.

Algorithm 1 A cutting surface procedure to derive QCP relaxations for (1)

Input: Q, q, A, b, and algebraic expressions for l(·) and u(·).
Output: A lower bound µQCPda on the optimal solution of (1).
If m = 0 then

Set α = 0
Else

Choose a positive value of α according to the procedure described in §5.
End If
Set D(0)

α = {d(0)}, where d(0) ∈ Rn is a perturbation for which (33) is convex.
Solve (33). Let (x̄, ȳ, v̄) be an optimal solution to this relaxation.
Set µQCPda = v̄ + qT x̄.
For k = 1 to MaxNC do

Solve a separation problem to find a new perturbation d(k).
If the quadratic cut (33b) with d = d(k) violates (x̄, ȳ, v̄) then

D(k)
α ← D(k−1)

α ∪ {d(k)}
Solve (33). Let (x̄, ȳ, v̄) be an optimal solution to this relaxation.
Set µQCPda = v̄ + qT x̄.

Else
Terminate

End If
End For

Another interesting observation about Algorithm 1 is that the parameter α only appears
in the separation problem (see §3 for details), since the term α‖Ax − b‖2 is not included
in (33b). This is particularly advantageous because it allows us to preserve the sparsity
pattern of Q in the quadratic constraints (33b). In addition, by dropping the term α‖Ax−
b‖2 from (33b), we prevent the relaxation from becoming ill-conditioned for large values of
α.
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In order to construct the first relaxation of Algorithm 1, we need to specify an initial
perturbation d(0). For simplicity, we set d(0) = µ1, where µ ∈ R≥0. For this choice of d(0),
(33) becomes:

min
(x,y)∈F ,v

v + qTx (34a)

s.t. v ≥ xT (Q+ µIn)x− µ1T y. (34b)

In order to select µ, we consider two cases depending on the value of m:

(i) If m = 0, (1) is an unconstrained optimization problem. We run Algorithm 1 only if
Q is indefinite and set µ = −λmin(Q). It is easy to verify that this choice of µ renders
Q+ µIn positive semidefinite, thus ensuring the convexity of (34).

(ii) If m > 0, (1) contains at least one equality constraint. We run Algorithm 1 only if
ZTQZ is indefinite and set µ = −λmin(ZTQZ). It is simple to check that, for this
choice of µ, (34) is a convex problem. To this end, note that the projection of (34) onto
the nullspace of A can be obtained from (7) by considering a single quadratic constraint
in (7b) and setting d = µ1. The resulting problem is convex when ZT (Q+ µIn)Z < 0.
It is easy to verify that our choice of µ satisfies this condition.

Since (34) contains a single quadratic constraint and µ ≥ 0, we can eliminate the variables
y and v, and rewrite this QCP as the following quadratic program:

min
x∈X

xT (Q+ µIn)x+ qTx− µ
n∑
i=1

ui(xi) (35)

We refer to the relaxations obtained by setting µ = −λmin(Q) and µ = −λmin(ZTQZ) in (35)
as the eigenvalue relaxation and the eigenvalue relaxation in the nullspace of A, respectively
(see Section 3 in [12] for details). In (ii), we could use the same initial perturbation as in
(i). However, as shown in [12], the perturbation given in (ii) can lead to a tighter initial
bound.

Observe that the spectral relaxations introduced in [12] are derived through a uniform
diagonal perturbation of Q, i.e., by considering a perturbation vector d ∈ Rn whose entries
are identical to each other. By contrast, the QCP relaxations of Algorithm 1 are derived
through a nonuniform diagonal perturbation of Q, i.e., by considering a perturbation vector
d ∈ Rn whose entries are allowed to differ from each other. Note also that, since the bound
provided by (34) is equal to the bound given by (35), by construction, the QCP relaxations
solved during the execution in Algorithm 1 are at least as tight at the spectral relaxations
considered in [12].

3 Analysis and regularization of the separation problem

We start this section by presenting the separation problem solved in Algorithm 1. Let
(x̄, ȳ, v̄) be an optimal solution to the relaxation (33). Then, in order to construct a
quadratic inequality of the form (33b) that is maximally violated by (x̄, ȳ, v̄), we can solve
the following optimization problem:

sup
d∈Dα

n∑
i=1

(
x̄2
i − ȳi

)
di. (36)
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This SDP is parametrized by the value of α determined at the beginning of Algorithm 1.
Observe also that the separation problem considered in [5] is a particular instance of (36),
obtained by setting α = 0 in (36). For the remainder of this section, we will cast (36) as:

inf
d∈Dα

ηTd (37)

where ηi := ȳi − x̄2
i , ∀i ∈ [n]. As shown in [5], the attainment of the infimum in (37) is not

guaranteed, and may depend on the problem data. We illustrate this behavior through the
following example.

Example 1. Let Q =
[

0 2
2 −1

]
, A = [ 0 1 ], and α = 1 in (37). Consider the following cases:

(i) x̄ = ȳ = [ 0.5 0.5 ]T . In this case, the infimum in (37) is attained for d∗1 = d∗2 = 2.

(ii) x̄ = ȳ = [ 0.4 0 ]T . In this case, the infimum in (37) cannot be attained since it occurs
as d1 → 0 and d2 →∞.

To further analyze the attainment of (37), we construct the dual of this SDP. Let Y ∈ Sn
be the matrix of dual variables associated with the semidefinite constraint Q + diag(d) +
αATA < 0. Then, the dual of (37) is:

sup
Y <0

− 〈Q+ αATA, Y 〉 (38a)

s.t. Yii = ηi, ∀i ∈ [n]. (38b)

Let P := {i ∈ [n] : ȳi = x̄2
i }. From (38b), it follows that Yii = 0, ∀i ∈ P . Hence, if P 6= ∅,

(38) does not admit a strictly feasible solution and, as a result, strong duality may not hold
for the primal-dual pair (37),(38). In Example 1, we have P = ∅ for (i), and P = {2} for
(ii).

In the separation step of Algorithm 1, we do not need to solve (37) to optimality, but
rather derive quadratic cuts that can be used to tighten a relaxation of the form (33). As
a result, we can replace (37) with a regularized separation problem constructed in a way
such that its optimum is always attained. One option is to regularize (37) as discussed
in [5]. To this end, we can add to the objective function of (37) the term λ

∑n
i=1 [di]+,

where λ =
∑n

i=1(ȳi − x̄2
i ), and [di]+ is equal to di if di > 0, and 0 otherwise. This leads to

the following regularized separation problem:

inf
d∈Dα

ηTd+ λ
n∑
i=1

[di]+. (39)

It is simple to show that the infimum in this SDP is always attained (see Proposition 3
in [5] for details). The parameter λ is always positive unless the current relaxation is exact.

In this paper, we propose an alternative regularization for (37). We modify this problem
by adding to the objective function the quadratic term ρdTd, where ρ is a positive scalar.
The resulting regularized separation problem is:

inf
d∈Dα

ηTd+ ρdTd. (40)

As we show in the following proposition, this regularization also gives rise to a separation
problem for which the optimum is always attained.
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Proposition 8. Let ρ > 0 in (40). Then, the optimal solution to the semidefinite pro-
gram (40) is always attained at some finite point.

Proof. This proof relies on strong duality holding for (40) and its dual. Denote by Y ∈ Sn
the matrix of dual variables associated with the semidefinite constraint Q + diag(d) +
αATA < 0. Then, the dual of (40) is:

sup
Y <0

− 〈Q+ αATA, Y 〉 − 1

4ρ

n∑
i=1

(Yii − ηi)2. (41)

Now, let d̄ = µ1 and Ȳ = In, where µ > −min(0, λmin(Q+ αATA)). Clearly, d̄ and Ȳ are
strictly feasible in (40) and (41), respectively. Hence, strong duality holds, and both SDPs
attain their optimal solutions.

4 Solution of the regularized separation problem

In this section, we describe the algorithm that we use to solve the regularized separation
problem proposed in §3. This algorithm is a modification of the barrier coordinate mini-
mization method introduced in [5]. To solve (40), our algorithm operates on the following
penalized log-det problem:

inf
d∈Rn

f(d;σ) := G(d)− σlog-det
(
Q+ diag(d) + αATA

)
s.t. Q+ diag(d) + αATA � 0

(42)

where G(d) =
∑n

i=1 gi(di), gi(di) = ηidi + ρd2
i , ∀i ∈ [n], and σ is a positive penalty

parameter. The optimality condition for (42) can be expressed as:

∇f(d;σ) = 0, Q+ diag(d) + αATA � 0 (43)

where the gradient of f(d;σ) has the form:

∇f(d;σ) = ∇G(d)− σdiag
([
Q+ diag(d) + αATA

]−1
)

(44)

with ∇G(d)i = ηi + 2ρdi, ∀i ∈ [n]. At each iteration of this algorithm, we update a

feasible vector d̄ and an inverse matrix V :=
[
Q+ diag(d̄) + αATA

]−1
. Based on the

optimality condition in (43), we perform coordinate minimization by choosing an index i
which corresponds to the entry of ∇f(d̄;σ) with the largest magnitude:

i = arg max
j=1,...,n

{∣∣∣∇f(d̄;σ)j

∣∣∣} . (45)

This choice of i leads to the following one-dimensional minimization problem:

∆d∗i ∈ argmin
∆di

{
f(d̄+ ∆diei;σ) : Q+ diag(d̄+ ∆diei) + αATA � 0

}
. (46)

As we show in the next proposition, it is possible to find a closed-form expression for the
optimal solution of (46).

Proposition 9. The optimal solution to the one-dimensional problem (46) is:

∆d∗i = −(φi + τi) +
√

(φi − τi)2 + κ (47)

where φi = 1/(2Vii), τi = (ηi + 2ρd̄i)/(4ρ) and κ = σ/(2ρ).
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Proof. At the optimal solution of (46) the following holds:

∂f(d̄+ ∆diei;σ)

∂∆di
= ηi + 2ρ(d̄i + ∆di)−

σVii
1 + ∆diVii

= 0. (48)

By solving for ∆di in (48), we obtain the roots ∆d∗i
(±) = −(φi + τi) ±

√
(φi − τi)2 + κ. It

is easy to show that ∆d∗i
(+) is the only one of these two solutions that is feasible in (46).

By applying Lemma 1 from [5], we have:

Q+ diag(d̄+ ∆diei) + αATA � 0 ⇐⇒ ∆di > −1/Vii. (49)

Therefore, for ∆d∗i
(+) to be feasible in (46) we must have z+

√
z2 + κ > 0, where z = (φi−τi).

It is simple to check that this condition is always satisfied. To this end, note that κ > 0.
This implies z+

√
z2 + κ > z+ |z| ≥ 0, ∀z ∈ R. Using a similar analysis, we can show that

∆d∗i
(−) is infeasible in (46).

After solving the one-dimensional problem (46), we update d̄ as:

d̄← d̄+ ∆d∗i ei (50)

and update V using the Sherman-Morrison formula:

V ← V − ∆d∗iV·iV·i
T

1 + ∆d∗iVii
. (51)

In our numerical experiments, we noticed that, for very small values of ρ, some of the
entries of d̄ become very large after performing the update in (50). This is not surprising
because: (i) for very small values of ρ, (40) exhibits a similar behavior to (37), and (ii)
as discussed in §3, the finite attainment of (37) is not guaranteed. To address this issue,
we propose an adaptive strategy in order to adjust the value of ρ used in (40). At a given
iteration of our algorithm, after performing the update in (50), we determine the entry of
d̄ with the largest magnitude, i.e.:

d̄max = max
j=1,...,n

{∣∣d̄j∣∣} . (52)

If d̄max is at least an order of magnitude larger than µ := −λmin(Q + αATA), we increase
ρ by multiplying it by a factor ρupd, and restart our algorithm with this new value of ρ. In
practice, this adaptive strategy only requires a few restarts before finding a suitable value
of ρ. For the first run, we set ρ = ρinit.

Once (42) has been solved within a given precision, we update the penalty parameter σ
according to the following condition:

σ ← max{σmin, σupdσ} if
‖∇f(d̄;σ)‖2
‖η‖2

≤ εupd (53)

where ∇f(d̄;σ) is used as a measure of optimality. We check the relative improvement in
the objective function of (40) every ωcheckn iterations, and terminate our algorithm if this
relative improvement is smaller than εcheck.

Our coordinate minimization strategy is summarized in Algorithm 2. If Q + αATA
is positive semidefinite, then ZTQZ is also positive semidefinite and (1) is convex when
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restricted to the nullspace of A. In this case, it suffices to solve the continuous relaxation
of (1) in order to obtain a lower bound. As a result, the separation procedure outlined in
Algorithm 2 is only used if Q + αATA is indefinite. We start Algorithm 2 with an initial
perturbation d̂ = −1.5λmin(Q+αATA)1. We set MaxIter = 500n, σmin = 10−5, σupd = 0.8,
εupd = 0.03, ωcheck = 10 and εcheck = 10−4. We initialize ρinit as:

ρinit = 10−4 104blog10(δmax)c

max{1, bQmax/100cQmax}
(54)

where Qmax and δmax are given by:

Qmax = max
i=1,...,n, j=i,...,n

{|Qij |} , δmax = max
i=1,...,n

{Ui − Li} (55)

and set ρupd = 10. The initial value of σinit is determined as:

σinit = median

{∣∣∣∣∣ηi + 2ρd̂i
Vii

∣∣∣∣∣
}n
i=1

. (56)

Algorithm 2 Barrier coordinate minimization algorithm used to solve the smooth regu-
larized separation problem (40)

1: Input: Q, A, α, and an optimal solution (x̄, ȳ, v̄) to (33).
2: Output: A vector d̄ that solves (40).
3: Set ρ = ρinit, where ρinit is determined using (54).
4: Set d̄ = d̂, where d̂ = 1.5µ1 and µ = −λmin(Q+ αATA).
5: Set σ = σinit, where σinit is calculated according to (56).

6: Calculate V =
[
Q+ diag(d̄) + αATA

]−1
and set k = 0.

7: While (k < MaxIter) do
8: Update k ← k + 1.
9: Determine an index i according to (45) and calculate ∆d∗i using (47).

10: Update d̄ according to (50) and determine d̄max using (52).
11: If (d̄max > 10µ) then
12: Update ρ← ρupdρ and goto 4.
13: End If
14: Update V according to (51).
15: Adjust σ according to (53).
16: If (k mod (ωcheckn) = 0) then
17: Terminate if the improvement in the objective of (40) is smaller than εcheck.
18: End If
19: End While

Even though Algorithm 2 is a variant of the barrier coordinate minimization algorithm
introduced in [5], there are two key differences between these two algorithms. First, unlike
the algorithm presented in [5], Algorithm 2 does not rely on nonsmooth optimization tech-
niques because the objective function of our regularized separation problem (40) is smooth.
Second, the regularization parameter λ used in (39) is fixed throughout the execution of the
algorithm proposed in [5]. By contrast, in Algorithm 2, we adaptively adjust the regulariza-
tion parameter ρ used in (40). As we demonstrate in §6.1, because of this adaptive strategy,
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the quadratic cuts derived by solving (40) with our algorithm lead to significantly tighter
relaxations than the quadratic cuts obtained through the solution of (39) with the algorithm
proposed in [5]. For the sake of completeness, in §A, we provide a detailed description of
the barrier coordinate minimization algorithm introduced in [5].

5 Implementation in a branch-and-bound algorithm

BARON’s portfolio of relaxations consists of linear, quadratic, nonlinear, and mixed-integer
linear programming relaxations [8, 10, 12, 21]. As part of our implementation, we have
expanded this portfolio by adding the convex relaxations described in §2.4. These new
relaxations are only used if the original model supplied to BARON is of the form (1).

At the root node of the branch-and-bound tree, we solve QCP relaxations of the form (33)
by running Algorithm 1 with the maximum number of iterations MaxNC set to 20. In each
iteration of this algorithm, we generate quadratic cuts of the form (33b) by solving the
regularized separation problem (40) with Algorithm 2. As indicated in §2.4, for m > 0, the
initial perturbation used in Algorithm 1 is set as d(0) = µ1, where µ = −λmin(ZTQZ). In
our previous paper [12], we showed that it is possible to approximate λmin(ZTQZ) without
having to explicit compute the basis Z. In particular, we proved that:

lim
α→∞

λmin(Q, In + αATA) = min(0, λmin(ZTQZ)). (57)

Using this result, we set µ = µ(α) := −λmin(Q, In + αATA). From (57), it follows that,
for a sufficiently large value of α, µ(α) will converge to 0 if (1) is convex when restricted
to the nullspace of A, or −λmin(ZTQZ) otherwise. To find such value of α, we follow the
iterative procedure presented in Section 5 of [12]. This is the same value of α that we
use in Algorithm 1 and the regularized separation problem (40). Note that this value of α
determined at the root-node is used throughout the entire branch-and-bound tree.

Algorithm 1 is only called at the root-node of the branch-and-bound tree. At nodes
other than the root-node, instead of solving QCP relaxations, we solve QP relaxations of
the form:

min
(x,y)∈F

xT (Q+ diag(d))x+ qTx− dT y (58)

where d ∈ Dα. We proceed as follows:

(i) We solve an initial relaxation of the form (58) by setting d = dparent, where dparent is
a diagonal perturbation originating from the parent node. Let (x̄, ȳ) be the optimal
solution of this initial QP relaxation and denote by µ̄QP its optimal objective function
value.

(ii) We use this relaxation solution to construct a new perturbation dnew by solving the
regularized separation problem (40) with Algorithm 2.

(iii) If µ̄QP − qT x̄ < x̄T (Q+ diag(dnew)) x̄− (dnew)T ȳ, we solve a second relaxation of the
form (58) by setting d = dnew. Let (x̂, ŷ) be an optimal solution of this relaxation and
denote by µ̂QP its optimal objective function value. If µ̂QP ≥ µ̄QP (resp. µ̂QP < µ̄QP),
we use the bound µ̂QP (resp. µ̄QP) and pass dnew (resp. dparent) to the descendant
nodes of the current node.
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For the descendant nodes of the root-node, we set dparent = droot, with droot being a
surrogate perturbation vector determined as:

droot =
1∑NC
i=1 νi

NC∑
i=1

νid
(i), (59)

where NC is the number of quadratic cuts generated during the execution of Algorithm 1
at the root-node, d(i) are the diagonal perturbations, and νi are the optimal Lagrange
multipliers associated with the quadratic constraints of the last root-node relaxation of the
form (33). Note that NC ≤ MaxNC, since Algorithm 1 might terminate before reaching
the maximum number of iterations MaxNC.

The decision to solve QP relaxations instead of QCP relaxations at nodes other than
the root node is motivated by two key observations. First, the convex QCP relaxations of
the form (33) are at least an order of magnitude more expensive than the QP relaxations of
the form (58). Second, often a single quadratic cut of the form (33b) leads to a significant
bound improvement. As a result, there is little gain in running Algorithm 2 more than once.
Since the first QP relaxation constructed at the descendant nodes always uses a diagonal
perturbation originating from the parent node, the monotonicity of the bounds generated
during the branch-and-bound search is guaranteed.

To solve the eigenvalue and generalized eigenvalue problems that arise during the con-
struction of the relaxations discussed above, we use the subroutines included in the linear
algebra library LAPACK [1]. At a given node of the branch-and-bound tree, we only con-
sider the variables that have not been fixed in order to construct our relaxations. We solve
the convex QCP relaxations with IPOPT and the convex QP relaxations with CPLEX.
The relaxation solutions returned by these solvers are used at a given node only if they
satisfy the KKT conditions. At nodes at which (1) is convex, we do not use the relaxations
described in this section, and solve instead a continuous relaxation of (1) subject to the
variable bounds of the current node.

When all the variables in (1) are binary, li(xi) = ui(xi) = xi, ∀i ∈ [n], and as a result,
we can eliminate the y variables from (33) and (58). For continuous and general integer
variables, we use li(xi) = x2

i , i ∈ [n]. For general integer variables, this choice of li(xi) does
not lead to the convex hull of Ci, but it allows us to construct a convex outer-approximation
for this set.

Our implementation relies on the dynamic relaxation selection strategy proposed in [12]
in order to adjust the frequencies at which we solve polyhedral and quadratic relaxations
during the branch-and-bound search. Moreover, if (1) is a binary quadratic program, we
use the spectral braching variable selection rule introduced in [12]. The QP relaxations (58)
are only used during the branch-and-bound search if, at the root-node, Algorithm 1 gives
a tighter bound than BARON’s LP relaxation. Otherwise, we disable these QP relaxations
and utilize the spectral relaxations proposed in [12].

6 Computational results

In this section, we investigate the impact of the quadratic relaxations proposed in this paper
on the performance of branch-and-bound algorithms. We start in §6.1, by showing the
effectiveness of the regularization approach discussed in §3. Then, in §6.2, we demonstrate
the benefits of the implementation described in §5 on the performance of BARON. Finally,
in §6.3, we present a comparison between several state-of-the-art global optimization solvers.
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Our experiments are conducted under GAMS 30.1.0 on a 64-bit Intel Xeon X5650
2.66GHz processor with a single-thread. For the experiments described in §6.1, we solve the
QP relaxations with CPLEX 12.10, the QCP relaxations with IPOPT 3.12 and the SDP
relaxations with MOSEK 9.1.9. For the experiments considered in §6.2–6.3, we consider
the following global optimization solvers: ANTIGONE 1.1, BARON 20.4, COUENNE 0.5,
CPLEX 12.10, GUROBI 9.0, LINDOGLOBAL 12.0 and SCIP 6.0. In this case we: (i) run
all solvers with relative/absolute tolerances of 10-6 and a time limit of 500 seconds, and (ii)
set the CPLEX option optimalitytarget to 3 and the GUROBI option nonconvex to 2 to
ensure that these two solvers search for a globally optimal solution. We use default settings
for other algorithmic parameters.

For our experiments, we consider a large test set consisting of 960 Cardinality Binary
Quadratic Programs (CBQPs), 30 Quadratic Semi-Assignment Problems (QSAPs), 246
Box-Constrained Quadratic Programs (BoxQPs), and 315 Equality Integer Quadratic Pro-
grams (EIQPs). These test libraries are described in detail in [13].

6.1 Experiments with root-node relaxations

In this section, we provide a numerical comparison between two versions of Algorithm 1
which differ in the separation procedure used to derive the quadratic cuts of the form (33b).
We use the following notation for the relaxations considered in this comparison:

(i) EIG: Eigenvalue relaxation, obtained by setting µ = −λmin(Q) in (35).

(ii) EIGNS: Eigenvalue relaxation in the nullspace ofA, obtained by setting µ = −λmin(ZTQZ)
in (35).

(iii) SDPd: SDP relaxation (14).

(iv) SDPda: SDP relaxation (15).

(v) QCPnsreg: QCP relaxation (33), where the quadratic cuts (33b) are obtained by
solving (39) with the algorithm proposed in [5] (see Algorithm 3 in §A).

(vi) QCPsreg: QCP relaxation (33), where the quadratic cuts (33b) are obtained by solv-
ing (40) with Algorithm 2.

In our experiments, we run the two versions of Algorithm 1 by setting the maximum
number of iterations MaxNC to 20. We first compare these relaxations by selecting one
instance from each of the four libraries that are part of the test set. The results of this
comparison are presented in Figures 1a–1d. In these figures, we plot the lower bounds of the
QCP relaxations against the number of iterations, and use a dashed vertical line to indicate
the iteration number at which each version of Algorithm 1 terminates. We use horizontal
lines to represent the lower bounds provided by the spectral and SDP relaxations. As seen in
the figures, the quadratic cuts derived by solving (40) with Algorithm 2 lead to significantly
tighter QCP relaxations than the quadratic cuts obtained through the solution of (39) with
the algorithm proposed in [5]. Under our approach, a few quadratic cuts are sufficient in
order to obtain a good approximation of the lower bounds given by the SDP relaxations.

Now, we compare the two versions of Algorithm 1 by considering all the instances
contained in each of the test libraries. To this end, we construct performance profiles based
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Figure 1: Comparison between the two versions of the cutting surface algorithm for
selected test problems.

on the following root-node relaxation gap:

Root gap =

(
µSDP − µQCP

µSDP − µQP

)
× 100 (60)

where µQCP is the lower bound given by the last QCP relaxation solved in a given version
of Algorithm 1, and µQP and µSDP denote the lower bounds provided by the corresponding
spectral and SDP relaxations. A smaller gap represents a better approximation of the
corresponding SDP bound.

The performance profiles are presented in Figures 2a–2d. These profiles show the per-
centage of models for which the gap defined in (60) is below a certain threshold. Clearly,
the QCP relaxations constructed via our separation procedure provide significantly smaller
gaps than the QCP relaxations derived with the separation algorithm proposed in [5].

6.2 Impact of the implementation on BARON’s performance

In this section, we demonstrate the benefits the relaxations introduced in this paper on the
performance of the global optimization solver BARON. In our experiments, we compare the
following versions of BARON 20.4:

(i) BARONnoqc: Version of BARON for which we disable the quadratic relaxations pro-
posed in this paper. Note that this version of BARON includes the spectral relaxations
introduced in [12].

(ii) BARON: Version of BARON which uses the quadratic relaxations proposed in this
paper as described in §5.

In this comparison, we exclude from the test set all problems for which the new quadratic
relaxations are not activated by BARON during the branch-and-bound search (367 in-
stances). We also eliminate problems that can be solved trivially by both solvers (62
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Figure 2: Comparison between the two versions of the cutting surface algorithm for all
test problems.

instances). A problem is regarded as trivial if it can be solved by both solvers in less than
one second. After eliminating all of these problems from the original test set, we obtain a
new test set consisting of 1122 instances.

We first consider the nontrivial problems that are solved to global optimality by at least
one of the two the versions of the solver (259 instances). For this analysis, we compare the
performance of the two solvers by considering the following metrics: (i) CPU time, (ii) total
number of nodes in the branch-and-bound tree (iterations), and (iii) maximum number of
nodes stored in memory (memory). In this comparison, we say that the two solvers perform
similarly if any of these metrics are within 10% of each other. The results are presented in
Figures 3a–3c. As the figures indicate, for nearly 90% of the problems considered in this
comparison, our implementation leads to a significant reduction in CPU time, number of
iterations, and memory requirements. There are a few instances for which BARONnoqc
performs slightly better than BARON. These are relatively easy instances which can be
solved to global optimality by both solvers in less than 10 seconds. For these instances,
the relaxations proposed in this paper provide tighter lower bounds, but the increased
computational cost associated with the construction and solution of these relaxations leads
to some degradation in performance.

Now, we consider the nontrivial problems that neither of the two solvers are able to
solve to global optimality within the time limit (863 instances). In this case, we analyze
the performance of these solvers by comparing the relative gaps reported at termination,
which are determined as:

Relative gap =

(
µUBD − µLBD

max(|µLBD|, 10−3)

)
× 100 (61)

where µLBD and µUBD respectively denote the lower and upper bounds reported by a given
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solver at termination. In this comparison, we say that two solvers obtain similar gaps if
their relative gaps are within 10% of each other. The results are presented in Figure 3d.
As seen in the figure, for more than 90% of the problems considered in this comparison,
BARON reports significantly smaller gaps than BARONnoqc.
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Figure 3: One-to-one comparison between BARON and BARONnoqc.

We finish this section by providing a more detailed analysis of the results presented in
Figures 3a–3d. To this end, we calculate the shifted geometric means for each of the metrics
considered in these figures. We use a shift factor of 1 for the CPU times and relative gaps,
and a shift factor of 10 for the total number of nodes and maximum number of nodes stored
in memory. The results are presented in Table 1. As seen in the table, BARON significantly
outperforms BARONnoqc for each of the considered metrics.

Table 1: Shifted geometric means for BARON and BARONnoqc.

Solver
CPU Time

(259 instances)
Iterations

(259 instances)
Memory

(259 instances)
Relative gaps

(863 instances)

BARONnoqc 14.0 926.1 25.9 11.8
BARON 9.9 391.7 13.5 8.7

Improvement (%) 29.6 57.7 47.7 25.7

6.3 Comparison between global optimization solvers

We start this section by comparing several state-of-the-art global optimization solvers
through performance profiles. For instances for which a solver can prove global optimality
within the time limit, we plot the percentage of models solved within a certain amount
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of time. For problems for which a solver cannot prove global optimality within the time
limit, we plot the percentage of models for which the relative gap defined in (61) is below
a given threshold. These profiles are shown in Figures 4a–4d. As seen in these figures,
BARON performs well relative to the other solvers. For the CBQP and QSAP instances,
BARON is faster than the other solvers and solves many more problems to global opti-
mality. For problems for which global optimality cannot be proven within the time limit,
BARON terminates with smaller gaps than the other solvers.
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(b) 30 QSAP instances.
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Figure 4: Comparison between global optimization solvers.

Next, we provide a more detailed analysis involving BARON, CPLEX and GUROBI.
We use the same type of bar plots employed in §6.2. For a one-to-one comparison between
BARON and CPLEX, we eliminate from the test set all problems solved trivially by both
solvers (124 instances), obtaining a new test set with 1427 instances. In Figure 5a, we con-
sider the nontrivial problems solved to global optimality by at least one of the two solvers
(453 instances), whereas in Figure 5b, we consider nontrivial problems that neither solver
can solve to global optimality within the time limit (974 instances). As both figures indi-
cate, BARON performs significantly better than CPLEX. For nearly 90% of the instances
considered in Figure 5a, BARON is at least 1.1 times faster than CPLEX, whereas for more
than 98% of the instances considered in Figure 5b, BARON reports significantly smaller
gaps than CPLEX.

Finally, we present a one-to-one comparison between BARON and GUROBI. Once
again, we eliminate from the test set all the problems that can be solved trivially by both
solvers (183 instances), which leads to a new test set with 1368 instances. In Figure 6a,
we consider the nontrivial problems that are solved to global optimality by at least one of
the two solvers (391 instances), whereas in Figure 6b, we consider nontrivial problems that
neither of the two solvers are able to solve to global optimality within the time limit (977
instances). For more than 80% of the instances considered in Figure 6a, BARON is at least
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Figure 5: One-to-one comparison between BARON and CPLEX.

1.1 faster than GUROBI, whereas for nearly 90% of the instances considered in Figure 6b,
BARON terminates with considerably smaller gaps than GUROBI.

BARON
CPU time

>5X
smaller

BARON
CPU time
1.1X to 5X

smaller

Similar
CPU times

GUROBI
CPU time
1.1X to 5X

smaller

GUROBI
CPU time

>5X
smaller

0

10

20

30

40

50

Pe
rc

en
t o

f m
od

el
s

(a) CPU times (391 nontrivial
instances).

BARON
gap
>5X

smaller

BARON
gap

1.1X to 5X
smaller

Similar
gaps

GUROBI
gap

1.1X to 5X
smaller

GUROBI
gap
>5X

smaller

0

10

20

30

40

50

60

70

Pe
rc

en
t o

f m
od

el
s

(b) Relative gaps (977 nontrivial
instances).

Figure 6: One-to-one comparison between BARON and GUROBI.

7 Conclusions

We considered the global optimization of nonconvex MIQPs with linear constraints. We in-
troduced a family of convex quadratic relaxations which are constructed via quadratic cuts.
We investigated the theoretical properties of these relaxations and showed that they are
an outer-approximation of a semi-infinite convex program which under certain conditions
is equivalent to a semidefinite program. To assess the benefits of our approach, we incorpo-
rated the proposed relaxation techniques into the global optimization solver BARON, and
tested our implementation on a large collection of problems. Results demonstrated that,
for our test problems, our implementation leads to a very significant improvement in the
performance of BARON.

A Barrier coordinate minimization algorithm used to solve
the nonsmooth regularized separation problem

In this appendix, we briefly describe the algorithm proposed by Dong [5] to solve the
nonsmooth regularized separation problem (39). We then describe our implementation of
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this algorithm. The algorithm operates on the following penalized log-det problem

inf
d∈Rn

h(d;σ) :=
n∑
i=1

ri(di)− σlog-det
(
Q+ diag(d) + αATA

)
s.t. Q+ diag(d) + αATA � 0

(62)

where ri(di) = βidi for di > 0, ri(di) = ηidi for di ≤ 0, βi = ηi + λ, ∀i ∈ [n], and σ > 0.
Each iteration of this algorithm involves the update of a feasible vector d̄ and an inverse
matrix V :=

[
Q+ diag(d̄) + αATA

]−1
. Based on the optimality condition for (62), this

algorithm performs coordinate minimization by choosing an index i determined as:

i = arg max
j=1,...,n

{∣∣∣s(d̄)j

∣∣∣} , with s(d̄) = arg min
u∈Rn

{
‖u‖2 : u ∈ ∂h(d̄;σ)

}
. (63)

where ∂h(d̄;σ) is the subdifferential of h(d̄;σ). This choice of i leads to a one-dimensional
minimization problem similar to (46) but involving h(d̄ + ∆diei;σ). This problem can be
solved analytically to obtain the following formula for ∆d∗i (see Section 4 in [5] for details):

∆d∗i =


σ
βi
− 1

Vii
, if − d̄i < − 1

Vii
or σ Vii

1−d̄iVii
> βi,

−d̄i, if − d̄i ≥ − 1
Vii

and ηi ≤ σ Vii
1−d̄iVii

≤ βi,
σ
ηi
− 1

Vii
, if − d̄i ≥ − 1

Vii
and σ Vii

1−d̄iVii
< ηi.

(64)

After calculating ∆d∗i according to (64), d̄ and V are updated using (50) and (51), re-
spectively. Once (62) has been solved within a given precision, the penalty parameter σ is
adjusted through a rule similar to (53):

σ ← max{σmin, σupd · σ} if
‖s(d̄)‖2
‖β‖2

≤ εupd (65)

where s(d̄) is used as a measure of optimality. The relative improvement in the objective
function of (39) is checked every ωcheckn iterations, and the algorithm terminates if this
relative improvement is smaller than εcheck.

The entire procedure is summarized in Algorithm 3. In our implementation of this
algorithm, we use an initial perturbation d̂ = −1.5λmin(Q+ αATA)1. We set the following
parameters by using the values recommended in [5]: λ =

∑n
i=1 ηi, σmin = 10−5, σupd = 0.8,

εupd = 0.03. We use MaxIter = 500n, ωcheck = 10 and εcheck = 10−4. The initial value of
σinit is determined as:

σinit = median

{∣∣∣∣ uiVii
∣∣∣∣}n

i=1

(66)

where ui ∈ ∂ri(d̂i), and ∂ri(d̂i) is the subdifferential of ri(d̂i).
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Algorithm 3 Barrier coordinate minimization algorithm used to solve the nonsmooth
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2: Output: A vector d̄ that solves (39).
3: Set λ =

∑n
i=1 ηi.

4: Set d̄ = d̂, where d̂ = 1.5µ1 and µ = −λmin(Q+ αATA).
5: Set σ = σinit, where σinit is calculated according to (66).

6: Calculate V =
[
Q+ diag(d̄) + αATA

]−1
and set k = 0.

7: While (k < MaxIter) do
8: Update k ← k + 1.
9: Determine an index i according to (63) and calculate ∆d∗i using (64).

10: Update d̄ according to (50).
11: Update V according to (51).
12: Adjust σ according to (65).
13: If (k mod (ωcheckn) = 0) then
14: Terminate if the improvement in the objective of (39) is smaller than εcheck.
15: End If
16: End While

[3] Billionnet, A., Elloumi, S., Lambert, A.: An efficient compact quadratic convex re-
formulation for general integer quadratic programs. Computational Optimization and
Applications 54, 141–162 (2013)

[4] Buchheim, C., Wiegele, A.: Semidefinite relaxations for non-convex quadratic mixed-
integer programming. Mathematical Programming 141, 435–452 (2013)

[5] Dong, H.: Relaxing nonconvex quadratic functions by multiple adaptive diagonal per-
turbations. SIAM Journal on Optimization 26, 1962–1985 (2016)

[6] Faye, A., Roupin, F.: Partial lagrangian relaxation for general quadratic programming.
4OR 5, 75–88 (2007)

[7] Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum
cut and satisfiability problems using semidefinite programming. Journal of ACM 42,
1115–1145 (1995)

[8] Khajavirad, A., Sahinidis, N.V.: A hybrid LP/NLP paradigm for global optimization
relaxations. Mathematical Programming Computation 10, 383–421 (2018)

[9] Koopmans, T.C., Beckmann, M.: Assignment problems and the location of economic
activities. Econometrica: Journal of the Econometric Society 25, 53–76 (1957)
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