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Abstract
We present a method for designing and tuning controllers for the problem of swing-up and
stabilization of a Furuta pendulum. The method is based on suitable param- eterization of a
family of controllers and the application of Bayesian optimization to their tuning with minimal
interaction with the physical system. Unlike traditional controller design methodologies, the
method does not require the derivation of an exact physical model of the controlled plant,
thus saving significant design time and effort. Furthermore, the method has much more
favorable sample complexity than most policy optimization methods proposed in the field of
reinforcement learning.
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Model-Based Learning Controller Design for a Furuta Pendulum

Daniel Nikovski, William Yerazunis and Abraham Goldsmith†

Abstract— We present a method for designing and tuning
controllers for the problem of swing-up and stabilization of
a Furuta pendulum. The method is based on suitable param-
eterization of a family of controllers and the application of
Bayesian optimization to their tuning with minimal interaction
with the physical system. Unlike traditional controller design
methodologies, the method does not require the derivation of
an exact physical model of the controlled plant, thus saving
significant design time and effort. Furthermore, the method
has much more favorable sample complexity than most policy
optimization methods proposed in the field of reinforcement
learning.

I. INTRODUCTION

The field of automatic control relies on a wide variety of
controller design methodologies that address various aspects
of the controlled plant, such as non-linearity, under-actuation,
unstable open-loop dynamics, etc. For a large number of sim-
pler control applications, single-input single-output (SISO)
proportional-integral-derivative (PID) controllers are suffi-
cient for satisfactory performance and have been used widely
in practice. Although sometimes the gains of a PID controller
can be tuned without detailed knowledge of the dynamics of
the plant, having such knowledge is usually advantageous
in designing the controller. Other, more advanced controller
design methodologies such as Linear Quadratic Regulator
(LQR) design do require full knowledge of the system
dynamics in the form of a linear state space model. For many
systems, deriving such models in the needed state-space form
requires extensive physical and mathematical modeling that
is difficult, laborious, error-prone, and often resulting in only
imprecise approximations to the real system dynamics.

A substantially different approach to system modeling
and controller design consists of using machine learning
methods to identify suitable system models and/or devise
suitable control laws. The big advantage of this approach
are the potential savings in human time and effort for system
modeling and controller design. Recent major successes in
deep reinforcement learning (DRL) in the field of computer
games and other hard decision problems have opened the
possibility for autonomous controller design based on au-
tonomous self exploration and experimentation with the con-
trolled system. However, unlike computer games that allow
a very large number of experimental trials, physical system
are relatively slow to operate and only a limited number
of experimental trials are possible. Furthermore, completely
random exploration could be dangerous and harmful for
the physical system or its operators. Consequently, currently
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there is a significant need to develop learning controller
design methodologies that can operate on real systems within
reasonable time and in a safe manner [1].

One possibility, explored in this paper, is to use as much
as possible knowledge about the general structure of a
suitable controller, introduce a suitable parametric form for
this controller, and use suitable learning and optimization
tools to find good values for the parameters. This leverages
knowledge that is often readily available in the research
literature, without incurring the large cost of detailed physical
design for the concrete system to be controlled. Moreover,
the use of learning and optimization technologies can poten-
tially result in controllers whose performance is superior to
that of ones based on manually derived physical models. We
have been investigating this approach using a known difficult
benchmark problem in the field of control: the swing-up and
stabilization of a rotary pendulum.

II. FURUTA PENDULUM CONTROL

The rotary pendulum, also known as the Furuta pendulum
(FP) after the name of its inventor, has been widely used
to investigate advanced controller design [2]. It consists of
two links, an arm and a pendulum (Fig. 1), such that the
arm is actuated by means of applied torque τ around the
vertical axis Z, and the pendulum rotates freely in a plane
perpendicular to the arm, without any actuation. The state
of the FP x = [θ1, θ̇1, θ2, θ̇2]

T is described by the arm and
pendulum angles θ1 and θ2 and their angular velocities θ̇1
and θ̇2.

Swinging up the pendulum from its low stable equilibrium
position θ2 = 0 to the upper unstable equilibrium position
θ2 = π, stabilizing it there, and possibly also bringing the
arm of the pendulum to a desired angle θ1 = θd while
balancing the pendulum up, define a class of difficult control
problems. Basic PID control applied to each state variable
independently is not a suitable choice for swing-up and
stabilizing controllers, especially in under-actuated systems.
PID controllers, by their nature, always try to minimize the
control error. However, when the system has a limit τmax

on the torque applied to the arm, |τ | ≤ τmax, this strategy
will not succeed; instead, multiple swings of the pendulum
are necessary, during some of which the pendulum must be
moving away from its desired upright position. This behavior
cannot be implemented by means of a PID controller that
will actively oppose moving away from the target. Similarly,
when the pendulum is already in its upright position, and
the arm needs to move to a different desired angle while
balancing the pendulum, the right motion is to first move
the arm away from that angle, in order to tilt the pendulum
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Fig. 1. Furuta pendulum.

in the right way, thus briefly increasing the control error. This
is a behavior that a decoupled PID controller consisting of
two (or four) SISO controllers, for the arm and pendulum
respectively (plus possibly their angular velocities), would
not exhibit.

Certainly, other well established control design methods
such as linear quadratic regulator (LQR) design can be
employed to solve the stabilization problem. In fact, the
original paper that introduced the FP did describe an LQR
stabilizing controller based on a physical model derived by
means of Lagrangian mechanics and carefully calibrated
to match the real experimental system [2]. As pointed
out above, the disadvantage of this methodology is in the
laborious derivation and calibration of the physical model.
In later work, a class of energy manipulating controllers
was proposed for swinging up torque-limited pendulums [3].
Their operation, too, depends critically on knowing precisely
the inertial properties of the system in order to avoid failing
to reach or overshooting the unstable upright equilibrium of
the pendulum.

Learning-based controller design has been applied to the
FP, too. Although applying model-free DRL to learning an
entire controller for both the swing-up and stabilization parts
of the problem is possible in principle, at least in simulation
and similarly to how DRL has been widely used for cart-pole
balancing, the required number of trials is much too high
for practical use on a real system. Using recurrent neural
networks with RL for the design of the stabilizing controller
only has been described in [4], in conjunction with a more
traditional energy-manipulation swing-up controller. Model-
based DRL is a much more viable approach, and has recently
been applied successfully to FP control in conjunction with a
method for learning accurate models of the system dynamics
by means of Gaussian processes [5]. The success of this
approach, though, depends critically on the accuracy of the

learned dynamics model, as all controller tuning is done by
means of the learned model.

III. LEARNING OF PARAMETERIZED CONTROLLERS

A logical and attractive middle ground between full
physics-based controller design and full learning-based one
is the approach based on identifying the general structure of
the control law from physical principles and past controller
design practice, parameterizing it suitably to define a family
of possible controllers, and tuning these parameters by means
of self-experimentation with the real system, much like other
learning controllers do. This kind of controller remains es-
sentially a learning controller, similar to controllers identified
by means of DRL. The difference is that this controller has
a very strong inductive bias that allows it to learn quickly.
Arguably, humans have various strong inductive biases in
terms of the properties of the world surrounding them, such
as continuity and persistence of objects’ form and mass,
regularity of motion, continuity of visual fields, etc., that help
them learn new concepts and skills very quickly, from only
few examples or experimental trials. In terms of controller
design, similar strong inductive bias can be injected into the
learning process by defining a suitable parametric form of
the controller.

A. Controller Parameterization

For the FP and similar applications, the wealth of the
research literature suggests suitable parametric forms. Suc-
cessful applications of LQR design to FP stabilization (such
as [2]) showed that a full-state feedback controller of the
form τ = −Kx can be constructed by choosing suitable
feedback gains K = [k1, k2, k3, k4]. Similarly, an energy
manipulation swing-up controller of the form used in [3]
and [4] can take the form

τ =

{
−τ0θ̇2 cos θ2, if |θ2| ≤ ϵ

0, otherwise,

for a suitably chosen energy-increasing torque 0 < τ0 ≤
τmax acting only in a neighborhood of size ϵ1 around the
lower stable equilibrium θ2 = 0.

As the control scheme involves two controllers, one for
swing-up and another for stabilization, it is necessary to also
include a decision rule that specifies which controller will
be active at a given time. Because the feedback gains K
match the linearization of the system’s nonlinear dynamics
around the upper unstable equilibrium θ2 = π, a stabilization
controller with these gains is effective only in a neighborhood
of size ϵ2 of the pendulum angle around this unstable equilib-
rium. Thus, the stabilization controller can be activated when
the pendulum angle enters the interval θ2 ∈ [π− ϵ2, π+ ϵ2].
Similar to the other parameter values, ϵ2 can be subject to
optimization, too.

B. Parameter Tuning by Means of Bayesian Optimization

Once the parameter vector p = [k1, k2, k3, k4, τ0, ϵ1, ϵ2]
has been defined, the question becomes how to find optimal
values for the parameters in a minimal time and with



minimal interaction with the physical system. A suitable
class of optimization methods with increasing popularity are
Bayesian optimization (BO) algorithms [6]. BO can optimize
a performance measure without having an analytical objec-
tive function that describes how this performance measure
depends on the decision variables (the parameter vector
p, in this case). This setting matches well the controller
design for the FP: although it is relatively easy to specify a
performance measure to evaluate the success of a particular
controller, it is not easy to describe the dependence of
this performance measure on the controller parameters. A
possible performance measure could be defined easily in
terms of the cumulative controller error over a period T that
is longer than the time sufficient for successful swing-up of
the pendulum:

C(p) =

n∑
k=1

(θ2[k]− π)2 + (θ1[k]− θd)
2, (1)

where n = T/∆t is the number of control steps until time
T and ∆t is the control time step. The second term can be
omitted, if the angle of the arm is not important, for an easier
version of the swing-up and stabilization problem.

In addition to the objective function defined in Eq. 1,
Bayesian optimization algorithms require suitable bounds for
the decision variables in order to be effective in finding
their optimal values. Again, the research literature suggests
that the gains for the arm position and velocity should be
negative, corresponding to positive feedback on the arm error,
thus pushing it away from the target angle θd. Conversely,
the gains for the pendulum’s position and velocity should
be positive, resulting in negative feedback on the pendulum
error, thus correcting deviations of the pendulum from the
upright equilibrium. (The relative magnitude of the gains of
the two loops, as well as the state variables, will determine
which of the feedback loops will prevail in moving the arm in
one direction or another.) This understanding suggests what
the boundaries of the box constraints on the gains should
be. Similarly, the neighborhood limits ϵ1 and ϵ2 can be
specified to be within the interval [0, π], but in practice, the
neighborhood in which the stabilization controller is effective
has usually been reported to be within π/10 radians from the
unstable equilibrium (e.g. [4]), so this value can be used as
the upper limit for ϵ2.

IV. EXPERIMENTAL SETUP

In order to verify the effectiveness of the proposed method,
we have built a physical set-up of an FP, shown in Fig. 2,
as well as a simulation model corresponding to it shown in
Fig. 3. The physical model is equipped with a servo motor
MELFA HG-KR23K driven by a servo amplifier MELFA
MR-J4-20A1-RJ in torque control mode. The pendulum is
of length 600mm and weight 150g, and is suspended from
a pivot point on the arm located 290mm from the arm’s axis
of rotation.

The simulation model has been implemented in the physics
engine MuJoCo that has been popular in research on learning

Fig. 2. A physical FP implemented with a servo motor driven in direct
torque-control mode.

Fig. 3. A model created in the physics engine MuJoCo. It consists of
bodies whose geometric and inertial parameters, as well as their relative
geometric positions, match those of the main components of the real FP:
the pendulum, the axle of the arm, the ball bearings implementing the joint
of the pendulum, the encoder of the pendulum axis and its coupler to the
axis.

controllers [7]. Note that the simulation model defines only
the rigid bodies comprising the two links of the pendulum,
the bearings implementing the pendulum joint, and the
encoder of the pendulum that is mounted on the arm, in
terms of their geometric properties, relative positions to each
other, and their masses. The model is defined in an XML file.
This kind of modeling is much faster and easier to do than
deriving full equations of motion from first principles.

V. EXPERIMENTAL VERIFICATION

So far, we have been successful in applying the proposed
method in simulation, on the MuJoCo model. Using the
bayesian-optimization package in Python [8], we were able
to successfully discover values for the parameter vector that
can bring up the FP from its resting stable position, with
initial position of the arm at θ1 = 0, and identical desired
position in the upper unstable equilibrium, θd = 0. That is,
the goal was to swing up the pendulum so that it is balanced
exactly above where it started from.

The Bayesian optimization algorithm was able to discover
good values for the stabilizer gains K and swing-up torque τ0
if we set the two neighborhoods to reasonable values, namely
ϵ1 = 0.2rad and ϵ2 = 0.1rad. For these neighborhoods, the



BO routine with 1, 000 random initial points followed by 10
improvement iterations was able to discover the following
parameters resulting in successful swing-up and stabilization
of both the arm and the pendulum at their desired angles.
The discovered pushing torque was τ0 = 10.97Nm and the
feedback gains were K = [−2.548,−1.485, 25.79, 3.358].
Fig. 4 shows that the discovered solution used two swings
of the pendulum. When there are no limits on the torque,
the time-optimal solution that would minimize the cost C(p)
consists of a single swing, which would be the global
minimum of the optimization problem. In our case, the
algorithm discovered the second-best local minimum that
used two swings.

VI. CONCLUSION AND FUTURE WORK

We presented a method for designing controllers based
on parameterizing a controller with suitable structure by a
vector of parameters and using Bayesian optimization to find
good values for these parameters. In the future, we plan
to apply the same approach to the real physical system.
Of significant interest is whether good solutions can be
discovered in simulation and optimization on the real system
hot-started with them on the real system. This could be
done by defining relatively tight box constraints for the
parameters for Bayesian optimization on the real system,
centered around the solution found on the simulated system.
Another approach is to optimize controller parameters by
introducing multiple deliberate variations in the model used
in simulation in order to obtain a robust policy, following
the practice of domain randomization.

A complementary technique would be to use initial runs
on the real system to calibrate the inertial and friction pa-
rameters of the simulated one. Bayesian optimization can be
helpful for this task, too, with a cost function that reflects the
discrepancy between the behavior of the real and simulated
systems for identical inputs.

Other methods for finding suitable values for the pa-
rameters can be explored, too. Of particular relevance are
policy gradient methods that have been shown to operate
successfully on similar parameterized controllers for other
robotic applications [1]. A combination of using a DRL
method with high sample complexity in simulation and
a low-complexity optimization method on the real system
might be possible, too, if the policy discovered by the DRL
method can be distilled into a controller with few parameters
whose values can be tuned on the real system.
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