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Abstract
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We improve an inverse regular perturbation (RP) model
using a machine learning technique. The proposed
learned RP (LRP) model jointly optimizes step-size,
gain and phase rotation for individual RP branches. We
demonstrate that the proposed LRP can outperform the
corresponding learned digital back-propagation (DBP)
method based on a split-step Fourier method (SSFM),
with up to 0.75 dB gain in a 800km standard single mode
fiber link. Our LRP also allows a fractional step-per-
span (SPS) modelling to reduce complexity while main-
taining superior performance over a 1-SPS SSFM-DBP.
© 2022 Optica Publishing Group
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1. INTRODUCTION4

Over the past few decades, the rapid progress of digital sig-5

nal processing (DSP) technologies has enabled significantly in-6

creased throughput and reliability of coherent optical fiber com-7

munications systems. For example, linear impairments, such as8

chromatic dispersion (CD), polarization mode dispersion and9

phase noise, have been extensively studied and addressed in the10

digital domain [1–3]. Accordingly, Kerr fiber nonlinearity has11

become a dominant source that limits the maximum achievable12

information rates and effective signal-to-noise ratio (SNR) of the13

optical communications systems [3, 4].14

The Manakov equation has been widely used for propaga-15

tion model of a dual-polarization (DP) signal through a standard16

single mode fiber (SSMF). It can be numerically solved with the17

split-step Fourier method (SSFM), which computes the nonlinear18

and linear operations sequentially in small steps [4]. Alterna-19

tively, a number of models, including regular perturbation (RP),20

have also been studied [5–7]. Digital back propagation (DBP) is a21

state-of-the-art method for nonlinearity compensation (NLC) [8].22

Although it offers considerably improved performance over23

most other methods, this comes at the cost of higher computa-24

tional complexity. The main challenge to realize a practical NLC25

is hence to find the best balance between the complexity and26

performance. Recent advancements in machine learning (ML)27

and deep neural networks (DNNs) have revolutionized a wide28

variety of the scientific fields including optical fiber communi-29

cations and networking [9]. Within the context of NLC, several30

physics-informed DNNs have been proposed for DBP [10–13].31

Furthermore, a study in [14] used perturbation theory to en-32

hance the learned DBP, whereas [15–19] used ML to improve33

nonlinear equalization based on the symbol triplet interactions.34

In this paper, we propose an ML-aided NLC approach based35

on an inverted first-order RP model [6]. We show that its parallel36

branch structure [20] can be adjusted with a low-complexity ML37

technique to significantly increase the accuracy. We demonstrate38

that our learned RP (LRP) model can outperform conventional39

SSFM-DBP by up to 0.75 dB. Moreover, for LRP with fractional40

step-per-span (SPS) cases (i.e., where each RP branch models41

more than one span), we show gains of up to 0.2 dB over a 1-SPS42

SSFM-DBP, while decreasing the computational complexity.43

2. BACKGROUND THEORY44

We first discuss the underlying theory behind nonlinear signal45

propagation in the optical fiber with the Manakov model and46

RP models. We then introduce our LRP as an NLC technique.47

A. Manakov Model48

Signal propagation of DP complex field u(z, t) through SSMF49

with lumped optical amplification (OA) may be expressed as50

∂

∂z
u = −i

β2
2

∂2

∂t2 u + iγ
8
9

f (z)∥u∥2u +
1√
f (z)

n, (1)

where β2 is a dispersion coefficient, γ is the Kerr nonlinearity51

factor, and n is the noise vector due to amplified spontaneous52

emission (ASE). The function f (z) = exp
(
−αz + αLsp

⌊
z/Lsp

⌋)
53

represents amplification and attenuation in the fiber, where α is54

a fiber loss factor and Lsp is the span length [6, 20].55

B. Regular Perturbation (RP) Model56

Optical signal propagation through SSMF can be approximated57

with the first-order RP model, which solves the Manakov equa-58

tion in the linear domain and bundles the nonlinear components59

into a small additive term [6]. Similar to SSFM-DBP, the direc-60

tion of the RP model can be inverted by flipping the direction61

of f (z) (i.e., switching the attenuation to amplification), and62

changing the sign of β2 and γ parameters. Accordingly, the63

inverted RP takes the received signal u(L, t) to reconstruct û(0, t)64

(i.e., back–propagated signal) for NLC. To achieve better results,65
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Fig. 1. Per-branch operation in the RP model versus LRP.

the γ parameter is often hand-tuned [8]. As shown in [20], this66

structure can be easily parallelized into separate branches and is67

suitable for DNNs. The first-order RP model is expressed as68

û(0, t) = ûL(0, t) + ûNL(0, t) +O(γ2), (2)

where O(γ2) represents higher-order residuals to the Manakov69

model, L is a total link length, and the first term70

ûL(0, t) = DzN [u(L, t)] (3)

is a linear branch, which contains a dispersion block, given by71

Dz[·] = F−1
[

exp
(
iβ2zω2/2

)
F [·]

]
, (4)

where F denotes the discrete Fourier transform (DFT), F−1
72

denotes the inverse DFT, and ω represents the angular frequency.73

The second term uNL is an aggregation of N nonlinear74

branches as follows:75

ûNL(0, t) =
N−1

∑
m=0

DL−zm [Kzm [Dzm [u(L, t)]]] . (5)

Here, the nonlinear block K is given by76

Kzm [u(t)] = i
8
9

γ∆m f (zm)∥u(t)∥2u(t), (6)

where ∥ · ∥ denotes the 2-norm. Each branch is assigned a step77

size, forming an (N + 1)-element vector z = {z0, z1, . . . zN}. We78

use the last element of z as a step for the linear branch. The79

corresponding effective step size is calculated as80

∆m =
1
α

(
1 − exp(−α(zm − zm−1))

)
, z−1 = 0. (7)

Analogous to SPS in SSFM-DBP, the accuracy of RP increases81

with the number of branches and decreases with the optical82

launching power (i.e. more fiber nonlinearity) [5, 20]. Note that83

our model allows zn = {0, L} such that the pre-/post-linear84

block covers the entire link length. This is found to improve the85

performance for cases with small number of branches. However,86

most current literature do not consider such a branch [20].87

C. ML-aided NLC based on Inverse RP model88

Although the RP model can provide reasonably accurate approx-89

imation with a large number of branches, it suffers from a sig-90

nificant issue when the number of branches is small. As shown91

in Fig. 1, a simplified one-branch conventional RP model takes92

a linear signal (blue phasor) and adds a 90◦ shifted, amplitude-93

dependent signal (orange phasor) due to K operation, to provide94

the nonlinear phase rotation. Adding these two vectors may re-95

sult in a phasor towards a wanted rotation (red). However, as96

the nonlinearity increases, it inevitably leads to gain expansion97
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Fig. 2. LRP model with phasor correction at parallel branches.

Fig. 3. System setup used for simulation.

outside of the unit power circle (black line). Hence, the model98

accuracy is considerably reduced at higher power regimes.99

Herein, we propose an improved RP model with a train-100

able phasor correction term (complex-valued scalar) C =101

{C0, C1, . . . , CN} at the end of each branch as shown in Fig. 2.102

The nonlinear term in (5) becomes103

ûNL(0, t) =
N−1

∑
m=0

DL−zm [Kzm [Dzm [u(L, t)]]]× Cm, (8)

and the linear branch ûL(0, t) in (3) is modified as104

ûL(0, t) = DzN [u(L, t)]× CN . (9)

With this simple modification, we can collectively adjust gain105

and rotation of each branch (purple arrow in Fig. 1) and find a106

better phasor, close to unit power (green in Fig. 1). Hence, the107

proposed LRP model can approximate the nonlinear effects more108

accurately and efficiently mitigate the unwanted gain expansion.109

3. SYSTEM SETUP AND TRAINING STRATEGY110

We next describe the simulation setup used to generate train-111

ing/testing data, and to validate the LRP performance. We also112

discuss the training strategy and parameter initialisation.113

A. System setup114

Fig. 3 illustrates the system setup. A single-carrier DP 64-ary115

quadrature-amplitude modulation (QAM) signal with a symbol116

rate of 64Gbaud is generated at the transmitter. The generated117

electrical signal is pulse-shaped with a root-raised cosine (RRC)118

filter with a roll-off factor of 0.1. It is modulated into the optical119

carrier with an in-phase/quadrature modulator. The carrier is120

provided by an ideal laser with a central frequency of 1550nm121

and zero frequency offset. Similar to [10, 21], the laser induced122

phase noise is not considered for simplicity. Next, the analog op-123

tical signal is up-sampled to 8 sa/sym and propagated through124

nspan = 10 spans of 80 km SSMF links. Each span is followed125

by an erbium-doped OA with a gain of 16dB and a noise figure126

of 4dB. The ASE noise is added as a lumped sum at the end127
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of the link. Additionally, the enhanced Gaussian noise (EGN)128

model [22] is used to emulate inter-channel noise of a 5-channel,129

50 GHz spaced, wavelength division multiplexed (WDM) sys-130

tem. The SSMF has a Kerr coefficient of γ = 1.2 W/km, a loss131

factor of α = 0.2 dB/km, and a dispersion factor of β2 = 17132

ps/nm/km. The received optical signal is downsampled to133

2 sa/sym, and passes through either linear CD compensation134

(CDC), SSFM-DBP, or LRP-DBP model, to mitigate the channel135

impairments. The output is then shaped with a matched RRC136

filter. Subsequently, the received signal is normalized and de-137

rotated with a 1-tap equalizer and downsampled to 1 sa/sym.138

Lastly, the effective SNR is calculated from the residual error139

vector between the transmitted and the received signals.140

B. Optimization strategy141

The LRP model is trained by the Adam optimizer with a learn-142

ing rate of 0.001 to find optimal values for C and z. We use 200143

randomly generated data frames that are split 80% to 20% for144

training and testing, respectively. A single frame contains a snap-145

shot of a coherently detected, digitally back-propagated signal as146

a target. The simulated systems are complex-valued. Each snap-147

shot has 8,192 samples per polarization at an oversampling of 2148

sa/sym. The frames, used for training, are simulated (forward149

and back-propagated) with 100-SPS Manakov SSFM. The for-150

ward propagated signal is downsampled to 2 sa/sym. The raw151

nonlinear phase rotation is not compensated prior to training152

and is included within the optimization, while 1-tap equaliza-153

tion is used after NLCs. Subsequently, the signal is passed to154

100-SPS DBP and the corresponding nonlinearity compensated155

output is saved as a second element of the snapshot.156

Although the detected signal is at 2 sa/sym, the forward157

propagation in the analog domain is at 8 sa/sym. Similar to [10],158

we use a logarithmic step distribution across each fiber span [23],159

and asymmetric SSFM (i.e. the nonlinear step is at the segment160

boundary) [24]. Note that the lumped ASE noise is disabled161

for training but enabled for validation, to show the best–case162

scenario performance. In real-life applications, where datasets163

are noisy, transfer learning could be applied.164

We optimize each launch power separately. The mini-batch165

size is set to 40 frames; there are B = 160 batches (i.e. 160 frames)166

per epoch for training (B = 40 for validation); and the number167

of epochs is set to 6,500. The mean squared error (MSE) loss168

between the predicted ŝ and the originally transmitted signal s169

is calculated for Ns = 4096 symbols per P = 2 polarizations:170

L(s, ŝ) =
1
B

1
P

1
Ns

B

∑
k=1

P

∑
j=1

Ns

∑
i=1

|si − ŝi|2. (10)

MSE in dB-scale is defined as MSEdB = 10 log10[L(s, ŝ)]. The171

complex-valued C is adjusted by the gradient of L(s, ŝ).172

C. Parameter initialization173

Appropriate initialization of the trainable parameters is a key174

aspect to achieve higher performance and faster convergence.175

We initialize z as a logarithmic step distribution across each176

span [23], whereas C is initialized as a vector filled with ones on177

real axis and zeroes on imaginary axis. We also found that the178

model provides much better convergence when ∆m is decoupled179

from z and the initial value of f (z).180

4. RESULTS AND DISCUSSION181

Fig. 4 shows the effective SNR performance of the trained LRP182

model across launch powers between 0 to 8 dBm. Each of the183

Fig. 4. Effective SNR performances of LRP versus SSFM.

Fig. 5. MSE versus training epoch for 30-branch LRP.

data points was validated with 100 randomly generated sym-184

bol sequences (8,192 samples each) and compared with learned185

SSFM-DBP [8, 23] (i.e., γ-scalar and step size adjusted) with a186

similar number of SPS calculated as N/nspan. For reference, we187

show a linear channel (black dashed curve) and a linear CDC.188

The LRP shows considerable NLC gains (peak-to-peak) over189

the SSFM-DBP for less than 5-SPS. The 10-branch LRP has190

approximately 0.75 dB gain over γ-tuned 1-SPS SSFM-DBP,191

whereas the 20-br LRP has 0.75 dB gain over 2-SPS SSFM-DBP.192

The 30-br LRP is still 0.6 dB better, while 40-br LRP has only193

0.25 dB gain over 4-SPS SSFM-DBP. Interestingly, the fractional194

models—with less than one branch per fiber span—are bene-195

ficial over 1-SPS SSFM-DBP. Specifically, the 5-br LRP model196

(i.e., 1/2-SPS) offers 0.2 dB gain, whereas 2-br LRP (i.e., 1/5-SPS)197

achieves nearly the same peak performance as 1-SPS SSFM-DBP.198

Note that for the fractional cases we use the value of f (z) = 1 to199

model multi-span nonlinearity per branch.200

Fig. 5 shows the training trajectory for 30-br LRP. One can201

see that more training epochs are needed to converge for higher202

launch powers. Fig. 6 (left) shows the optimized z (solid lines)203

versus initial values for 30-branch LRP. It can be observed that204

the trained steps are close to log-distribution. The trained gains205

for 30-br LRP are shown in Fig. 6 (right). Except for the first and206

last branch, the trained gain corrections give a clear indication of207

the OA locations. Interestingly, the last branch (corresponding208

to the linear CDC) requires higher gain control values which are209

dependent on the launch power, whereas the gain contribution210

of the first branch is vastly reduced. In terms of phase rotation,211

as shown in Fig. 6 (right), we can see that the amount of rotation212

increases with the launch power (i.e., higher Kerr nonlinearity).213

To justify the advantage of phasor correction in LRP, we fi-214
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Fig. 6. Optimized steps (left), gain (center) and phase (right) values for a 10-span LRP with 30 branches.

Fig. 7. LRP versus common gain and phase correction models.

nally compare the cases with common-gain (but per-branch215

phase) correction or common-phase (but per-branch gain) cor-216

rection models for the 30-branch case in Fig. 7. The performances217

of the common gain and common phase corrections are signifi-218

cantly worse than the phasor-correcting LRP’s. The peak to peak219

difference is 0.92 dB. Interestingly, the common phase rotation220

degrades the performance below an untrained RP model (dash-221

dotted blue), and is just 0.2 dB better than the linear CDC. For the222

common gain model, we observe a slight improvement over an223

untrained 30-br RP, whereas its performance is still worse than224

3-SPS SSFM. It should be noted that there is a potential for both225

LRP and SSFM methods to be improved with additional filters226

before the nonlinear blocks, as shown in [25]. Although EGN227

model could be replaced with a full-field SSFM WDM simula-228

tion, the results presented herein can be viewed as a conservative229

estimate of the overall performance of a WDM system.230

5. CONCLUSION231

We demonstrated that ML-aided gain and phase rotation adjust-232

ment for the inverse RP model can significantly improve the233

performance of NLC in a 5-channel WDM system. The proposed234

LRP model achieved up to 0.75 dB gain over SSFM-based DBP by235

efficiently alleviating the intra–channel impairments. Fractional236

SPS modelling cases, where one branch represents multi-span237

nonlinearity, were shown to outperform 1-SPS SSFM-DBP. More-238

over, the presented LRP can mitigate the gain expansion issue239

that is a main disadvantage of the conventional RP method [5, 6].240
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