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Abstract

We present a technique for achieving ultra-high temporal super resolu-
tion of the position of the cutting wire in electric discharge machines from
low frame rate video. Our approach models the video of the vibrating
wire as a frequency sparse signal and formulates a joint-sparsity recovery
problem to determine the vibration frequency as well as reconstruct the
high frame rate video. The proposed method is capable of reconstructing
the high frame rate video at 5000× super resolution rate. We demon-
strate the performance of our method using simulated data mimicking
the acquisition setup and wire vibrations in realistic EDM settings.

1 Introduction

Knowledge of the exact position and shape of the cutting wire in electric dis-
charge machines (EDM) is important for determining the tension in the wire
and the quality of the cut. The vibration frequency of these wires generally
ranges around 1 KHz, which would require a camera with at least 2000 frames
per second (fps) acquisition rate to exactly localize the wire. Since such high
speed cameras would add a significant cost to the equipment, we aim to use
standard frame rate cameras along with time-coded illumination or aperture,
and computation to recover the vibrating frequency and exact position of the
wire.

We pose the problem of estimating the vibrating wire position as a temporal
super resolution problem from low frame rate video. Let m be the number of
video frames captured by the camera in one second, with corresponding duration
of each frame tf := 1

m . We will employ a coded illumination pattern ai ∈
{0, 1}n, for i ∈ {1 . . .m}, occupying a time segment of duration s < tf seconds.
The duration of this code corresponds to the exposure/acquisition interval of
the low-rate camera, over which the code is active. Typically, this interval is
significantly lower than tf in practice, as the camera requires some time to
transmit the data an reset.

The pattern ai is active during that interval, strobing at uniform rate ac-
cording to the code, i.e., each coefficient of the pattern is active for a time
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interval ts = s
n . The interval ts also corresponds to the target temporal resolu-

tion time step of the super resolved video, i.e., we effectively assume the video
is approximately constant over that interval. For simplicity, we assume that
tf = cs, c ∈ N, is an integer multiple of the of the segment duration ts. Conse-
quently, the target super resolved video will have N = cnm temporal samples
for every m video frames captured by the camera, i.e., we are targeting a super
resolution rate of cn× temporal upsampling.

The most closely related work on this topic appear in [1] and [2]. In [1], a
streaming compressive sensing algorithm specifically tailored to the reconstruc-
tion of high speed video from low speed coded frames. Their approach uses
a greedy reconstruction algorithm that allows causal on-line acquisition and
reconstruction of the video, with a small, controllable, and guaranteed buffer
delay and low computational cost. In [2], each pixel location of the video is
considered an independent periodic frequency-sparse signal of unknown funda-
mental period, compressively acquired at the rate of the low-speed video sensor.
A greedy reconstruction algorithm is also used in that work, combined with sev-
eral computational heuristics to recover the high-speed time waveform of each
pixel, and reconstruct the high-speed video from the acquired data. In this note,
we employ a similar jointly-sparse signal model and find a frequency sparse sig-
nal that represents the high speed video. Contrary to the previous work, we
set up a convex optimization problem using weighted `2,1 minimization. We
also develop a dimensionality reduction scheme that compresses the dimension-
ality of the optimization variable while maintaining the sparsity structure of the
problem to make it computationally tractable.

2 Problem Formulation

Consider a captured video sequence with spatial resolution H ×W pixels cap-
turing the vibrating wire over a one second duration. Let Y ∈ Rm×HW denote
the measured video frames from one second of video stacked into m rows, each
consisting of the H ×W pixels vectorized into a single row. We aim to recover
a temporally super resolved video volume U ∈ RN×HW , where N = cnm, and
the parameters c and n are as defined above.

Recall that every video frame indexed by i, or ith row of Y, is captured
through a coded illumination pattern ai during the frame exposure period. We
can then form the measurement operator A ∈ Rm×N that relates the target
high frame rate video U to the measured video frames Y using the following
linear system:

Y = AU. (1)

Figure 1 shows an example measurement operator A corresponding to the acqui-
sition of five video frames. The illumination patterns ai are shown as the white
lines in the figure. In this example, every frame exposure period is divided into
five segments, where the first segment contains the illumination pattern. The
remaining four segments correspond to the dead-time of the camera exposure.

2



500 1000 1500 2000 2500

1

2

3

4

5

Figure 1: Example of the measurement operator A for m = 5, c = 5, and
n = 100. The white lines indicate instances when the strobing illumination is
ON. In this example, every frame is observed through a different pseudorandom
illumination pattern.

The effect of the measurement operator A on a vibrating wire sequence
can be perceived through the examples shown in Figures 2 and 3. The figures
show a set of five video frames captured through the operator A of an example
vibrating sequence U. The measurement operator results in blurring artifacts
in the cases where the wire is moving. We append the mean of the observed
video frames to the measurements as part of the measurement operator to help
speed up the reconstruction of the DC component of the vibrating video.
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Figure 2: Example of the captured video frames from a vibrating wire where the
measurements correspond to m = 5, c = 5, and n = 100. Every frame is com-
posed of 10× 151 pixels and the subplots illustrate the blurring effect resulting
from observing the true vibrating wire through the measurement operator A.
The bottom right subplot corresponds to the mean of the five observed frames.

Notice from (1) that the operator A acts on every pixel of the video in the
same manner. As it stands, problem (1) is severely ill-posed since there we can
find infinitely many solutions U to the system of equation. However, since the
wire is oscillating within a narrow frequency band, we may still be able to exactly
reconstruct the true matrix U by exploiting its sparsity in the frequency domain.
Let F ∈ CN×N be the N -dimensional inverse Fourier transform operator, and
denote by X ∈ CN×HW the frequency coefficient matrix of U, i.e., U = FX.
Since any intensity fluctuation in the video is driven by the wire vibration, the
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Figure 3: Example of the complete vibrating wire sequence U compared to
measured sequence Y observed through the operator A. The last row of Y
corresponds to the mean of the five observed frames.

locations of the significant nonzero coefficients in the columns of X should fall
within the same frequency bins. Consequently, we may exploit a jointly sparse
structure in the matrix X that allows us to leverage the multiple measurement
vectors (columns of Y) given by the different pixels in the observed video to
recover the support of the row-norms of X. One possible approach for employing
the joint-sparsity prior on X is to utilize an `2,1-norm penalty function and solve
the following optimization problem:

min
X

1

2
‖Y −AFX‖2F + λ‖X‖2,1, (2)

where ‖X‖2,1 =
N∑
r=1
‖X(r, :)‖2 and X(r, :) denotes the rth row of X.

In the context of sparse signal recovery, well established results in the field
of compressed sensing have shown that a k-sparse vector of length N requires at
least 2k+1 measurements to guarantee recovery [3, 4]. When multiple measure-
ments are available, Chen and Huo [5, Theorem 2.4] showed that the necessary
number of measurements can be reduced to 2k + 1 − rank(Y). Specifically,
if a measurement matrix Y ∈ Rm,M is not rank deficient, then the necessary
number of measurements can be reduced by the min{m,M}. This in turn im-
plies that solving a joint sparsity problem does not benefit much from having
multiple measurements M that are larger than m. We have conducted Monte
Carlo simulations for joint sparsity reconstruction using `2,1 minimization and
observed that the simulations support our conjecture that the reconstruction
quality does not improve much when M > m. On the other hand, the computa-
tional complexity increases significantly as M increases since the dimensionality
of the optimization variable is N ×M .
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3 Proposed Solution

We propose a framework where we first compress the dimensionality of prob-
lem (2) and identify the support of the jointly sparse signal X. We then solve
for coefficients of X restricted to the the identified support set in order to re-
construct the temporally super resolved video sequence.

3.1 Dimensionality reduction

One of the drawbacks of problem (2) is that it does not scale well with the
number of pixels in each video frame since the optimization variable X is N ×
HW . However, following the argument presented in the previous paragraph,
we see that there is no benefit to increasing the number of measurement vectors
beyond the rank of Y. Therefore, we propose to reduce the dimensionality of
the problem by multiplying the measurements Y from the right by a random
matrix B ∈ RHW×m to obtain the compressed data matrix

Ỹ := YB
= AFXB

= AFX̃.

(3)

We note here that the support of the row norms of X̃ is identical to that of X.
Using the compressed observation model in (3), we can now set up an equivalent
`2,1-minimization problem to (2) as follows

min
X̃

1

2
‖Ỹ −AFX̃‖2F + λ‖X̃‖2,1, (4)

which allows us to identify the support of X while operating on a significantly
lower dimensional optimization variable X̃.

3.2 Support estimation

For solving (3), we adopt a modified FISTA algorithm [6] that is specialized for
recovering row norm sparse signals as shown in Algorithm 1. In our modified
FISTA routine, we first compute a quasi-Newton estimate X̂ for the variable

X̃ followed by the proximal mapping function prox`2,1

(
X̂;αλw̄

)
with respect

to a weighted `2,1 norm of the estimate X̂ using the weight vector w̄ shown
in Algorithm 1. The choice of the weight vector w̄ = 1 + 10|w|/‖w‖∞, with
w = FHAT1 is designed to discourage non-zero coefficients in the rows of X
that align with the sampling structure of the measurement operator A.

The proximal mapping function is applied row-wise and is defined as follows
for each row indexed by r:

prox`2,1

(
X̂(r, :);αλw̄(r)

)
:=

X̂(r, :)

‖X̂(r, :)‖2
·max

{
‖X̂(r, :)‖2 − αλw̄(r), 0

}
. (5)
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After computing X̃ using Algorithm 1, we estimate the support set S of X as
the index set of the row-norm vector x̃ of X̃, i.e., the set of row indices that
have non-zero `2 norms:

S = supp (x̃) , where x̃ :=

√(
X̃� X̃∗

)
1, (6)

where � denotes the element-wise Hadamard product, X̃∗ is the element-wise
complex conjugate of X̃, and 1 is the all ones vector.

Algorithm 1 Modified fista subroutine for computing X̃

input: A,F, Ỹ, λ, T .
set: q0 = 1, X0 = Z0 = 0

1: α← inverse of maximum eigenvalue of FHATAF
2: w = FHAT1, w̄ = 1 + 10|w|/‖w‖∞
3: Q← FHA†A†TF, approximate inverse Hessian
4: for t← 1 to T do
5: X̂t ← Zt−1 + QFHAT

(
Ỹ −AFZt−1

)
6: Xt ← prox`2,1

(
X̂t;αλw̄

)
7: qt ←

1+
√

1+4q2t−1

2

8: Zt ← Xt + qt−1−1
qt

(Xt −Xt−1)

return: X̃← XT

3.3 Video reconstruction

Once the support set S is identified, we reconstruct the high frame rate video
U = FSXS by computing the coefficients of X restricted to the support set
S. The matrix FS is the subset of the columns of the inverse Fourier matrix
indexed by S. This is achieved by solving the following constrained least squares
problem:

min
XS

1

2
‖Y −AFSXS‖2F subject to FSXS ≥ 0. (7)

The constraint FSXS ≥ 0 above ensures that every pixel in U ∈ R+ has a real,
non-negative feasible pixel value. Problem (7) can be solved using an accelerated
projected gradient (APG) descent routine shown in Algorithm 2. The constraint
of U to the positive orthant is guaranteed through the element-wise projection
operator projR+

(U) that discards the imaginary component of every element
of U and sets any negative real component to zero.

3.4 Outlier robustness

In practical EDM scenarios, the wire vibrates inside of an injected fluid that
helps in lubricating and cooling the mechanical components. The presence of
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Algorithm 2 Accelerated projected gradient (APG) routine for computing U.

input: A,FS ,Y, T .
set: q0 = 1, X0

S = Z0 = 0
1: α← inverse of maximum eigenvalue of FH

SA
TAFS

2: for t← 1 to T do
3: X̂t

S ← Zt−1 + αFH
SA

T
(
Y −AFSZ

t−1)
4: Ut ← projR+

(
FSX̂

t
S

)
5: Xt

S ← FH
SU

t

6: qt ←
1+
√

1+4q2t−1

2

7: Zt ← Xt
S + qt−1−1

qt
(Xt

S −Xt−1
S )

return: U← UT

the fluid and the wire vibration often result in the occurrence of air bubbles that
move through the fluid. These bubbles are captured by the video camera and
their motion induces spectral components that contaminate the spectrum of a
purely vibrating wire. Fortunately, the motion of the bubbles is not periodic
and the occurrence of the bubbles in the captured video is generally transient.

Given the above properties of the bubbles, we propose to model the presence
of the bubbles as sparse outliers in the measurement model. To be precise, let
O ∈ Rm×HW denote the sparse matrix of outliers corresponding to the bubbles.
The new forward model that accommodates the presence of bubbles is given by:

Y = AFX + O. (8)

Since our goal is to recover X and its support, we need to develop a mechanism
for handling the presence of the sparse outlier matrix O. Below we propose two
formulations that address this task.

3.4.1 Bubble separation using robust PCA

The sparsity of the row norms of X result in the matrix L := AFX to have
a low rank. One commonly used technique for separating the sum of a low
rank component and a sparse component is robust principal component analysis
(PCA). The robust PCA problem can be summarized as follows:

min
L,O
‖L‖∗ + ‖O‖1 subject to Y = L + O, (9)

where ‖L‖∗ denotes the nuclear norm (sum of singular values) of a matrix L,
and ‖O‖1 is the `1 norm of the vectorized matrix O.

With this approach, we first solve the robust PCA problem to compute the
low rank matrix L, and then proceed with our support estimation and video
reconstruction steps described above after replacing the matrix Y with the low
rank matrix L.
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Figure 4: Plots of the magnitudes of the spectrum signal w = FHAT1 for (a)
the uniform sampling operator, and (b) the random sampling operator.

3.4.2 Bubble separation through forward modeling

As an alternative to the robust PCA approach, we may incorporate the bubble
separation stage directly into the support identification step from compressed
measurements shown in (10) above. Specifically, we rewrite (10) as follows:

min
X̃,O

1

2
‖Ỹ −AFX̃−OB‖2F + λ‖X̃‖2,1 + µ‖O‖1, (10)

where we recall that B is the dimensionality reducing random matrix.

4 Sensing System Design

The design of the sensing matrix A plays an important role in determining the
reconstruction quality of the super resolved video. Particularly, the instantiation
and length of the coded illumination pattern within a video frame exposure
period can impact the ability to determine the correct signal support. Recall
that our target is to identify the frequency (or sparse support set of frequencies)
of a period signal U. If the coded illumination patterns ai are triggered at
uniformly spaced intervals, then the operator A also exhibits a sparse spectrum
in the frequency domain, which may not be distinguishable from the support
of the signal U. We observe this behavior by plotting the spectrum signal
w = FHAT1 in Figure 4(a) for the example sampling sampling operator shown
in Figure 5(a). We can see from the figure that the frequency corresponding to
the video frame rate m and its harmonics are the dominating coefficients.

Alternatively, we may allow the strobing sequence occupy a random starting
position in the frame exposure interval as shown in Figure 5(b). This approach
helps in breaking the periodicity of the sampling operator and results in a rel-
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Figure 5: Illustration of (a) the uniform sampling operator with strobing se-
quences starting at the beginning of the frame exposure interval, and (b) the
random sampling operator where the strobing sequence can begin at any point
in the frame interval.

200 400 600 800 1000 1200 1400

Pixels

500

1000

1500

2000

2500

C
o

m
p

le
te

 f
ra

m
e

 i
n

d
e

x
 

(a)

200 400 600 800 1000 1200 1400

Pixels

500

1000

1500

2000

2500

C
o

m
p

le
te

 f
ra

m
e

 i
n

d
e

x
 

(b)

200 400 600 800 1000 1200 1400

Pixels

500

1000

1500

2000

2500

C
o

m
p

le
te

 f
ra

m
e

 i
n

d
e

x
 

(c)

Figure 6: (a) High temporal resolution ground truth video and the reconstructed
video from (b) the uniform sampling operator and (c) the randomized sampling
operator.

atively flatter spectrum that does not exhibit the high valued coefficients at
harmonic frequencies as can be seen from Figure 4(b).

5 Numerical Evaluation

We evaluated the performance of our proposed scheme with an example video
sequence of a wire vibrating at 11 Hz. We limit the experiment to such low
a frequency in order to help with the visualizations. The video camera cap-
tures frames at m = 5 Hz and the strobing sequence has a duration of 40 ms
with n = 100 being the length of each strobing code ai. Consequently, the
target temporal resolution time step ts = 0.4 ms and the temporal dimension
of the super resolved sequence is N = 2500, i.e., a 500× super resolution rate.
The experimental parameters described here correspond to the setup shown in
Figure 2.
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Figure 7: Comparison of the Fourier coefficients of the ground truth and the
reconstructed videos from the uniform and randomized sampling operators.

We restrict the experiment to the bubble free setup and follow the proce-
dure described in this note to reconstruct the temporally super resolved video
frames. Figure 6 compares the reconstructed video quality between the uniform
sensing operator and the randomized operator. It is evident from the result
that the randomized operator shows better reconstruction compared to the uni-
form operator. We caution though that this is a particular adversarial example
for the uniform sampling operator. Moreover, the randomization seed has a
significant effect on the ability to reconstruct the true support, i.e., not every
randomization is capable of capturing the correct support.
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