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1. INTRODUCTION

Vapor compression cycles are used in a broad range
of applications because they are a practical and cost-
efficient system for heat transfer over a wide range of
temperatures. Although they are cleaner in operation than
the conventional fossil fuel-based heating systems, they
raise valid environmental concerns as noted in a report
by IEA (2018), because they consume about 10% of total
electricity produced worldwide, and use working fluids
whose global warming potential is often hundreds of times
higher than carbon dioxide. Therefore, technologies that
could further improve the overall performance of vapor
compression systems deserve dedicated research efforts.

Estimation methods could prove to be an important tool
in system identification, data-driven modeling efforts, and
a range of control technologies employed in vapor com-
pression cycles. Commercially sold systems have limited
sensor availability due to cost-sensitive nature of these
consumer equipment, thus making the state estimation
methods crucial for estimating unmeasured quantities on
which future control architectures and performance may
depend. Robust parameter estimation methods may also
facilitate fault diagnostics for the early identification of
performance degradation because many system parame-
ters, such as the refrigerant mass and heat transfer co-
efficients, may change over the equipment lifetime and
cause significant energy waste. Moreover, accurate state
and parameter estimation and calibration tools are cen-
tral to the advancement and deployment of data-driven
modeling and digital twin technologies for these systems,
particularly in heating, ventilation, and air conditioning

(HVAC) applications, see Vering et al. (2021); Bortoff and
Laughman (2022); Chinchilla et al. (2022).

Previous works by Bortoff et al. (2019) and Krupa et al.
(2019) have demonstrated the use of state estimation
methods such as Kalman filter for designing, respectively,
a robust model predictive controller (MPC) for a reduced
order model and a linear MPC for nonlinear model of
a multi-terminal vapor-compression cycle. Since heat ex-
changers (HEXs) dominate the overall dynamics of the
vapor compression systems, they have received special
attention in component level state estimation scenarios.
For example, Cheng et al. (2005) developed a nonlinear
observer for a reduced-order model of a HEX to accurately
predict evaporating temperature and two-phase length for
an experimental system, and more recently, Ghousein and
Witrant (2019) developed a boundary observer for a con-
centric CO2 HEX using Lyapunov analysis.

While the previous works have leveraged relatively low-
order component and system models for efficient state es-
timation, more complex cycles that are in use today could
benefit from these estimation methods in a broad range of
applications mentioned earlier. However, implementation
of classical estimation methods pose distinct challenges
when used with physics-based behavioral models of larger
complex systems. Heat and fluid flow in the HEXs used in
these systems is governed by nonlinear partial differential
equations (PDEs) that relate the conjugate heat transfer
to the refrigerant dynamics, which is nonlinear and has dis-
continuous derivatives at the liquid and vapor saturation
curves. While these PDEs can be discretized using finite
volume representations of HEXs, it results in large sets of



index-1 nonlinear differential algebraic equations (DAEs)
which are numerically stiff, have hundreds of state vari-
ables, and typically require specialized numerical solvers
for integration.

In addition to these computational challenges, estimates
obtained from classical estimation methods may not nec-
essarily satisfy the state constraints imposed by the gov-
erning physical laws leading to failure of physics-based
computational models which are often designed under the
assumption that they operate in valid regions where such
constraints are satisfied. In an effort to address these con-
cerns, Deshpande et al. (2022) recently presented estima-
tion methods in a fixed-interval smoothing context that ex-
plicitly enforce physics-based linear inequality constraints
during the estimation process. These constrained smooth-
ing methods were developed for cycle models without
parametric uncertainties in both extended and ensemble
Kalman formulations and the curse of growing dimension-
ality in the ensemble Kalman smoother was circumvented
using a reformulation in the covariance range which makes
the problem size equal to a constant ensemble size.

The present work is focused on the development of a
nonlinear joint state and parameter estimation method
that can leverage partially-known constraints in terms
of unknown parameters of the system for better estima-
tion accuracy. The method is formulated as a three-stage
smoother in an extended Kalman framework which bene-
fits from the computational capabilities of Julia 1 language
ecosystem.

This paper’s contributions, which are summarized below,
lie at the domain intersection of theory and technological
implementation.

• We present a fixed-interval smoother formulated in
an extended Kalman formalism that incorporates lin-
ear inequality and partially-known nonlinear equality
constraints defined in terms of unknown parameters
of the system.
• We demonstrate a nonlinear joint state and parame-
ter estimation framework for vapor compression cy-
cles facilitated by automatic differentiation (AD) ca-
pable models developed in Julia.

In Section 2, we briefly discuss the cycle model and its im-
plementation in Julia. The theoretical development of the
constrained three-stage smoother is described in Section 3.
Results demonstrating the performance of the smoother
are presented in Section 4, followed by a brief summary
of the work and potential future research directions in
Section 5.

2. AUTOMATIC DIFFERENTIABLE CYCLE MODEL

Fig. 1 shows a schematic of a vapor compression cycle
capable of varying the heating or cooling capacity delivered
to an occupied space. It consists of a variable-position
expansion device, a variable-speed compressor, and two
refrigerant-to-air HEXs (condenser and evaporator) with
variable speed fans. This system transfers thermal energy
from the air passing through the evaporating HEX to

1 https://julialang.org/

Fig. 1. Schematic diagram of a vapor compression cycle

the air passing through the condensing HEX via the
refrigerant flowing through the system.

While algebraic models were used for the compressor and
expansion, the HEX models which dominate the overall
dynamics, were constructed from finite volume discretiza-
tions. The HEX models consist of an interconnected set of
models that describe the one-dimensional refrigerant pipe-
flow, the thermal behavior of the tube wall, and the flow of
air across the heat exchanger, forming an index-1 system
of DAEs.

The pipe model for the refrigerant enforces the following
equations for conservation of mass, momentum, and en-
ergy,

∂(ρA)

∂t
+

∂(ρAv)

∂x
= 0

∂(ρvA)

∂t
+

∂(ρv2A)

∂x
= −A∂P

∂x
− Ff

∂(ρuA)

∂t
+

∂(ρvhA)

∂x
= vA

∂P

∂x
+ vFf +

∂Q

∂x

(1)

where ρ is the density, A is the cross-sectional area of
the flow, v is the velocity, P is the pressure, Ff is the
frictional pressure drop, u is the specific internal energy, h
is the specific enthalpy, and Q is the heat flow rate into or
out of the fluid. These equations use a spline-based rep-
resentation of the thermodynamic refrigerant properties
developed by Laughman and Qiao (2021). These equations
can be adapted to a finite control volume discretization of
the refrigerant pipe into an arbitrary number of volumes
by using a staggered-grid approach. Further details about
the models of HEX, compressor, and expansion valve are
available in Qiao et al. (2015).

The cycle model is implemented using the Julia package
ModelingToolkit.jl developed by Ma et al. (2021). This
package uses a symbolic computational algebra framework
that enables the construction of large acausal system
models from smaller component models and generates
imperative Julia code that can be used with other com-
putational tools, including AD. This facilitates efficient
Jacobian computations of the complete cycle dynamics
with respect to both state variables and parameters; a
functionality vital for the extended Kalman formalism.

For the purpose of this study, we consider a cycle model
obtained by discretizing both HEXs into 4 volumes each
which resulted in a set of 278 index-1 DAEs, which in
turn was reduced to 24-dimensional nonlinear ODE using
the index reduction algorithm by Pantelides (1988). The
ODEs have the following form



ẋ(t) = f(x(t),u(t),ϕ), (2)

where x is the state vector, u is the vector of known time-
varying control inputs and system conditions (compressor
speed, valve position, ambient temperatures, etc.), and ϕ
is the vector of time-invariant system parameters (geomet-
ric dimensions of pipes, material properties, etc.)

The finite volumes are numbered 1 through 8 in the
direction of refrigerant flow, as shown in Fig. 1. The state
vector x after index reduction is an augmented vector
of pressures (Pi), specific enthalpies (hi), and pipe wall
temperatures (θi) of all finite control volumes indexed
by the subscript i = 1, · · ·, 8. Therefore, the state vector
x ∈ R24 is defined as

x ≜ [P1 h1 θ1 P2 h2 θ2 · · · P8 h8 θ8]
⊤
. (3)

A temporally discretized model is obtained from (2) by

xk+1 = xk +

∫ tk+1

tk

f(x(t),u(t),ϕ)dt, (4)

where xk ≜ x(tk).

In practice, the system parameters ϕ are not exactly
known and must be estimated or calibrated from the
available data. One of the objectives of this work is to
demonstrate joint state and parameter estimation in the
presence of physical state constraints. For the purpose
of this study, we will assume uncertainty in the HEX
pipe length while other parameters are assumed to be
known. To simplify the notation, we denote the right side
discretized model in (4) as

xk+1 = fk(xk, L), (5)

where u(t) and ϕ have been conveniently absorbed in the
definition of fk(·). Only the pipe length L, which is the
parameter of interest, has been written explicitly in the
argument.

The integral in (4) must be calculated numerically because
the equations are nonlinear and high-dimensional. Since
the system is numerically stiff, the stiff solver QNDF is used
to integrate the model (5) forward in time. The model
(5) is modified by adding a disturbance term to make it
amenable in a general Kalman formulation

xk+1 = fk(xk, L) +wk, wk ∼ N (0,Qk), (6)

where wk denotes a zero-mean white Gaussian process
with covariance Qk that can account for the modeling
errors and other disturbances.

The availability of sensors in common vapor compression
equipment is limited to measurements of pressure and
temperature at a subset of locations in the cycle due to
cost and reliability concerns. We assume that the available
sensors measure the following vector of temperatures and
pressure

y ≜ [P1 θ2 θ4 θ6 P8 θ8]
⊤
. (7)

Therefore, the sensor measurements at tk denoted by
yk ≜ y(tk) can be represented using the following model

yk = Hxk + ηk, ηk ∼ N (0,Rk), (8)

where H ∈ R6×24 is the measurement matrix whose
rows are appropriately selected Cartesian basis vectors in
R24, and ηk is a zero-mean white Gaussian process with
covariance Rk.

3. SMOOTHING WITH PARTIALLY-KNOWN
CONSTRAINTS

As many performance monitoring, analysis and data-
driven modeling frameworks are designed to operate on
data collected over finite time horizons, the fixed-interval
aspect of these applications enables the use of smoothing
methods which assimilate sensor measurements obtained
within a time interval to estimate states everywhere within
that interval and avoid the limitations of filtering algo-
rithms yielding better state-estimation accuracy.

Among several fixed-interval smoothing methods avail-
able in the literature, the Rauch-Tung-Striebel (RTS)
smoother-type approaches are preferred for many appli-
cations as they completely circumvent the need for model
inversion, which can be challenging in many circumstances
and practically impossible for numerically ill-conditioned
systems like vapor compression cycles. RTS-type fixed-
interval smoothing methods typically consist of two stages
or more commonly referred to as passes, namely, a forward
pass in time which assimilates data using a filter followed
by a backward pass in time which uses state estimates
at the future time steps to correct estimates in the past.
Equations for these classical methods are readily available,
e.g., Crassidis and Junkins (2011). While such methods are
optimal for linear systems, they are also widely applied to
nonlinear systems using the extended Kalman estimation
framework through the use of model linearization.

We present a smoothing method formulated in extended
Kalman framework that comprises three passes and incor-
porates the linear inequality and partially-known nonlin-
ear equality state constraints dictated by the physics of the
model, which are often essential to the correct execution of
the nonlinear model. We first discuss the state constraints,
which are fundamental to the physical system. This is
followed by the development of the proposed smoother
which is outlined in Algorithm 1.

3.1 State Constraints

Physics-based models of multiphysical systems must en-
force constraints on model states and parameters to ensure
that the model predictions or outputs satisfy fundamental
physical laws. One such constraint relevant to the vapor
compression cycle under consideration is the pressure gra-
dient imposed by a given direction of refrigerant flow in
the system. With respect to Fig. 1 and state vector (3),
the pressure gradient can be expressed as the following
inequalities

P1 ≥ P2 ≥ · · · ≥ P7 ≥ P8. (9)

The pressure gradient constraint (9) at a time instant tk
can be written in terms of the state as the following vector
inequality interpreted element-wise,

Axk ≤ 0, (10)

whereA ∈ R7×24 is an appropriately defined matrix whose
most entries are zero, and the nonzero entries are ±1. The
pressure gradient constraint (10) must be satisfied at all
time steps within the smoothing interval k = 1, 2, · · · , N .

Another physical constraint that is expected to be satisfied
by the cycle states can be specified in terms of total refrig-
erant mass in the system. In particular, total refrigerant



mass, also referred to as refrigerant charge, must be con-
stant over time. In the context of cycle models described
in Section 2, the refrigerant charge can be calculated from
the state vector as

m∗ = mk = g(xk, L), k = 1, 2, · · ·N. (11)

where m∗ is the constant but typically unknown total
refrigerant mass in the system. The nonlinear map g(·) is
known and depends on other known system parameters
ϕ which have been omitted from (11) for notational
simplicity.

The computation of total refrigerant mass by evaluation of
nonlinear function g(·) entails computations of refrigerant
mass in each HEX finite volume and summing them up.
Refrigerant mass in each HEX finite control volume is
determined by the product of physical volumes and the
respective refrigerant densities calculated using known
thermodynamic states, i.e. pressure and specific enthalpy,
and the refrigerant’s thermodynamic equation of state.

Contrary to (11), it should be noted that the total re-
frigerant mass in a real-world vapor compression system
does not remain constant as the refrigerant often leaks
from the system over time. However, the associated time-
constant for this process can be of an order of several
months to a few years. Therefore, the total refrigerant mass
can be assumed to be constant over relatively shorter time
horizons as the real-world data available from such systems
is typically collected over few days and made available for
processing.

Equations (10) and (11) represent state constraints that
must be satisfied at all time steps. Although simulation
models (2) of the cycle generally satisfy such physical
constraints, the state estimates obtained from a standard
estimation method may not necessarily satisfy these con-
straints. These errors can lead to violations of physical
laws and failure of computational models, which are often
designed under the assumption that they operate in valid
regions where such constraints are satisfied. Therefore,
state constraints represented by (10) and (11) must be
explicitly incorporated into the estimation process.

Extended and ensemble Kalman smoothing methods in-
corporating only the pressure constraint (10) for state
estimation of vapor compression cycles were recently pre-
sented by Deshpande et al. (2022). Linear inequality con-
straints (10) were enforced using truncation of probability
density function (PDF) in the extended Kalman frame-
work and we will adopt a similar strategy in the present
work.

In comparison, charge constraints (11) are more difficult to
incorporate into the estimation process because the actual
refrigerant mass m∗ in a system is typically not known
with a high degree of precision. The uncertainty around
the refrigerant mass in a deployed system stems from many
different factors including unit-to-unit manufacturing vari-
ability, refrigerant leakage from the system over time,
and refrigerant replenishment during maintenance events.
While there are a variety of methods to estimate changes
in the mass for vapor-compression cycles, the more general
problem of directly estimating the total mass is an open
research problem in the field. In this work, we thus present
a novel approach for computation of refrigerant mass via

state and parameter estimation of the vapor compression
system.

Since the total refrigerant mass is unknown and must be
estimated, mechanisms for enforcing (11) during estima-
tion are not straightforward. However, (11) still represents
important information about the system that could be
beneficial for state estimation. In particular, as per (11),
high-dimensional state vector x admits a low-dimensional
representation and resides on a partially-known (since m∗

is unknown) manifold constrained by the nonlinear map
g(·). We incorporate this constraint, hereafter referred
to as the manifold constraint to distinguish it from the
pressure constraint (10), in the smoothing context wherein
estimated charge can be used for a posteriori analysis to
improve state estimation accuracy. Data-driven modeling
efforts for vapor compression cycles could significantly
benefit from the improved smoothing accuracy as observed
by Chinchilla et al. (2022).

The proposed multi-pass smoother incorporating (10) and
(11) for a given measurement dataset is outlined in Al-
gorithm 1 and summarized below. It comprises of three
passes which will be discussed in detail in the remainder
of this section.

(1) First pass (forward in time): Filtering equations en-
force pressure constraint (10) to estimate unknown
parameters and refrigerant mass,

(2) Second pass (forward in time): Filtering equations
incorporate both pressure constraint (10) and charge
manifold constraint (11) using the estimated refriger-
ant mass to estimate states, and

(3) Third pass (backward in time): Smoothing pass in-
corporating pressure constraint (10) to refine state
estimates.

Algorithm 1 MC-EKS

Data: yk, k = 1, 2, · · · , N
Initialize: x−

1 , P
−
1

for k = 1, 2, · · · , N do
Execute filtering steps (14) // First pass

end for
Compute L̂, m̂ from converged estimates and set Zk.
for k = 1, 2, · · · , N do

Sample mk ∼ N (m̂, Zk)

ỹk ←
[
y⊤
k mk

]⊤
Execute filtering steps (19) // Second pass

end for
P̂N ← P+

N , x̂k ← x+
k

for k = N,N − 1, · · · , 1 do
Execute smoothing steps (22) // Third pass

end for

3.2 State and Parameter Estimation

We present an extended Kalman filter for joint state and
parameter estimation incorporating pressure constraints
(10) in this subsection. As discussed in the previous
section, the equations below are explicitly developed for
the present case in which the HEX pipe length is the
only parameter of interest for the scope of this study.
However, this method can be readily extended to more



Fig. 2. Structure of the augmented Jacobian matrix.
Heatmap shows absolute values of the nonzero ele-
ments of F̃ k on the log-scale.

general settings to estimate another parameter or set of
parameters.

We augment the models (6) and (8) to facilitate pipe
length estimation as follows.

x̃k+1 = f̃k(x̃k) + w̃k

yk = H̃x̃k + ηk

(12)

where

x̃k ≜

[
xk

Lk

]
, f̃k ≜

[
fk(xk, Lk)

Lk

]
, w̃k ≜

[
wk

vk

]
, (13)

H̃ ≜ [H 0], vk ∼ N (0, Vk) and Vk is typically set to a

small value, w̃k ∼ N (0, Q̃k), and Q̃k is a block-diagonal
matrix with components Qk and Vk.

The constrained extended Kalman filtering equations for
the augmented model (12) are given as follows:

Measurement update:

K̃k = (P̃
−
k H̃

⊤
k )(H̃kP̃

−
k H̃

⊤
k +Rk)

−1 (14a)

P̃
+

k = (I − K̃kH̃k)P̃
−
k (14b)

x̃+
k = x̃−

k + K̃k(yk − H̃kx̃
−
k ) (14c)

x̃+
k , P̃

+

k ← PDFTrunc(x̃+
k , P̃

+

k ) (14d)

Time update:

P̃
−
k+1 = F̃ kP̃

+

k F̃
⊤
k + Q̃k (14e)

x̃−
k+1 = f̃k(x̃

+
k ) (14f)

where x̃+
k and P̃

+

k denote a posteriori mean and covari-
ance of the augmented state vector at time tk obtained
after assimilating all sensor measurements up to time step
k, whereas the a priori mean and covariance obtained
after assimilating all sensor measurements up to time step

k − 1 are denoted by x̃−
k and P̃

−
k . Similar notations are

followed throughout the paper unless specified otherwise.
The Jacobian of the augmented system at x̃+

k is denoted

by F̃ k, i.e.,

F̃ k ≜
∂f̃k

∂x̃
(x̃+

k ) =

∂fk

∂x
(x+

k , L
+
k )

∂fk

∂L
(x+

k , L
+
k )

01×24 1

 . (15)

The structure of F̃ k is illustrated in Fig. 2 via a heatmap
which shows absolute values of the nonzero elements of

F̃ k on the log-scale in a normalized coordinate system.
F̃ k is typically a dense matrix with no particular structure
since it is Jacobian of the discretized system (4) involving
numerical integration of continuous-time dynamics.

Remark 1. Computation of Jacobian is challenging be-
cause fk(·) involves an integral in (4) which is computed
numerically using stiff solvers. AD-compatibility of the
cycle model discussed in Section 2 and the solver QNDF
allows an efficient computation of Jacobian matrices.

The measurement update in (14) is modified to account
for the pressure constraints. The function PDFTrunc in
(14d), returns the corrected posterior mean and covariance
that satisfy the state constraints if the posterior mean
obtained from standard Kalman update equations violate
the pressure constraint (10).

We adopt the PDF truncation approach discussed in Si-
mon and Simon (2010) to enforce constraints on posterior
mean and covariance because it incorporates constraint
information in both mean and covariance matrix, whereas
other approaches that project the estimate on the con-
straint set only enforce the constraints on the mean with-
out correcting the error covariance matrix. It is expected
that the uncertainty in the state estimate represented by
the error covariance will decrease since the system state
must satisfy known constraints.

The PDF truncation method sequentially applies an ap-
propriate coordinate transformation that leverages Gram-
Schmidt orthonormalization such that only boundedness
constraint are to be imposed on a scalar variable at a time.
The scalar Gaussian PDF is truncated at the boundaries
of the linear constraints by setting the density outside
the feasible region to zero. The resulting truncated PDF
is then normalized to have the total probability of unity
within the feasible bounds. While the detailed equations
for this method are available in Simon and Simon (2010),
the function PDFTrunc(x,P ) essentially returns x and P
if the constraint is pressure constraint (10) is satisfied, and
truncates the PDF and returns the constrained version of
x and P if not.

3.3 State Filtering Leveraging Estimated Parameters

Let us assume that the augmented filter (14) is allowed
to run over a sufficiently long time interval so that the
estimates of the unknown parameters converge to certain
values, for instance, see Fig. 3. In this scenario, the pipe
length and state vector from the converged estimates
of augmented filter (14) can be used to estimate total

refrigerant mass using known map (11). If L̂ and m̂ denote
these estimated parameters from (14) at the end of the
time-interval, for example at t = 100 s in Fig. 3, we
may investigate whether these refined parameter estimates
can be used to improve state estimates at earlier time-
steps in an a posteriori analysis. We thus present such an
approach to incorporate estimated refrigerant mass along
with manifold constraint (11) in state estimation in this
subsection.

We incorporate (11) in the Kalman filtering framework
via synthetic or simulated measurements of the refrigerant
mass. In particular, we define a synthetic sensor measure-
ment as follows



mk = g(xk, L̂) + zk (16)

where zk ∼ N (0, Zk), and the synthetic sensor mea-
surements mk are actually sampled from the distribution
N (m̂, Zk), where Zk can be assigned a smaller value for a
stricter enforcement of the constraint (11). Since m̂ is an
error-prone estimate, a suitable value for Zk could also be
calculated from the posterior error covariance of the con-
verged estimates of augmented filter (14). An augmented
measurement model immediately follows from (8), (16)

ỹk = g̃(xk) + η̃k (17)

where

ỹk ≜

[
yk
mk

]
, g̃(xk) ≜

[
Hxk

g(xk, L̂)

]
, η̃k ≜

[
ηk
zk

]
, (18)

η̃k ∼ N (0, R̃k), and R̃k is a block-diagonal matrix with
components Rk and Zk.

An extended Kalman filter that incorporates pressure
constraint (10) and utilizes (16) for enforcing manifold
constraint (11) is given as follows:

Measurement update:

Kk = (P−
k G̃

⊤
k )(G̃kP

−
k G̃

⊤
k + R̃k)

−1 (19a)

P+
k = (I −KkG̃k)P

−
k (19b)

x+
k = x−

k +Kk(ỹk − g̃(x−
k )) (19c)

x+
k ,P

+
k ← PDFTrunc(x+

k ,P
+
k ) (19d)

Time update:

P−
k+1 = F kP

+
k F

⊤
k +Qk (19e)

x−
k+1 = fk(x

+
k , L̂) (19f)

where G̃k is the Jacobian of augmented measurement
model (17) at x−

k , i.e.,

G̃k ≜
∂g̃k

∂x
(x−

k ) =

[
H

∂gk
∂x

(x−
k , L̂)

]
. (20)

and F k is the Jacobian of fk at x+
k , i.e.,

F k ≜
∂fk

∂x
(x+

k , L̂), (21)

while (19d) enforces the pressure constraints.

Remark 2. Although the data assimilation equations (19)
represent a forward pass in time, they actually constitute a
smoothing operation when used with the same sensor data
set used in (14) because (19) uses the converged parameter
estimates at future time step k = N to improve state
estimates in the past at k ≤ N −1. However, (19) can also
be used in a true filtering sense at time-steps k ≥ N + 1
once parameters are estimated at k = N .

The equations for the final smoothing pass are presented
next.

3.4 Refining State Estimates by Smoothing

Let
{
x−
k ,P

−
k

}
and

{
x+
k ,P

+
k

}
be the prior and poste-

rior mean-covariance pairs obtained from the filtering
pass (19), respectively. The constrained extended Kalman

smoother that computes smoothing posteriors
{
x̂k, P̂ k

}
at time steps k is given as follows:

Fig. 3. Solid lines show estimated pipe length (left) and
refrigerant mass (right) while shaded areas show 3σ
bounds. Dashed lines show reference parameter values
L∗ = 33 m and m∗ = 404.7 g.

Sk = P+
k F

⊤
k

(
P−

k+1

)−1
(22a)

P̂ k = P+
k − Sk

(
P−

k+1 − P̂ k+1

)
S⊤

k (22b)

x̂k = x+
k + Sk

(
x̂k+1 − x−

k+1

)
(22c)

x̂k, P̂ k ← PDFTrunc(x̂kP̂ k) (22d)

The equations above, except (22d), are the well-known
RTS smoother equations, and have been augmented with
(22d) to enforce the state constraints. The smoothing
process (22) represents a backward pass in time, as it must
be started at the end of the smoothing window at k = N .
The smoother is therefore initialized at x̂N = x+

N and

P̂N = P+
N , and the mean and covariance are updated

sequentially backwards in time up to the start of the
window at k = 1.

This proposed multi-pass constrained extended Kalman
smoother incorporating both state constraints (9) and
the manifold constraint (11) in the estimation process is
summarized in Algorithm 1 using equations developed in
this section, and abbreviated as MC-EKS.

4. NUMERICAL RESULTS

The numerical simulations are facilitated by a model ob-
tained by discretizing (2) with the time step of 0.1 s. The
reference or true pipe length is assumed to be L∗ = 33 m,
which is typical for the vapor compression cycle model
described in Section 2. The covarianceQk in (6) is assumed
to be a constant diagonal matrix whose variance entries
corresponding to pressure, specific enthalpy and temper-
ature are 7 · 106, 6 · 105, 2 · 10−2, respectively. Similarly,
noise variances in the measurement model (8) are set to
2.5·108 and 10−1 respectively for pressure and temperature
sensors, while assuming Rk to be a constant diagonal
matrix.

The control inputs and system parameters (except the
pipe length and refrigerant charge) are assumed to be
known during the simulation over a timespan of 100 s.
The compressor speed remains constant with time except
a single jump at t = 10 s from 50 Hz to 55 Hz. Similarly, the
outdoor ambient temperature is assumed to change from
305.15 K to 308.15 K at t = 20 s, while the expansion
valve position makes a jump at t = 40 s from 56.4% to
62.4%. The reference model’s state is initialized with equal
pressures 2.8 MPa and 1 MPa in outdoor and indoor HEX
volumes respectively, all pipe wall temperatures are set
to 308.15 K, while the specific enthalpy is initialized with
linear variation in each HEX from 500 kJ/kg at volumes
1 and 8 to 280 kJ/kg at volumes 4 and 5 in Fig. 1. The



Fig. 4. Left: Comparison of RMSE and 1σ bounds for
MC-EKS and C-EKS. Right: Comparison of RMSE
during initial transients. Both RMSE and 1σ are
normalized.2

sensor measurements to be used in state and parameter
estimation are generated by the perturbing the reference
model state trajectories using noise values sampled from
the corresponding sensor noise distributions.

The results for the filtering pass (14) are discussed first,
followed by overall results for Algorithm 1.

4.1 Parameter Estimation

The augmented filter (14) is used to estimate the unknown
system parameters along with the states of the cycle. The
filtering estimates are initialized as follows. The standard
deviations of the initial state estimates are assumed to
be 10% of their values of pressure and specific enthalpy,
and 1% of temperature of the reference model. The prior
mean state estimate is sampled from this distribution
and projected on the constraint set (9). The initial prior
distribution of the pipe length is assumed to be Gaussian
with mean 30 m and standard deviation 3 m. The process
variance Vk corresponding with pipe length dynamics is
varied from 10−2 to 10−5 as time progresses. While time-
varying Vk is not strictly necessary, doing so often yields
a better trade-off between consistency and convergence of
the estimate.

Fig. 3 shows the parameter estimates and the correspond-
ing 3σ bounds obtained using the filtering equations (14),
which constitute the first pass of Algorithm 1. The re-
frigerant mass is estimated using the augmented filter’s
posterior state estimate and the known map g(·) in (11),
and its variance is estimated using first-order Taylor series
expansion of g(·) similar to extended Kalman time-update
equations. As seen from Fig. 3, both estimated pipe length
and refrigerant mass eventually converge to the reference
values. At the end of 100 s in Fig. 3, the pipe length and
refrigerant mass have estimated values of L̂ = 32.86 m
and m̂ = 401.8 g, indicating an accuracy of better than
99%. These results show the efficacy of joint state and pa-
rameter estimation using augmented filter (14), and more
importantly, the efficiency of cycle-level data-assimilation
paradigm for accurate estimation of unknown refrigerant
mass in the system.

4.2 State Estimation

Estimated parameters from (14), i.e., L̂ = 32.86 m and
m̂ = 401.8 g, are then used for further refining state esti-
mates using (19) and (22) which constitute the remaining
two passes of Algorithm 1. The synthetic measurements
for the refrigerant mass are sampled from mk ∼ N (m̂, Zk),

Fig. 5. Refrigerant mass back-calculated from MC-EKS
and C-EKS state estimates.

where Zk = 6.3 · 10−5 is a constant whose value is equal
to the variance of estimated refrigerant mass at t = 100 s
in Fig. 3.

Fig. 4 shows the state-estimation accuracy in terms of
RMSE and the square-root of trace of error covariance
matrix, i.e. 1σ bound, which both have been normal-
ized. 2 The performance of the proposed MC-EKS ap-
proach which incorporates manifold constraint (11) via
synthetic measurements in addition to the pressure con-
straints (9), is compared with C-EKS algorithm which
only enforces the pressure constraints (9) without utilizing
additional information about the system represented by
the charge constraint (11). C-EKS follows steps similar to
Algorithm 1 with comparable computational cost, except
the original sensor measurements (8) are used during the
second filtering pass instead of augmented synthetic sensor
measurements (17).

As seen from Fig. 4, the MC-EKS method demonstrates
smaller estimation RMSE as it utilizes the additional
information represented by charge manifold (11), whereas
C-EKS completely disregards such information about the
system. Trace of the error covariance matrix quantified by
1σ bound in Fig. 4 are comparable for MC-EKS and C-
EKS, however, MC-EKS demonstrates a somewhat smaller
trace. The improved estimation accuracy of MC-EKS
is especially evident during the initial transients shown
in the right plot of Fig. 4, wherein the uncertainty is
typically large because the initial state of the system is
often unknown. Both MC-EKS and C-EKS demonstrate
similar accuracy as time progresses, which is expected
because both use the same converged parameter estimates
obtained from (14) and are expected to converge to similar
regions in state-space. However, improved accuracy of
MC-EKS during early transients can be leveraged not
only to advance data-driven or surrogate modeling efforts
which often rely on accurate state estimates, but also to
examine other system performance parameters, including
the heating/cooling capacity delivered to a space.

Fig. 5 shows the refrigerant mass back-calculated from
the state estimates obtained from MC-EKS and C-EKS.
Larger deviations of refrigerant mass obtained by C-EKS
from the reference value during initial transient is an
artifact of the larger associated state-estimation error seen
in Fig. 4. On the other hand, MC-EKS demonstrates

2 Algorithms are implemented in a normalized coordinate system
such that all state variable have comparable magnitudes of an
order 100 at a nominal point to mitigate some effects of the ill-
conditioned system dynamics. RMSE and trace are also calculated
in this normalized coordinate system.



relatively smaller deviation from the reference value as it
incorporates the charge constraint (11) and satisfies it to
a better degree than C-EKS, thus, yielding better state-
estimation accuracy as seen from Fig. 4. Refrigerant mass
obtained from MC-EKS can be seen to oscillate roughly
about the estimated charge m̂, because the synthetic
measurements are generated from a Gaussian with m̂ as
the mean. Variance of these oscillations can be reduced
by decreasing noise variance Zk in (16). Smaller values
of Zk will enforce the charge manifold constraint more
strictly, and will therefore yield even smaller estimation
RMSE if such a high-confidence (small Zk) estimate of m∗

is available.

5. CONCLUSION

In this paper, we developed a fixed-interval extended
Kalman smoother that incorporates physical constraints
during the joint state and parameter estimation of vapor
compression cycles. While certain inequality constraints
were strictly enforced to ensure that the computational
model functions correctly, partially-known equality con-
straints were incorporated via simulated synthetic mea-
surements to further improve the state estimation accu-
racy of the smoother. While computations of Jacobian
needed for the implementation of the smoother were fa-
cilitated by automatic differentiation capability of cy-
cle models, they may still pose computational challenges
for large-scale systems for which the proposed smoother
can be potentially adapted using Monte Carlo simulation
methodologies. Next steps for this work also include the
extension of these methods to higher fidelity models that
use moist air in multiple heat exchangers, and the perfor-
mance benchmarking using real-world datasets.
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