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Abstract
This paper considers spatial-domain detector design for mutual interference mitigation among
automotive MIMO-FMCW radars. This detector design is based on our previously derived
interference signal model that fully accounts for the time-frequency incoherence and the slow-
time code incoherence between the victim and interfering radars. Compared with our previous
spatial-domain detector in [1], the proposed detector further exploits the structural property
of both transmit and receive steering vectors of the interference for stronger interference
mitigation. Preliminary numerical results con- firm the performance of our proposed detector
and show advantages over baseline detectors.
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ABSTRACT
This paper considers spatial-domain detector design for mutual inter-
ference mitigation among automotive MIMO-FMCW radars. This
detector design is based on our previously derived interference sig-
nal model that fully accounts for the time-frequency incoherence
and the slow-time code incoherence between the victim and inter-
fering radars. Compared with our previous spatial-domain detector
in [1], the proposed detector further exploits the structural property
of both transmit and receive steering vectors of the interference for
stronger interference mitigation. Preliminary numerical results con-
firm the performance of our proposed detector and show advantages
over baseline detectors.

Index Terms— Automotive radar, MIMO-FMCW, interference
mitigation, spatial-domain detection.

1. INTRODUCTION

Automotive radars are one of the key perception sensors to ob-
tain range, velocity, and angles of nearby objects (e.g., cars) in
all-weather conditions. For realizing low-cost design, current au-
tomotive radar chips widely adopt the frequency-modulated con-
tinuous wave (FMCW) signaling scheme [1–9]. To achieve high
angular resolution, multiple-input multiple-output (MIMO) tech-
nology is combined with FMCW to synthesize a large virtual array
using relatively fewer radio frequency (RF) chains. The combined
MIMO-FMCW radar becomes the main way to realize upcoming
4D (range-Doppler-azimuth-elevation) automotive radars [2, 3].

As more vehicles are equipped with radar sensors operating in
the same frequency bands, e.g., 76−81 GHz, mutual interference be-
comes a challenging issue, as shown in Fig. 1. Mutual interference
mitigation has been considered for FMCW radar in the fast-time
domain [10–14], slow-time domain [15–17], and range-Doppler
domain [18–21]. For the spatial-domain approach, initial efforts
focused on receiver beamforming-based approaches for FMCW
phased array automotive radar [22–24]. For the MIMO-FMCW au-
tomotive radar, except the null steering [1, 25] and linear constraints
minimum variance (LCMV) beamforming [26], there are relatively
few efforts focusing on the spatial-domain interference mitigation.

Noticeably different from these efforts in [25] and [26], our
previous work in [1], for the first time, derived an explicit signal
model for the spatial-domain MIMO-FMCW interference mitiga-
tion under the time-frequency incoherence, the MIMO code inco-
herence, and array configuration difference between the victim and
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Fig. 1: Object detection under MIMO-FMCW automotive radar in-
terference, where both victim and interfering radars use MIMO ar-
rays to transmit and receive FMCW waveforms.

interfering radars. Nevertheless, we only exploited the structure of
the receiver steering vector of the MIMO-FMCW interference for
a subspace-based object detector in [1]. In this paper, we further
extend our previous study in [1] and, more explicitly, exploit the
structure of both transmit (Tx) and receive (Rx) steering vectors of
the incoherent interference. To this purpose, we decompose the in-
coherent MIMO-FMCW interference into two orthogonal compo-
nents: one is completely aligned with the object Tx steering vector,
and the other is in its orthogonal complement subspace. By treating
the resulting complex-valued amplitude of the decomposed interfer-
ence as unknown random variables and assuming its variance can
be estimated from nearby range-Doppler bins, we propose a gen-
eralized subspace-based (GS) detector that minimizes the variance
of interference-plus-noise with known statistics after beamforming,
maintains a fixed gain at the object direction, and cancel the residual
incoherent interference. We provide closed-form analytical perfor-
mance in terms of probabilities of false alarm and detection, which
leads to the conclusion that the proposed GS detector has the prop-
erty of constant false alarm rate (CFAR). The analysis also sheds
insight on its relationship to our previously proposed detector in [1]
and the clairvoyant detector that assumes perfect knowledge of the
interference. Finally, numerical performance comparison between
the proposed GS detector and the state-of-the-art detectors in [1]
and [26] is provided.

2. PROBLEM FORMULATION

In this section, we briefly introduce object and interference signal
models and define the spatial-domain object detection problem under
MIMO-FMCW mutual interference. Then, we review the state-of-
the-art detectors for solving this detection problem.



2.1. Signal Model

Consider a victim MIMO-FMCW radar with M Tx antennas and N
Rx antennas in Fig. 1. For an object, e.g., pedestrian and cars, its
virtual MIMO steering vector at a range-Doppler bin is given by [3]

ys = bat ⊗ ar, (1)

where b is the unknown object amplitude, the object Tx and Rx steer-
ing vectors with the normalized spatial frequencies fϕt and fϕr are
given, respectively, as

at ≜ [1, e−j2πfϕt , . . . , e−j2πfϕt
(M−1)]T , (2)

ar ≜ [1, e−j2πfϕr , . . . , e−j2πfϕr (N−1)]T , (3)

and ⊗ represents the Kronecker product. Meanwhile, an interfer-
ing radar in Fig. 1 sends its own FMCW waveforms from its own
MIMO Tx array. The MN × 1 virtual MIMO steering vector of the
interference is given by [1]

yi = ã′
t ⊗ ãr, (4)

where ãr is the interfering Rx steering vector that is the same as (3)
except at the normalized frequency f̃ϕr of the interference, and

ã′
t ≜ [ã′

t,0, ã
′
t,1, . . . , ã

′
t,M−1]

T (5)

is the interfering Tx steering vector1.
From (4), it is seen that the interfering MIMO steering vector

has the Kronecker structure between the Tx and Rx steering vec-
tors, a property shared by the object MIMO steering vector in (1).
The main difference lies in the interfering Tx steering vector of (5)
which is a function of the transmitting power of the interfering radar,
interfering-victim relative distance and Doppler frequency, FMCW
time-frequency incoherence (e.g., chirp rate, pulse duration, pulse
repetition interval), MIMO incoherence (e.g., MIMO code and Tx
array configuration), and timing offset between the interfering and
victim radars [1]. In other words, the object Tx/Rx steering vec-
tors and interfering Rx steering vector are fully determined by the
object-victim and interfering-victim directions due to their Fourier
vector structure, while the interfering Tx steering vector is almost
unknown as its direction in the M -dimensional subspace is not only
determined by the relative interfering-victim direction but also the
mentioned incoherence.

2.2. Spatial-domain Detection Problem

The spatial-domain object detection under mutual interference is a
composite hypothesis testing problem [1]{

H0, y = ã′
t ⊗ ãr + z

H1, y = bat ⊗ ar + ã′
t ⊗ ãr + z,

(6)

where y is the complex-valued virtual MIMO snapshot at a given
range-Doppler bin, z ∼ CN (0, σ2IMN ) is the zero-mean complex
white Gaussian noise with variance σ2 and IMN is the identity ma-
trix of size MN . The null hypothesis H0 consists of MIMO-FMCW
mutual interference and noise, while the alternative hypothesis H1

consists of the object signal plus interference and noise.
It is worth noting that, in (6), we assume the knowledge of the

interfering Rx steering vector ãr . This assumption on ãr is moti-
vated by the observation that it is a Fourier vector at the angle of the
interfering radar. We assume the angle of arrival or f̃ϕr of interfer-
ence in ãr can be estimated from nearby range-Doppler bins.

1The detailed derivation of ã′
t or its element ã′t,m can be found in [1].

2.3. State-of-the-art Detectors

2.3.1. Receiver Subspace Detector

In [1], the decoded interference Tx steering vector ã′
t is treated as

an unknown vector, because it requires the knowledge of interfering
radar system parameters such as the FMCW parameters, slow-time
phase codes and MIMO Tx array configurations. Given this assump-
tion, the receiver subspace-based (RS) detector operates on the Rx-
side steering vector to mitigate interference and is given by [1]

TRS(y) =
2

σ2

∣∣yH
(
at ⊗ (P⊥

ãr
ar)

)∣∣2∣∣∣∣∣∣at ⊗ (P⊥
ãr
ar)

∣∣∣∣∣∣2 , (7)

where P⊥
ãr

denotes the projection matrix projecting to the orthogo-
nal subspace of ãr .

The RS detector projects interference signal ã′
t ⊗ ãr to 0, i.e.,

(ã′
t ⊗ ãr)

H
(
at ⊗ (P⊥

ãr
ar)

)
= 0, (8)

because the interference Rx steering vector ãr is projected to its or-
thogonal subspace, i.e., ãH

r (P⊥
ãr
ar) = 0. This property is also re-

ferred to as the null steering in existing literature [25]. The null steer-
ing is independent of the interference power and is desirable when
the interference power is large. However, this interference mitigation
gain comes with a loss of object correlation gain, i.e.,

(at ⊗ ar)
H
(
at ⊗ (P⊥

ãr
ar)

)
< MN, (9)

where (at ⊗ ar)
H
(
at ⊗ (P⊥

ãr
ar)

)
is the object correlation gain of

the RS detector, and MN is the ideal object correlation gain. This
is undesirable when the interference power is small, because the RS
detector mitigates low-power interference at the cost of losing object
correlation gain.

2.3.2. LCMV Detector

In [26], a conventional linear constraints minimum variance (LCMV)
beamformer [27] is adopted. Assume ã′

t ∼ CN (0, σ̃2R̃t) with
known interference power σ̃2 and normalized covariance matrix
R̃t. Further, assume ã′

t is independent of the noise z, we have the
interference plus noise

ã′
t ⊗ ãr + z ∼ CN (0, σ2R̃), (10)

with the normalized covariance

R̃ =
σ̃2

σ2
R̃t ⊗ (ãrã

H
r ) + IMN . (11)

The LCMV detector with knowledge of R̃ is given by [26, 27]

TLCMV (y) =
2

σ2

∣∣∣yHR̃−1(at ⊗ ar)
∣∣∣2∣∣∣∣∣∣R̃− 1

2 (at ⊗ ar)
∣∣∣∣∣∣2 . (12)

A well-known drawback of LCMV detector is that it is sensitive
to estimation error of R̃. However, obtaining an accurate estimate of
R̃ requires a large number of homogeneous and object-free training
samples, which are generally not available or require large overhead
to obtain [28]. Another well-known drawback of LCMV detector is
the complexity. If the number of range-Doppler bins for estimating
σ̃2R̃t is smaller than M , the estimated σ̃2R̃t can be singular [29].
Also, the matrix inversion in (12) requires order of O(M3N3) op-
erations, which are repeated for each range-Doppler bin.



Fig. 2: Decomposition of ã′
t into b̃at and P⊥

at
ã′
t in a 3-D example,

where the plane is the orthogonal subspace of at.

3. PROPOSED DETECTOR DESIGN

To overcome the drawbacks of the RS and LCMV detectors, we first
obtain insights from the clairvoyant detector, and then propose a new
and robust detector using the insights.

3.1. Insights from Clairvoyant Detector

The clairvoyant detector assuming the perfect knowledge of ã′
t is [1]

TC(y) =
2

σ2

∣∣(y − ã′
t ⊗ ãr)

H(at ⊗ ar)
∣∣2

||at ⊗ ar||2
. (13)

The clairvoyant detector suggests subtracting the interference com-
ponent ã′

t ⊗ ãr before correlation, as indicated in (13). The object
signal correlation gain is ideal, i.e., (at ⊗ ar)

H(at ⊗ ar) = MN .
To further get insights from the clairvoyant detector, we decom-

pose the decoded interference Tx steering vector [30]

ã′
t = b̃at +P⊥

at
ã′
t (14)

as plotted in Fig. 2, where the projected complex amplitude onto at

is [30]

b̃ =
aH
t ã′

t

||at||2
. (15)

Substituting (14) into (13), we obtain the clairvoyant detector with
clearer insights

TC(y) =
2

σ2

∣∣∣(y − b̃at ⊗ ãr)
H(at ⊗ ar)

∣∣∣2
||at ⊗ ar||2

. (16)

Equation (16) shows that the essential interference to cancel is a
rank-1 interference with known direction at ⊗ ãr , and the only un-
known parameter sufficient for interference cancellation is b̃. This
give us a guidance for advanced interference cancellation: we need
to obtain the knowledge of b̃.

3.2. Proposed Detector

The exact knowledge of b̃ is hard to know. In the following, we
assume that we can estimate the power of b̃, denoted by h2, from
nearby range-Doppler bins. Assume b̃ ∼ CN (0, h2) has known
variance h2 and b̃ is independent of z. Then, the essential interfer-
ence plus noise is

z̃ = b̃at ⊗ ãr + z ∼ CN (0, σ2R), (17)

and the normalized covariance of z̃ is

R =
h2

σ2
(at ⊗ ãr)(at ⊗ ãr)

H + IMN . (18)

We design our Rx beamformer w to satisfy the following goals:
1) minimize the variance of interference-plus-noise with known
covariance after beamforming, i.e., wHRw; 2) maintain a fixed
gain at the object direction, i.e., (at ⊗ ar)

Hw = 1; 3) force the
the unknown interference (P⊥

at
ã′
t) ⊗ ãr to zero for any ã′

t, i.e.,
((P⊥

at
ã′
t) ⊗ ãr)

Hw = 0 for any ã′
t, which is equivalent to force

(P⊥
at

⊗ ãr)
Hw = 0M , where 0M denotes the M -dimensional

column vector with all 0 elements. These designing goals lead to
the following beamforming optimization problem:

min
w

wHRw

s.t. (at ⊗ ar)
Hw = 1,

(P⊥
at

⊗ ãr)
Hw = 0M , (19)

whose optimal solution is

wGS =
R−1(at ⊗ ar)∣∣∣∣∣∣R− 1

2 (at ⊗ ar)
∣∣∣∣∣∣2 . (20)

This can be proved by showing that wGS is the optimal solution of
the relaxed problem: minw wHRw, s.t. (at ⊗ ar)

Hw = 1, and
wGS satisfies the relaxed constraint using the structure

R−1 = IMN − h2(at ⊗ ãr)(at ⊗ ãr)
H

σ2 + h2(at ⊗ ãr)H(at ⊗ ãr)
. (21)

The beamformer wGS suggests the following detection statistics

TGS(y) =
2

σ2

∣∣yHR−1(at ⊗ ar)
∣∣2∣∣∣∣∣∣R− 1

2 (at ⊗ ar)
∣∣∣∣∣∣2 . (22)

Compared to TLCMV (y) in (12), TGS(y) is different in that it
uses the essential interference plus noise covariance matrix R in-
stead of the total interference plus noise covariance matrix R̃. Be-
cause TGS(y) not only uses the Rx-side interference information
as the RS detector but also uses the Tx-side interference informa-
tion, we call the detector TGS(y) as the generalized subspace-based
(GS) detector. The GS detector suggests whitening using the known
interference-plus-noise covariance matrix R before correlation.

3.3. Performance Analysis

Theorem 1 In Problem (6) and based on the assumption b̃ ∼
CN (0, h2) with known h2, the false alarm probability and proba-
bility of detection performance for the GS detector in (22) are

PGS
FA = e−

1
2
γ , PGS

D = Q1

(√
λGS ,

√
γ
)
, (23)

where Q1(x, y) is the Marcum Q function of order 1 [31], γ is the
detection threshold and

λGS =
2|b|2

σ2

∣∣∣∣∣∣R− 1
2 (at ⊗ ar)

∣∣∣∣∣∣2
=
2MN |b|2

σ2

(
1− h2M |ãH

r ar|2

σ2N + h2MN2

)
. (24)

The proposed GS detector has the following properties:
1. The proposed GS detector is a constant false alarm rate

(CFAR) detector in the existence of interference, as shown in
(23). This CFAR property is ensured by the last condition in
problem (19), i.e., (P⊥

at
⊗ ãr)

Hw = 0M , and the knowledge
of R.
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Fig. 3: Performance validation and evaluation of ROC curves when M = 4, N = 4, object at 30◦, interferer at 40◦, and SNR = −5dB.

2. When h2

σ2 = 0, i.e., when the decoded interference Tx steer-
ing vector ã′

t falls into the orthogonal subspace of at, we have

TGS(y) = TC(y), if
h2

σ2
= 0, (25)

which means that the proposed GS reduces to the clairvoyant
detector. So, the GS detector does not loose object correlation
gain when h2

σ2 = 0.

3. When h2

σ2 → ∞, i.e., when the power of interference pro-
jected onto at goes to infinity, we have

TGS(y) = TRS(y), if
h2

σ2
→ ∞, (26)

which means that the proposed GS detector reduces to the RS
detector. So, the GS detector projects interference to 0 only
when h2

σ2 → ∞, and in this case, the RS detector is desirable.

4. λGS monotonically decrease with h2

σ2 . This means that the
detection probability of GS detector is in between the clair-
voyant detector and the RS detector for a given false alarm
probability. Also, when h2

σ2 is closer to 0, the GS detector
performance becomes close to the clairvoyant detector per-
formance; otherwise, the GS detector performance becomes
close to the RS detector performance.

Besides the advantage over the RS detector [1], another motiva-
tion of using the GS detector is its advantages over the LCMV de-
tector [26]. First, the computational complexity of the GS detector is
much reduced compared to the LCMV detector, because R−1(at ⊗
ar) requires order of O(MN) operations due to the closed-form
in (21), while R̃−1(at ⊗ ar) requires order of O(M3N3) opera-
tions. More importantly, the GS detector is more robust to the inter-
ference statistics estimation error compared to the LCMV detector
because the GS detector only need to estimate h2, while the LCMV
detector needs to estimate σ̃2 and R̃t. We will validate this using
simulation in the next section.

4. SIMULATION RESULTS

To evaluate the performance, we set R̃t ≜ [R̃i,j ]
M−1
0 is the corre-

lation matrix with correlation coefficient ρ and R̃i,j = ρ|i−j|. We
define signal-to-noise ratio (SNR) as |b|2/σ2 and interference-to-
noise ratio (INR) as σ̃2/σ2. Under the imperfect knowledge of the

interference statistics, we consider the estimation of σ̃2R̃t as [32]

R̃t,q,est = σ̃2
qR̃t,q ⊙ (1M1H

M +E), (27)

where 1M is the M -dimensional column vector with all 1 elements,
E is a M -by-M symmetric matrix and each entry in the upper tri-
angular of E independently follows zero-mean Gaussian distribution
with variance 6.25, and ⊙ is the Hadamard product. For fair compar-
ison between LCMV detector and GS detector, by (15), we consider
the estimation of h2 as

h2
est =

aH
t R̃t,estat

||at||4
. (28)

We consider a victim MIMO-FMCW radar with M = 4 Tx antennas
and N = 4 Rx antennas. The Tx and Rx antenna element spacing
are dr = 0.5λ and dt = Ndr . An object locates at 30◦ with SNR
= −5dB and an interferer with ρ = 0.6 locates at 40◦. The receiver
operating characteristics (ROC) performance of different detectors
under this setup is shown in Fig. 3, with PD denoting the probability
of detection and PFA denoting the probability of false alarm.

In Fig. 3 (a), we validate the theoretical performance of differ-
ent detectors using Monte-Carlo simulation over 106 runs. Fig. 3 (a)
shows that the performance of GS detector and the LCMV detector is
in between the clairvoyant detector and RS detector. Also, under the
perfect knowledge of the interference statistics, the GS detector and
the LCMV detector achieve the same ROC performance, as if the
GS detector knows the perfect second-order interference statistics of
ã′
t. However, Fig. 3 (b) shows that under the imperfect knowledge

of the interference statistics, the GS detector is robust to the imper-
fect knowledge of the interference statistics, but the performance of
LCMV detector significantly degrades and may be even worse than
the performance of RS detector. Fig. 3 (c) shows that the perfor-
mance of GS detector is closer to the RS detector as INR increases,
and is closer to the clairvoyant detector as INR decreases.

5. CONCLUSION

This paper investigated spatial-domain detector design for MIMO-
FMCW automotive radar mutual interference mitigation. Specifi-
cally, we proposed a GS detector which is inspired by the clairvoy-
ant detector. We showed that the proposed GS detector reduces to
the clairvoyant detector and the RS detector in special cases, and
outperforms the RS detector. We also showed that the GS detector
outperforms the LCMV detector in the robustness to the interference
statistics estimation error and computational complexity.
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