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Abstract
The increasing demand for video streaming services is the key driver of modern wireless
and mobile commu- nications. Although many studies have designed digital-based deliv-
ery schemes to send video contents over wireless and mobile networks, significant quality
degradation, known as cliff and leveling effects, often occurs owing to fluctuating channel
characteristics. In this paper, we present a comprehensive summary of soft delivery, which
is a new paradigm for wireless and mobile video streaming and discuss the future directions
of soft delivery. Existing studies found that introducing multi-dimensional cosine transform,
human vision system, and graph signal processing can make soft delivery schemes more ef-
fective in untethered immersive experiences, including virtual reality and volumetric media,
than digital-based delivery schemes. In addition, this study finds that soft delivery has the
potential to be a new standard to deliver deep neural network models and tactile information
over wireless and mobile networks.
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1 INTRODUCTION
Video streaming over wireless and mobile networks is one of the major applications in wireless
environments. According to Cisco Visual Networking Index studies, approximately four-fifths
(82%) of the world’s mobile data traffic will be video content by 2022 [1]. The explosive growth of
data traffic, especially video traffic, poses a huge challenge to wireless and mobile networks. In
recent years, immersive content, such as virtual reality (VR), augmented reality (AR), and mixed
reality (MR), have shown very good potential to be the next important applications for networks.
The growth of such immersive applications is rapidly increasing together with the development of
fifth generation (5G) technology and smart wearable devices, which can enable technology for all
extended reality (XR) applications.
In general, wireless video streaming systems transmit images and video signals with different

channel characteristics to single or multiple users. For high-quality video streaming applications,
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the main challenge is the difficulty in fully utilizing each user’s channel capacity and providing
each user with the best video quality possible under his/her channel conditions. Solving this
challenge will provide users with an improved quality of experience (QoE). To address this challenge,
conventional streaming systems, which consist of video coding and transmission technologies,
have been proposed based on digital-based solutions. For video coding, the H.265/High-Efficiency
Video Coding (HEVC) standard [2], which has been standardized by the Joint Collaborative Team
on Video Coding (JCT-VC), can be used to encode VR/360-degree videos. As the successor of HEVC,
the future video coding standard, H.266/Versatile Video Coding (VVC), has been developed by the
Joint Video Experts Team (JVET) The VVC standard takes camera-view video, high dynamic range
video, and VR/360-degree video into account. In addition, video- and geometry-based point cloud
coding [3, 4] have been standardized by the Motion Picture Experts Group (MPEG) for volumetric
video encoding and decoding. For video transmission, the source bits are channel-coded with time
interleaving to exhibit robustness against a certain level of channel errors. The channel-coded bits
are then mapped into the transmit data symbols corresponding to arbitrary modulation schemes,
such as binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), or quadrature
amplitude modulation (QAM). To choose an appropriate source and channel coding rate according
to the user’s channel condition, the channel statistics are generally required to be known at the time
of source and channel coding. Once both the source and channel coding processes are completed, the
conventional systems work optimally only for a specific channel condition and have performance
limitations in noisy time-varying channels [5, 6].

If the observed channel quality, i.e., the channel signal-to-noise ratio (SNR), falls below a threshold,
the decoding process tends to break down completely. This phenomenon is called the cliff effect [7].
In contrast, if the observed channel quality increases beyond the threshold, it does not improve
the performance unless an adaptive rate control of the source and channel coding is performed in
real-time according to the rapid fading channels. This phenomenon is known as the leveling effect.

Thus, accurate channel estimation and real-time rate control of the source and channel coding are
desired for conventional streaming systems. However, the channel conditions of wireless and mobile
networks may vary drastically and unpredictably, resulting in imperfect channel estimation and
rate control. Conventional streaming systems tend to utilize the channel capacity conservatively to
prevent cliff and leveling effects, considering the fact that rate control may be inaccurate. Scalable
Video Coding (SVC) [8] and Dynamic Adaptive Streaming over HTTP (DASH) [9, 10] are typical
standardized systems that utilize channel capacity without cliff and leveling effects. SVC encodes
the video frames into multiple layers to progressively improve the video quality according to the
number of received layers. DASH encodes video frames at multiple quality levels, and stores all
encoded video frames on the server. The main difference between SVC and DASH is the sender-
dependent and receiver-dependent schemes. SVC determines how many layers to send based on
the estimated channel quality. DASH retrieves the appropriate quality of video frames from the
server based on the estimated channel quality. However, the conservative strategy in SVC and
DASH systems under imperfect channel estimation and rate control will cause quality degradation.

A new paradigm of wireless video delivery, namely, soft delivery [11–13], has been proposed to
fully utilize the instantaneous channel capacity without cliff and leveling effects. In contrast to SVC
and DASH systems, soft delivery does not require channel estimation to utilize the instantaneous
channel capacity. It is essentially a scheme with “lossless compression and lossy transmission.”
The compression stage is solely a transform to decorrelate the image and video signals into
frequency-domain coefficients, leaving out the conventional quantization and entropy coding. The
transmission stage skips digital-based channel coding. Instead, it scales each transform coefficient
individually and modulates it directly to a dense constellation for transmission inspired by the
advantage of analog transmissionwith linear coding [5, 14, 15]. Here, the scaling operation serves the
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Fig. 1. Taxonomy of the studies on soft delivery schemes.

purposes of both power allocation and unequal signal protection against channel noises and fading
effects to maximize the reconstruction quality. At the receiver end, the image and video signals
are reconstructed by demodulating the received signals and inverting the scaling and transform
operations. The soft delivery scheme was shown to not only provide a graceful performance
transition in a wide channel SNR range but also achieve competitive performance compared with
the conventional digital-based delivery schemes.
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1.1 Contributions
This work provides a comprehensive survey of soft delivery schemes, including an overview on
existing techniques, extension for immersive experiences, and future research directions. Some
existing studies have focused on soft delivery schemes, which are shown in Fig. 1, with a brief
description of the related topics and key techniques. Although there are some survey papers [9, 16–
20] related to the video delivery over wireless channels, all of the survey papers deal with the digital-
based approaches. To the best of our knowledge, this survey is the first to introduce methodologies
and approaches for soft and hybrid digital-analog delivery to transmit high-quality image and video
signals via unstable and diverse wireless and mobile channel environments. The main contributions
of this study are summarized as follows:

• We present an overview of the conventional digital-based and soft delivery schemes, as well
as the benefits of the soft delivery schemes.

• The existing soft delivery techniques, such as energy compaction, power allocation, bandwidth
utilization, overhead reduction, and packet loss resilience, are surveyed. In this context, the
abstraction and key contributions of these techniques are reviewed and summarized.

• We present the extensions of the soft delivery for immersive experiences, which are mainly
contributed by our prior research. We summarize the key ideas of the extensions and benefits
in contrast to the digital-based delivery schemes.

• In addition, we review the future research directions of the soft delivery: hybrid digital-analog
delivery, AI-empowered soft delivery, soft delivery for AI, and tactile Internet. We carry out
some evaluations to discuss the various directions.

This survey identified that soft delivery works particularly well in untethered immersive experiences
including free viewpoint video, VR, and point cloud. Soft delivery yields better reconstruction
quality compared with HEVC-based delivery schemes by integrating the energy compaction, power
allocation, and overhead reduction techniques discussed in the existing studies. In addition, soft
delivery can realize high-quality and adaptive delivery of deep neural network (DNN) models
and tactile information over wireless channels. Such delivery will help to realize future services
including federated learning and untethered XR applications.

1.2 Survey Structure
The remainder of this paper is organized as follows:

• Section 2 describes an overview of conventional digital-based delivery schemes and their
issues, such as the cliff, leveling, and staircase effects.

• Section 3 presents the basic principles of the pioneering work on soft delivery to solve the
aforementioned effects in wireless and mobile video streaming applications.

• Section 4 presents a review of the existing techniques on soft delivery. We classify these tech-
niques into energy compaction, power allocation, bandwidth utilization, packet loss resilience,
overhead reduction, extension for immersive experiences, and discuss their implementation,
as well as their contributions.

• Section 5 suggests the future directions of the soft delivery approach. In addition to image
and video signals, the soft delivery approach has a potential to realize high-quality DNN
model and tactile delivery over wireless channels.

• Section 6 concludes the paper.
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Fig. 2. Framework of the conventional digital-based delivery and soft delivery schemes.

2 CONVENTIONAL DIGITAL-BASED DELIVERY
2.1 Overview
One of the major issues in wireless video delivery is sending high-quality videos within the consid-
erably limited capacity of wireless links. For this purpose, standardized digital video compression is
carried out for video frames in conventional video delivery schemes [21–23], as shown in Fig. 2 (a)
to remove redundancy among video frames. In particular, H.264/Advanced Video Coding (AVC) [24],
H.265/HEVC, and H.266/VCC standards are typical video coding standards for generating a com-
pressed bitstream from video frames. In such video encoders, pixel values in each video frame
are divided into blocks and transformed into frequency domain coefficients by using the discrete
cosine transform (DCT) or discrete sine transform (DST), and then non-uniformly quantizing the
coefficients according to a quantization parameter (QP). A large QP indicates a larger quantization
step, leading to a smaller bit rate. Finally, the quantized coefficients are compressed by an entropy
coder, which removes statistical redundancy in the coefficients. Variable length coding (VLC) is
widely deployed for entropy coding because of its efficiency and simplicity.

After passing through the digital video compression, the bitstream is then passed to the wireless
transmission system in sequence. There are typically two ways to deliver the bitstream: Internet
Protocol (IP) and non-IP networks. For the IP networks, the sender uses DASH [9, 10] or Realtime
Transport Protocol (RTP) [25] for the bitstream. Although the IP-based protocols can deliver the
content via the deployed IP networks, they cause transmission delays to packetize and de-packetize
the bitstream [26]. For the non-IP networks, the sender passes the bitstream to the physical layer
for transmissions. The existing studies related to the non-IP network schemes reported that such
schemes reduce the delay compared with the IP-based schemes, and thus the non-IP schemes are
applicable for low-delay applications including untethered XR experiences and cooperative and
competitive gaming.

This survey mainly discusses the content delivery over non-IP networks. In such non-IP schemes,
channel coding is first used for the bitstream to protect against channel errors. For example, binary
convolutional codes and low-density parity-checks are widely used as forward error correction
in Wi-Fi systems. The coded bitstream is then mapped onto in-phase and quadrature (I and Q)
components using digital modulation formats such, as QPSK and m-ary QAM. In both wireless
and mobile networks, a combination of modulation formats and different channel coding rates, for
example, 1/2 and 3/4, is defined in the modulation and coding scheme (MCS). According to the
measured wireless channel SNRs, the sender adapts its MCS value to maximize the link data rate.
At the receiver end, bit errors may occur in channel-coded bits owing to effective noise and/or
fading effects. The receiver then tries to reconstruct video frames from the received bits using
inverse procedures, i.e., demodulation, channel decoding, and video decoding.
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Table 1. Critical issues regarding video quality in wireless and mobile video streaming

Phenomenon Effect on
video quality Cause Solution in soft delivery

Cliff effect Sudden degradation All-or-nothing behavior in
entropy and channel codings

Skip entropy and channel codings
to prevent all-or-nothing behavior

Leveling effect Constant irrespective of
channel quality

Unrecoverable quantization
error in video coding

Skip quantization and adopt
pseudo-analog modulation for

recoverable errors at the
receiver end

Staircase effect Step function of
channel quality

All-or-nothing behavior and
quantization error in

layered coding

Skip hierarchical operations and
adopt pseudo-analog modulation for

linear video quality

(a) Cliff and leveling effects in
digital-based schemes

(b) Staircase effect in layered cod-
ing with hierarchical modulation
schemes

(c) Soft delivery scheme

Fig. 3. Video quality of the conventional digital-based schemes and SoftCast scheme via wireless networks [11]:
(a) Cliff and leveling effects in H.264/AVC over 802.11 under different MCSs. (b) Staircase effect in two-layered
video coding and three-layered video coding shown in red and blue, respectively. For reference, the dashed
lines are the three-equivalent single-layer H.264/AVC videos. (c) Performance of SoftCast versus single-layer
H.264/AVC.

2.2 Critical Issues onQuality
If the measured wireless channel quality is stable during video transmission, conventional digital-
based schemes can provide high-quality video frames for users. However, the channel quality of
each user fluctuates over time owing to a combination of user mobility, multipath propagation, and
obstacle shadow. Table 1 lists three critical issues regarding the video quality of the digital-based
schemes because of the channel quality fluctuations: cliff, leveling, and staircase effects.

2.2.1 Cliff Effect. Digitally encoded bits are known to be susceptible to errors during wireless
transmission. Because entropy coding schemes have an all-or-nothing behavior, even a single bit
error can cause the loss of entire data [27]. As mentioned earlier, channel coding schemes are
adopted to correct burst and random bit errors. However, they generally exhibit an all-or-nothing
behavior for error correction. When the instantaneous channel quality, i.e., the SNR, falls below a
certain threshold, possible errors that occur in the bitstream during wireless communications will
disable video decoding.

A collapsed signal reconstruction causes a cliff effect. The cliff effect is a phenomenon whereby
the quality of the received information abruptly drops as soon as the channel quality falls below
the threshold, as shown in Fig. 3 (a). For example, the video quality of the BPSK modulation format
with 1/2-rate channel coding drops below the wireless channel SNR of 4 dB. In modern network
environments (e.g., content delivery, mobile, and wireless networks), the cliff effect becomes a major
impediment when video frames are transmitted over diverse channel conditions to heterogeneous
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users. In this case, users whose channel quality is below the critical point receive unwatchable
video frames.

Some solutions have addressed the cliff effect associated exclusively with channel coding, such
as hybrid automatic repeat request, and rateless coding schemes [28–32]. They adapt the number
of transmissions to changing channel conditions for error prevention. However, these schemes are
not well suited for streaming multiple users under diverse channel conditions. In addition, they do
not reduce the quantization error at the video encoder and thus, the leveling effect still occurs in
video quality.

2.2.2 Leveling Effect. Once the channel quality surpasses the threshold, the video quality remains
constant as shown in Fig. 3 (a). As mentioned earlier, the cliff effect is caused when the receiver SNR
is below 4 dB in the BPSK modulation format with 1/2-rate channel coding, whereas the channel
gain does not reflect on the video quality above the wireless channel SNR of 4 dB. Digital-based
schemes determine the parameters of the video coding and wireless transmission parts based on
the channel estimation. If the instantaneous channel quality is better than the estimated one, no
additional gain can be obtained because the distortion of the video coding cannot be reconstructed
for each user.

2.2.3 Staircase Effect. To mitigate the cliff and leveling effects, some layered coding schemes,
referred to as schemes with SVC [8] with a combination of hierarchical modulation (HM) [33], have
been proposed for wireless and mobile video streaming [34, 35]. These layered coding schemes
encode video frames into one base layer (BL) and several enhancement layers (ELs). The BL is used
to ensure that all the users in the target channel SNR range can receive the baseline quality of video
frames, whereas the ELs are used to enhance the video quality of the users in high-channel SNRs.
Each SVC layer is then mapped onto the corresponding HM layer. Notably, HM provides unequal
error protection to the transmitted video frames according to their relative importance. However,
SVC with HM cannot completely remove the cliff effect; it only divides one big cliff into multiple
stairs according to the number of layers, as shown in Fig. 3 (b). In addition, because the assigned
transmission power to each layer is lower than that of the single-layer coding schemes, the cliff
shifts to higher wireless channel SNRs.

3 SOFTCAST: A PIONEERWORK ON SOFT DELIVERY
3.1 Overview
To prevent the cliff, leveling, and staircase effects in wireless video delivery, a pioneer soft delivery
work, namely, SoftCast was proposed in [11–13]. The block diagram of SoftCast is illustrated in
Fig. 2 (b). The design of SoftCast is based on a simple principle that ensures that the transmitted
signal samples are linearly related to the original pixel values. This principle naturally enables
a sender to satisfy multiple receivers with diverse channel qualities, as well as a single receiver,
where different packets experience different channel qualities.

The sender first takes a group of pictures (GoP) and uses a full-frame 3D-DCT as the decorrelation
transform. The DCT frames are then divided into 𝑁 small rectangular blocks of transformed
coefficients called chunks. The coefficients in each chunk are then scaled to match the transmission
power constraints. Specifically, the scaling coefficients are chosen to minimize the reconstruction
mean square error (MSE). A Walsh–Hadamard transform (WHT) is then applied to the scaled
chunks for power normalization across the chunks to provide packet loss resilience. This process
transforms the chunks into slices. Each slice is a linear combination of all scaled chunks. Finally,
the coefficients in the slices are directly mapped to the I and Q components in a pseudo-analog
manner for transmission. Here, channel coding operations are skipped for the coefficients.
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Fig. 4. Mapping coded video to I/Q components of the transmitted signal. (a) Traditional 16-QAM maps a
bit sequence to the complex number corresponding to the point labeled with that sequence. (b) By contrast,
PHY of SoftCast treats pairs of coded values as the real and imaginary parts of a complex number. (c) We
find the modulation of SoftCast follows a Lorentzian distribution.

Figs. 4 (a) and (b) show the conventional digital-based modulation, i.e., 16-QAM, and pseudo-
analog modulation proposed in SoftCast. Conventional modulation modulates channel-coded bits
to produce real-value digital samples that are transmitted to the channel. For example, 16-QAM
modulation takes sequences of four bits and maps each sequence to a complex I/Q number, as
shown in Fig. 4 (a). After modulation, the wireless physical layer (PHY) of the sender transmits
the mapped complex numbers to the receiver. Because of the broadcast nature of the wireless
medium, multiple receivers hear the transmitted samples but with different noise levels. A receiver
with a low channel SNR can distinguish only the quadrant of the transmitted sample, and hence,
can decode only the two bits of the transmitted sample. In this case, these bit errors may cause a
collapsed signal reconstruction during digital video decoding.
In contrast to the existing modulation design, SoftCast outputs the real values of the DCT

coefficients that are already coded for error protection. The pseudo-analog modulation in Fig. 4 (b)
directly maps pairs of the scaled DCT coefficients to the I and Q of the digital signal samples.
Fig. 4 (c) shows the distribution of the analog-modulated symbols of the test video sequence of
“Akiyo” with the resolution of common intermediate format (CIF) [37]. As shown in Fig. 4 (c), we find
the pseudo-analog modulation of the DCT coefficients follows a bivariate Lorentzian distribution
as follows:

𝑓 (𝑥,𝑦) = 𝑎
1

𝜋2
(
𝑏2 + 𝑦2 + 𝑥2 + 𝑥2𝑦2

𝑏2

) , (1)

where 𝑎 and 𝑏 represent the fitting parameters. From least-squares fitting based on the distribution
of pseudo-analog symbols of the test video sequence and the bivariate Lorentzian function, the
best fitting parameters are 𝑎 of 0.001 and 𝑏 of 0.24. As mentioned earlier, multiple receivers
hear the transmitted samples under different channel SNRs. Although the transmitted samples
are distorted according to their SNR, the receiver regards the received samples as scaled DCT
coefficients. The sender does not need to estimate the channel condition, and the noise level in
the received samples faithfully reflects the instantaneous channel condition [38], and thus pseudo-
analog modulation ensures that the received video quality is proportional to the instantaneous
channel quality. Consequently, this process avoids all cliff, leveling, and staircase effects.

In parallel, SoftCast sends an amount of data, referred to as metadata, for signal reconstruction.
These metadata consist of the mean and variance of each transmitted chunk as well as a bitmap.
The mean of each chunk is used to obtain the chunks’ approximate zero-mean distributions by
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subtracting the mean of all pixels in each chunk [39]. The variance of each chunk is used to find
the per-chunk scaling factors that minimize the reconstruction error. The bitmap indicates the
positions of the discarded chunks into the GoP. When the available channel bandwidth for SoftCast
is less than the required bandwidth, SoftCast discards chunks with less energy. Specifically, when
the available and required bandwidths for SoftCast are𝑀 chunks and 𝑁 (> 𝑀) chunks, respectively,
SoftCast discards lower-energy𝑀 −𝑁 chunks to meet the bandwidth requirement. On the receiver
side, these discarded chunks are replaced by null values. The discarded chunks are registered as
a bitmap and then compressed using run-length encoding. Metadata are strongly protected and
transmitted in a robust way (e.g., BPSK modulation format with a low-rate channel code) to ensure
correct delivery and decoding.
At the receiver side, a minimum MSE (MMSE) decoder is used to estimate the content of the

chunks to counteract channel noise. The MMSE provides a high-quality estimate of the DCT
coefficients by leveraging the knowledge of the statistics of the DCT coefficients, i.e., chunk
variance, as well as the statistics of the channel noise. Using the metadata, the denoised chunks are
properly reassembled and undergo an inverse 3D-DCT, thereby providing the corresponding GoP.
In principle, the above design and performance do not affect the content types, i.e., on-demand or
live content. Regardless of the content type, SoftCast provides adaptive video delivery based on the
channel quality between the sender and each receiver.
Table 2 shows the strengths, limitations, and use cases of the digital-based and soft delivery

schemes. The digital-based delivery schemes are well suited for point-to-point communications
over time-invariant channels. In addition, the buffering cost is relatively low compared to the soft
delivery schemes because the required storage size for the compressed bitstream is small. Soft
delivery schemes perform well in time-varying and diverse channels. In addition, soft delivery
schemes are low delay because they do not need to perform an expensive motion search for
compression, making soft delivery schemes preferable for delay-sensitive applications. On the
other hand, they require a high cost for modulation and demodulation in the PHY layer because
modifying the PHY layer in both sender and receiver is required for the pseudo-analog modulation.
In summary, the typical use cases of digital-based delivery schemes are streaming services

over wide area networks and HTTP adaptive streaming. In contrast, soft delivery schemes are
well-suited for delay-sensitive applications such as video broadcasting, vehicle-to-everything (V2X)
communication, and real-time video surveillance.

3.2 Details of Scaling and Inverse Scaling Operations
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Table 2. Strengths, limitations, and use cases for digital-based and soft delivery schemes

Schemes Channel types Communication
types Latency Buffering

cost
Modem
cost Use cases

Digital-based
delivery Time-invariant Point-to-point High Low Low

Video streaming over
wide-area networks,

HTTP adaptive streaming

Soft
delivery Time-variant Multicast

Broadcast Low High High
Broadcasting,

V2X communication,
Video surveillance

In SoftCast, a full-frame 3D-DCT is carried out for the video frames in each GoP to compact the
energy of the video signals, and the resulting DCT coefficients are transmitted to the receivers
using pseudo-analog modulation. Here, the transmitted analog-modulated symbols are degraded
over wireless channels at each receiver. SoftCast should minimize the MSE between the received
and transmitted DCT coefficients under the wireless channel SNR to reconstruct the highest-quality
video frames at each receiver. For this purpose, SoftCast must design MSE-minimized power
allocation and denoising filters, i.e., scaling and inverse scaling operations, for analog-modulated
symbols. Figure 5 illustrates the procedures for obtaining the reconstructed DCT coefficients at the
receiver end. SoftCast implements chunk-wise power allocation and filter operations according to
the statistics of the chunks and channel conditions. Let 𝑥𝑖 denote the 𝑖th analog-modulated symbol.
Each analog-modulated symbol is scaled by 𝑔𝑖 for noise reduction:

𝑥𝑖 = 𝑔𝑖 · 𝑠𝑖 . (2)

Here, 𝑠𝑖 is the 𝑖th DCT coefficient, and 𝑔𝑖 is the scale factor for the coefficient power allocation. The
sender performs optimal power control for 𝑔𝑖 to achieve the highest video quality. Specifically, the
best 𝑔𝑖 is obtained by minimizing the MSE under the power constraint with the total power budget
𝑃 as follows:

min MSE = E
[
(𝑥𝑖 − 𝑥𝑖 )2] = 𝑁∑

𝑖

𝜎2𝜆𝑖

𝑔2
𝑖
𝜆𝑖 + 𝜎2 (3)

s.t.
1
𝑁

𝑁∑
𝑖

𝑔2
𝑖 𝜆𝑖 = 𝑃,

where E[·] denotes the expectation, 𝑥𝑖 is an estimate of the transmitted symbol, 𝜆𝑖 is the power of
the 𝑖th DCT coefficient, 𝑁 is the number of DCT coefficients, and 𝜎2 is the receiver noise variance.
The near-optimal solution is expressed as:

𝑔𝑖 = 𝜆
−1/4
𝑖

√
𝑃∑
𝑗 𝜆 𝑗

. (4)

After transmission over the wireless channel, each symbol at the receiver end can be modeled
as 𝑦𝑖 = 𝑥𝑖 + 𝑛𝑖 , where 𝑦𝑖 is the 𝑖th received symbol and 𝑛𝑖 is an effective noise with a variance
of 𝜎2. The receiver extracts DCT coefficients from the I and Q components and reconstructs the
coefficients using the MMSE filter [11] as follows:

𝑠𝑖 =
𝑔𝑖𝜆

2
𝑖

𝑔2
𝑖
𝜆2
𝑖
+ 𝜎2 · 𝑦𝑖 . (5)

The receiver then obtains the corresponding video sequence using the inverse 3D-DCT for the
filter output 𝑠𝑖 .
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Table 3. Brief introduction to typical energy compaction techniques for soft delivery schemes

Techniques Features Pros Cons
2D-DCT/
2D-DWT

Take DCT/DWT operation for
each video frame Reduce spatial redundancy No temporal filter

3D-DCT Take DCT operation
for each GoP

Reduce both spatial and
temporal redundancy Weak temporal filter

MCTF Take wavelet transform for
temporal filtering

Further reduce temporal
redundancy

Computational cost for
temporal filtering

Component
protection

Send lower frequency
coefficients as metadata

Distribute power to higher
frequency coefficients

Communication overhead
Significant degradation
due to metadata error

Layered
operation

Divide video frames into BL and
ELs and send them in digital and
pseudo-analog ways, respectively

Provide baseline quality
via the BL while

enhancing the quality
via the ELs

ELs will be meaningless
if bit errors occur in BL

Coset
coding

Partition coefficients into several cosets
and transmit the coset residual codes

Bring lower entropy
according to a coset step

Accuracy of coset step and
side information is crucial

for reconstruction

4 TECHNICAL SOLUTIONS FOR SOFT DELIVERY
Because SoftCast skips nonlinear digital-based encoding and decoding operations corresponding
to motion estimation, quantization, and entropy coding, it realizes a linear quality improvement
associated with channel quality improvement. In particular, SoftCast has shown outstanding
performance compared with the conventional digital-based delivery schemes when receivers are
highly diverse and/or the channel condition of each receiver varies drastically. Conversely, the
design of SoftCast is simplistic, so there remains much scope for improvement in adopting soft
delivery in practical scenarios, including stable channel conditions, band-limited, and/or error-prone
environments. For this purpose, many studies have been conducted to improve the performance of
soft delivery. The existing works on soft delivery schemes can be classified into seven types, as
shown in Fig. 1: energy compaction, optimal scaling, bandwidth utilization, resilience to packet
loss, overhead reduction, hardware implementation, and extension for immersive experiences.

4.1 Energy Compaction of Source Signals
In soft delivery schemes via linear mapping (from source signals to channel signals), the recon-
struction quality greatly depends on the performance of the energy compaction technique for the
source signals. Specifically, the study in [40] clarified that the performance of soft delivery schemes
degrades as the ratio of maximum energy to minimum energy of the source component increases.
To yield better quality under both stable and unstable channel conditions, existing studies have
adopted different energy compaction techniques listed in Table 3 for the source signals.
Typical solutions are to adopt wavelet-based signal decorrelation methods. Specifically, some

studies [41–46] have adopted a motion-compensated temporal filter (MCTF), which is a temporal
wavelet transform method, to remove inter-frame redundancy by realizing motion compensation
in soft delivery. The MCTF recursively decomposes video frames into low- and high-frequency
frames according to a predefined level. For example, WaveCast [44] adopted a 3D-discrete wavelet
transform (DWT), i.e., the integration of 2D-DWT and MCTF, to remove temporal and spatial
redundancy. Although SoftCast exploits a full-frame 3D-DCT to remove the intra- and inter-frame
redundancy for energy compaction, WaveCast can further improve the reconstruction quality by
fully exploiting the inter-frame redundancy using motion compensation. A detailed discussion on
the effects of other decorrelation methods is presented in [47, 48]. [49] also utilized inter-frame
redundancy by designing an adaptive GOP size mechanism. It adaptively controlled the GoP size
based on shot changes and the spatio-temporal characteristics of the video frames. It then used a
full-frame 3D-DCT for energy compaction across the video frames in one GoP.
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Another typical solution is to send large energy coefficients as metadata, and thus prevent the
transmission of such coefficients using pseudo-analog modulation. [50] designed Advanced SoftCast
(ASoftCast) to send low-frequency coefficients as the metadata. ASoftCast decomposed the original
images into frequency components using 2D-DWT. The frequency component was then divided
into two parts: the lowest frequency sub-band and other sub-bands. The wavelet coefficients in
the lowest-frequency sub-band are processed by run-length coding. They are then channel-coded
and digitally modulated for additional metadata transmissions. The optimized power allocation for
the SoftCast scheme in [51] selected and sent high-energy coefficients as the metadata to reduce
the energy of the analog-modulated symbols. These results can assign a high transmission power
to low-energy coefficients to improve the received quality. Here, determining the high-energy
coefficients for each GoP is computationally complex owing to the use of an exhaustive search.
To reduce the computational complexity, [52] adopted a zigzag scan to select the side information.
Other studies in [53–58] divided the video into BL and ELs, which were coded and sent in digital and
pseudo-analog ways, respectively. For example, the base layer in gradient-based image SoftCast (G-
Cast) [57] sent the DC and low-frequency coefficients of the image, while the enhancement layer
extracted and sent an image gradient, which represents the edge portion of the image, using a
gradient transform. The receiver then created a final estimation of the image via a gradient-based
reconstruction (GBR) procedure, utilizing both the image gradient at the enhancement layer and
the low-frequency coefficients provided by the base layer.

Other solutions adopted a nonlinear encoder and decoder for source signals to decrease the ratio
of the maximum to the minimum energy of the analog-modulated symbols. The typical solution
for soft delivery is to introduce coset coding [59, 60], which is a typical technique in distributed
source coding. Coset coding partitions the set of possible source values into several cosets and
transmits the coset residual codes to the receiver. With the received coset codes and the predictor,
the receiver can recover the source value in the coset by choosing the one closest to the predictor.
DCast [61–64] first introduced coset coding for the soft delivery of inter frames. The coset coding
in DCast divides each frequency domain coefficient 𝑠𝑖 by a coset step 𝑞 and obtains the coset
residual code 𝑙𝑖 as 𝑙𝑖 = 𝑠𝑖 −

⌊
𝑠𝑖
𝑞
+ 1

2

⌋
𝑞, where

⌊
𝑠𝑖
𝑞
+ 1

2

⌋
represents the coset index. At this time, the

sender only needs to transmit the coset residual code for energy compaction. At the user side, with
the received coset residual code 𝑙𝑖 and the side information 𝑠𝑖 (i.e., the predicted DCT coefficient
obtained from the reference video frame), the receiver reconstructs the DCT coefficients by coset
decoding. Given the coset residual code 𝑙𝑖 , there are multiple possible reconstructions of 𝑠𝑖 that
form a coset 𝐶 = {𝑙𝑖 , 𝑙𝑖 ± 𝑞, 𝑙𝑖 ± 2𝑞, 𝑙𝑖 ± 3𝑞, . . .}. DCast then selects the coset 𝐶 that is nearest to the
side information 𝑠𝑖 as the reconstruction of the DCT coefficient. In this case, the value of each coset
step 𝑞 is crucial for the coding performance of DCast. The value of 𝑞 is calculated by estimating
the noise at the receiver end shown in [63, 64]. However, the reconstruction quality of DCast also
depends on the side information quality. If the side information 𝑠𝑖 is error-prone, the receiver
may make wrong decisions with a smaller 𝑞. [65] introduced a side information refinement (SIR)
algorithm [66] to refine the side information for the quality enhancement of DCast.
The concept of coset coding has been widely applied in other studies on soft delivery for the

same purpose. For example, [67–71] utilized pseudo-coset coding for lower frequency components
and sent the coset index using the digital framework. Here, the residuals in the lowest-frequency
components and other frequency components are sent using pseudo-analog modulation. The main
difference between coset coding and pseudo-coset coding is the sending of the coset index as
additional metadata. The layered coset coding and adaptive coset coding were applied to the soft
delivery scheme in [69] and [70], respectively. LayerCast in [69] introduced layered coset coding
to simultaneously accommodate heterogeneous users with diverse SNRs and bandwidths. The
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Table 4. Overview of power allocation techniques for soft delivery schemes

Categories Papers Channel Consideration Optimization Metric
[11] AWGN MSE
[75] Fading MSE

[76, 77] OFDM MSE
[78–80] MIMO MSE

Channel-aware
power allocation

[81–83] MIMO-OFDM MSE
[84] Impulse noise MSE

[85, 86] NOMA MSE
[87] Underwater acoustic networks MSE
[88] UAV-enabled networks MSE
[89] mmWave lens MIMO MSE
[90] AWGN SSIM
[91] AWGN and MIMO FWD

Perception-aware
power allocation [92] AWGN EQMSE

[93] AWGN Foreground and
background distortions

layered coset coding used large to small coset steps to obtain coarse to fine layers from each chunk.
The coarse layer, i.e., BL, is sufficient to reconstruct a low-quality DCT chunk for narrowband
users, whereas each fine layer, i.e., EL, provides refinement information of the DCT chunk for
wideband users. [72–74] utilized the coset coding for cooperative soft delivery systems, i.e., a
three-node relay network. A sender broadcasts the DCT coefficients obtained from the video frames
using pseudo-analog modulation to the relay node and the destination node. If the channel quality
between the sender and the destination node is higher than a threshold, the destination node
reconstructs the video frames from the soft-delivered DCT coefficients. If the channel condition is
lower than the threshold, the relay node sends the coset residual code to the destination node, and
then the destination node reconstructs the video frames using the received coset residual code and
the side information obtained from the softly delivered DCT coefficients from the sender.

4.2 Channel-Aware and Perception-Aware Power Allocation
As mentioned in Section 3.2, the power allocation in SoftCast minimizes the MSE between the
original and reconstructed video signals over additive white Gaussian noise (AWGN) channels.
There are several drawbacks toward adopting SoftCast in practical scenarios: 1) practical wireless
channels have more complex characteristics, e.g., fading caused by multipath and impulse noise,
than the AWGN channels, and 2) MSE is not an effective index for describing the perceptual fidelity
of images/videos. To address the drawbacks related to the power allocation, the existing studies in
Table 4 propose the power allocation for practical wireless channels and perceptual considerations.

For the first drawback, the existing studies redesigned the power allocation for practical wireless
channels, including fading [75] and frequency-selective fading, i.e., orthogonal frequency-division
multiplexing (OFDM) [76, 77], impulse noise [84], multiple-input and multiple-output (MIMO) [78–
80], and MIMO-OFDM channels [81–83]. In [75], the authors designed an optimal power allocation
for fading channels. In fading channels, a fading effect, i.e., multiplicative noise, will degrade the
reconstruction quality. Although SoftCast assumes that multiplicative noise can be canceled with
exact channel estimation at the receiver end, no algorithm can guarantee an error-free channel
estimation. In addition to the power allocation design, the authors analyzed the effect of the channel
estimation error on the reconstruction quality at the receiver end.

For frequency-selective fading channels, such as OFDM andMIMO-OFDM channels, the key issue
is how to match the analog-modulated symbols to the independent subcarriers/subchannels for
high-quality image/video reconstruction. In [81, 82], they observed similarities between the source

, Vol. 1, No. 1, Article . Publication date: June 2022.



14 Takuya, et al.

and channel characteristics and exploited the similarities for subcarrier/subchannel matching. Par-
Cast [81] and the extended version of ParCast+ [82] assigned the more important DCT coefficients
to higher gain channel components and allocated power weights for each DCT coefficient with
joint consideration of the source and channel for video unicast systems. ECast in [83] extended
the source and channel matching and power allocation for video multicast systems. For multicast
systems, it is necessary to deal with the large overhead of channel feedback from multiple receivers.
In ECast, multiple users simultaneously send tone signals for the channel feedback, and the sender
receives the superposition of multiple tone signals. Although the sender cannot distinguish each
of the channel gains, the weighted harmonic means of channel gains can be obtained from the
superposed tone signals; thus, ECast utilizes the channel gain for the source and channel matching
and power allocation.
Other studies solved power allocation problems in modern wireless systems, including non-

orthogonal multiple access (NOMA) [85, 86], underwater acoustic OFDM [87], unmanned aerial
vehicle (UAV)-enabled [88], and mmWave lens MIMO systems [89]. For example, in NOMA systems,
source signals are coded into BL and ELs and then transmitted simultaneously through superposition
coding (SC). With successive interference cancellation (SIC), near users with strong channel gains
can decode both BL and EL signals, whereas far users with weak channel gains may only decode
BL signals. In the existing studies, both BL and ELs are analog-coded in [85], whereas BL and ELs
are digital- and analog-coded, respectively, in [86]. They solved the power allocation across the
BL and ELs to minimize the distortion for all receivers with heterogeneous channel conditions.
In underwater acoustic OFDM [87] and mmWave lens MIMO systems [89], the error behavior
differed substantially across channel components, and the channel characteristics showed a similar
tendency. They solved the source and channel matching and power allocation problems, which are
also discussed in frequency-selective fading channels, to minimize the distortion at the receiver
end.

For the second drawback, some studies [90–93] also redesigned the power allocation with percep-
tual considerations, including structural similarity (SSIM) [90], foveation [91], and saliency [92]. In
these studies, determining the perception-aware weights for each source component is challenging.
Specifically, in SoftCast, the scaling factor for each coefficient is obtained from its power information
to minimize the MSE: 𝑔𝑖 ∝ 𝜆

−1/4
𝑖

. These studies considered the perception-aware weight for the 𝑖th
coefficient𝑤𝑖 in the scaling factor to minimize the perceptual distortion as: 𝑔𝑖 ∝ 𝑤

1/4
𝑖

𝜆
−1/4
𝑖

. For this
purpose, [90] demonstrated the relationship between the MSE in the DCT coefficients and the SSIM
distortion to obtain the weight for the 𝑖th DCT coefficients of all the chunks𝑤𝑖 . They found that the
weight for the high-frequency coefficients was larger than that for the low-frequency coefficients,
which was consistent with the characteristics of the human visual system (HVS). FoveaCast in [91]
introduced the foveation-based HVS [94] and the corresponding HVS-based visual perceptual
quality metric, called foveated weighted distortion (FWD), for the optimization objective. For a
given foveation point (𝑓𝑥 , 𝑓𝑦) in the pixel and frequency domains, the error sensitivity for each
pixel/frequency coefficient at location (𝑥,𝑦) can be defined in the foveation-based HVS. FoveaCast
regarded the error sensitivity in the DWT domains as the weight𝑤𝑖 and performed foveation-aware
power allocation. In [92], visual saliency maps were introduced for the perception-aware power
allocation. Saliency maps represent the attended regions in an image when a user watches the
image owing to the visual attention mechanism of the human brain. In this case, the weight for the
𝑖th pixel𝑤𝑖 is based on the normalized visual saliency defined from any arbitrary visual saliency
model, such as the Itti–Koch–Niebur model [95]. Based on the weight, it allocates considerable
transmission power to salient regions to minimize the eye-tracking weighted MSE (EQMSE).
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Table 5. Brief introduction to the existing soft delivery techniques for band-limited channels

Papers Techniques Pros Cons

[11]
Discarding
low-energy
chunks

Simple algorithm
Additional metadata for
the location of discarded
chunks and coefficients

[96] Adaptive chunk
division

Fully utilize available bandwidth by
discarding small high-frequency chunks

Improper power allocation
in low-frequency chunks

[97] SK mapping High reconstruction quality in
middle and high channel SNRs

Low reconstruction quality in
a low SNR regime

[98–105] Compressive
sensing

Recover discarded coefficients
using a reconstruction algorithm

Computational cost
for the algorithm

[106–110] Data-assisted
communication

Reduce traffic by utilizing
related images in a cloud

Same or correlated images
are available in a cloud

4.3 Bandwidth Utilization
The source bandwidth of soft delivery schemes depends on the number of transmitted analog-
modulated symbols every second, i.e., baud rate. In the aforementioned designs, the source band-
width is mainly considered sufficient to send all the transmitted non-zero analog-modulated symbols
over the wireless medium. However, when the channel bandwidth is lower than the source band-
width, some analog-modulated symbols are discarded at the receiver side. Hence, the loss of the
important coefficients, i.e., the low-frequency coefficients, may have a significant impact on the
reconstruction quality. Specifically, the expected distortions in soft delivery schemes for single
and multiple contents owing to the bandwidth constraint under the transmission power constraint
are discussed in [111] and [112, 113], respectively. Some existing studies have adopted different
techniques listed in Table 5 to meet the bandwidth constraint. The typical method is to selectively
discard the chunks in higher frequency components to fill the bandwidth [11, 96]. When the sender
discards some chunks, the receiver regards all the coefficients in the discarded chunks as zeros.
Because it needs to send the locations of the discarded chunks to the receiver, SoftCast sends
the location information as a bitmap. Although SoftCast assumes equal-size chunks across low-
to high-frequency components, [96] adopted smaller chunk sizes in high-frequency components
to realize a fine-grained control to meet the bandwidth limitation. Another study in [97] used
bandwidth-reducing Shannon-Kotelnikov (SK) mappings to increase the number of chunks trans-
mitted over bandwidth-constrained channels. The SK mappings are typical 𝑁 :1 bandwidth-reducing
or 1:𝑀 bandwidth-expanding non-linear mappings. In this study, 2:1 SK mappings were used to
encode several pairs of chunks with less energy to send more chunks with medium energy within
the channel bandwidth.
Other studies [98–105] introduced compressive sensing (CS) techniques [114, 115] for soft

delivery over bandwidth-constrained wireless channels. Notably, CS is a sampling paradigm that
allows the simultaneous measurement and compression of signals that are sparse or compressible
in some domains. In general, recovering source signals from compressed signals is impossible
because the system is underdetermined. However, if the source signals are sufficiently sparse
in some domains, the CS theory indicates that the source signals can be reconstructed from the
compressed signals by solving the ℓ1 minimization problem. The advantage of CS-based soft delivery
is the recovery of chunks in high-frequency coefficients using CS-based signal reconstruction
algorithms, such as approximate message passing (AMP) and iterative thresholding, even though
the chunks are discarded at the sender’s end. For high-quality reconstruction, adaptive rate control
and reconstruction algorithms are mainly adopted for CS-based soft delivery. For instance, [100]
adaptively controlled the compression rate based on visual attention, i.e., both the texture complexity
and visual saliency, to satisfy the bandwidth constraint while maintaining better perceptual quality.
[104] adaptively selected reliable columns from the measurement matrix and compressed source
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signals using the selected columns. In view of the reconstruction algorithm, [101] designed an
adaptive transform for noisy measurement signals to obtain sparser transform coefficients for clean
reconstruction. [102] and [103] designed grouping methods for measurement signals to utilize the
similarity between video frames for the reconstruction.
Other studies utilized stored images/videos on the cloud to reduce the bandwidth requirement

in soft delivery. Specifically, data-assisted communication of mobile image (DAC-Mobi) [106],
data-assisted cloud radio access network (DaC-RAN) [107], and knowledge-enhanced mobile video
broadcasting (KMV-Cast) schemes [108–110], which are referred to as data-assisted soft delivery
schemes, have been proposed for high-quality image/video transmission. The main contributions
of the data-assisted soft delivery schemes are 1) a sender sends a limited number of analog-
modulated symbols and 2) the receiver reconstructs images/videos using correlated images, i.e.,
side information, obtained from a cloud.
In DaC-Mobi [106], successive coset encoders were introduced to divide the DCT coefficients

into three layers of bit planes: most significant bits (MSBs) in low-frequency coefficients, MSBs
in other frequency coefficients and middle bits, and least significant bits (LSBs). Here, MSBs in
low-frequency coefficients and LSBs were transmitted to the receiver in digital and pseudo-analog
manners, respectively, whereas MSBs in other frequency coefficients and middle bits were discarded.
Based on the received MSB in the low-frequency coefficients, the receiver reconstructs a down-
sampled image to retrieve correlated images in the cloud. The retrieved correlated images were
used as side information to resolve ambiguity due to discarded bits and reconstruct the entire image.
DaC-RAN [107] and the extended version of KMV-Cast [108–110] adopted Bayesian reconstruction
algorithms that utilize correlated images/videos. in the cloud as prior information to reduce the
required bandwidth for soft delivery. The main difference between the DaC-RAN and KMV-Cast
schemes is that the former assumes that the same images/videos exist in the cloud, whereas the
latter does not require that the same images/videos exist at the receiver end by designing prior
knowledge broadcasting in a digital manner.
The aforementioned studies considered the channel bandwidth to be lower than the source

bandwidth. If the channel bandwidth is greater than the source bandwidth, the soft delivery
schemes become less efficient. In this case, the soft delivery schemes utilize the extra bandwidth
by retransmission. [116] and [117] designed an analog channel coding to use theextra channel
bandwidth for quality enhancement. For example, [117] proposed a chaotic function-based analog
encoding [118] for soft delivery. Although the existing chaotic function-based analog coding is
designed for uniformly distributed sources, the analog coding for Gaussian distributed sources
significantly amplifies source signals and thus consumes unnecessary transmission power. They
designed a chaotic map function for Gaussian distributed source signals to prevent power increments
compared to the input power. Mcast in [119] also utilized extra bandwidth for quality improvement.
As mentioned earlier, the sender can send the source data multiple times if an extra bandwidth
is available. In this case, the utilization of extra time slots for quality improvement is a key issue.
To overcome this issue, MCast optimized the assignment of the chunks of the DCT coefficients to
available channels in multiple time slots to fully exploit the time and frequency diversities.
In contrast to the aforementioned studies, [120, 121] dealt with bandwidth variations. When

the available bandwidth is less than the expected bandwidth at the sender’s end, some important
chunks will not have the opportunity to be transmitted before the playback deadline. They grouped
several chunks into a tile and sent the tile with a large variance and high priority to dispatch
important coefficients before the playback deadline.
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4.4 Packet Loss Resilience
Even when the channel bandwidth is sufficient to send all the non-zero analog-modulated symbols,
some analog-modulated symbols can be discarded at the receiver side owing to loss-prone wireless
channels. Specifically, the packet loss owing to strong fading and interference may have a significant
impact on the reconstruction quality if important chunks and coefficients are lost. SoftCast used
the WHT to redistribute the energy of the source signals across whole packets for resilience against
packet loss. However, each packet still contains a large amount of energy, and thus, degradation
owing to packet losses remains considerable.
To maintain better reconstruction quality in error-prone wireless channels, some related stud-

ies [122–124] have introduced CS techniques, i.e., block-wise CS [125], for packet loss resilience.
The CS technique is suitable for wireless transmission with random packet loss owing to its random
measurement. Random measurement considers all packets as of equal importance. In contrast
to typical CS techniques, block-wise CS can reduce the storage and computational costs of the
reconstruction. A pioneering work on packet loss resilience is the distributed compressed sensing-
based multicast scheme (DCS-cast) [122]. In the DCS-Cast, each image is first divided into blocks
and the coefficients in each block are randomized using the same measurement matrix across the
blocks. One coefficient in every block is packetized to normalize the importance across packets.
Even though some packets may be lost over loss-prone wireless channels, the receiver obtains
noisy pixel values using the same measurement matrix at the sender and reconstructs the lost pixel
values using the CS reconstruction algorithm in the DCT/DWT domains. Because the lost pixel
values can be recovered from the reconstruction algorithm, DCS-Cast maintains high image/video
quality in loss-prone channels. To further improve the reconstruction quality, multi-scale [123]
and adaptive [124] block-wise CS algorithms have been adopted for soft delivery. The multi-scale
block-wise CS algorithm [123] decomposes each video frame into a multi-level 2D-DWT and
then optimizes the sampling rate for each DWT level according to its importance. However, the
adaptive block-wise CS algorithm [124] divides several video frames into one reference frame and
subsequent non-reference frames and adaptively determines whether direct or predictive sampling
should be used for each block in a non-reference frame. Direct sampling randomizes the signals in
the block, whereas predictive sampling calculates the residuals between the blocks in the reference
and non-reference frames and randomizes residuals to utilize the inter-frame similarity for the
reconstruction.

4.5 Overhead Reduction
In soft delivery schemes without chunk division, a sender needs to let the receiver know the power
information of all the DCT coefficients to demodulate the signals. For the receiver to carry out
the MMSE filtering in Eq. (5), the sender needs to transmit 𝜆𝑖 of all coefficients without errors
as metadata, which may constitute a large overhead. For example, when the sender transmits
eight video frames with a resolution of 352 × 288, the sender needs to transmit metadata for all
DCT coefficients, i.e., 352 × 288 × 8 = 811,008 variables in total, to the receiver. This overhead
may induce performance degradation owing to the rate and power losses in the transmission of
analog-modulated symbols. To reduce the overhead, SoftCast divides the DCT coefficients into
chunks and carries out chunk-wise power allocation using an MMSE filter. However, overheads are
still high, and chunk division causes performance degradation due to improper power allocation.

To achieve better quality under a low overhead requirement, the related studies can be classified
into two types, as shown in Figs. 6 (a) and (b): 1) sender-side overhead reduction, and 2) receiver-
side overhead reduction. Studies on the sender-side overhead reduction [126–129] designed fitting
functions to obtain the power information with fewer parameters. In this case, the sender and
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Fig. 6. Block diagram of the sender-side and receiver-side overhead reduction methods. (a) Sender utilizes
fitting functions to obtain power information with fewer parameters. (b) Receiver estimates the power
information only from the received symbols.

Table 6. Categories of the existing soft delivery schemes in terms of performance evaluation

Evaluations Papers
Simulations [11, 12, 38, 39, 42–44, 46–58, 61–65, 67–79, 83–93, 96–102, 104–113, 116, 119, 120, 122–124, 126–133]
Emulations [41, 45, 81, 82, 121, 134]

Experiments USRP [13, 103, 135], SOUP [117], Xilinx Virtex7 [136–138],
MU-MIMO prototype [139], LTE prototype [140]

receiver share the same fitting function in advance and send the parameters as metadata for
overhead reduction. Specifically, [126] designed a fitting function with four parameters for each
chunk, and [127] designed a log-linear function with two parameters for each chunk. Another
study [128] found that equal-size chunk division was not suitable for chunk-wise fitting, and thus,
an adaptive chunk division, i.e., L-shaped chunk division, was designed for an accurate fitting. In
addition, [129] exploited a Lorentzian fitting function with seven parameters based on a Gaussian
Markov random field (GMRF) for each GoP. The sender-side studies accurately predict the metadata
using the fitting function with a limited number of the parameters, i.e., low overhead, whereas the
fitting function causes an additional computational cost.

Studies on receiver-side overhead reduction [130, 131] estimate the power information only from
the received signals without any additional computational cost at the sender side. [130] is a pioneer
work to estimate the power information from the received signals. Blind data detection (BDD) [131]
was proposed to decode the received analog-modulated symbols without the power information at
the receiver. Specifically, BDD uses a zero-forcing estimator and the sign of the received signals to
approximate the source signals. One typical issue of the receiver-side overhead reduction is the
reconstruction quality highly depends on the quality of the received signals.
We note that both types of overhead reduction cause quality degradation owing to estimation

errors. In [127], the effect of modeling accuracy on the reconstruction quality in soft delivery was
analyzed.

4.6 Implementation
The aforementioned studies mainly discussed performance improvements in theoretical analyses
and simulations. Table 6 lists the categories of the existing studies in terms of the performance
evaluation. The existing studies in [41, 45, 81, 82, 121, 134] used a software defined radio platform
SORA [141] to carry out emulations. In contrast to the simulations, the emulations obtain channel
fading and noise trace from SORA to evaluate the performance under real wireless environments.

, Vol. 1, No. 1, Article . Publication date: June 2022.



Soft Delivery: Survey on A New Paradigm for Wireless and Mobile Multimedia Streaming 19

(a) Free viewpoint video (b) 360-degree video (c) Point cloud

Fig. 7. Typical immersive contents. (a) free-viewpoint video. (b) 360-degree video. (c) point cloud.

Table 7. Typical immersive content and its features

Content Acquisition Display Key issues

Free viewpoint video
Large number of

closely spaced RGB
and IR camera arrays

Synthesize virtual cameras
using rendering and freely
switch the viewing camera

Resource allocation for
each RGB and IR camera

to maximize the viewing quality

360-degree video 360-degree camera Playback viewport through
VR headset

Predict future viewport and
allocate resource to the viewport

for quality maximization

Point cloud Laser scanner
Playback 3D points through
AR and MR headsets and

holographic display

Compress and send numerous
and irregular structure of

3D points

Some studies implemented a soft delivery scheme on software-defined radio platform [13, 103, 117,
135] and field-programmable gate array (FPGA) [136–138] to empirically demonstrate the benefits
of soft delivery in practical wireless channels. In [13, 103, 135], the authors used Universal Software
Radio Peripheral (USRP) 2, USRP NI2900, and USRP X310 and GNU Radio for implementation and
evaluated the visual quality of soft delivery, respectively. In addition, the authors in [117] built
an experimental system based on OpenAirInterface (OAI) platform and self-developed Software
Universal Platform (SOUP). They migrated OAI to self-developed SOUP software defined radio, and
implemented the proposed scheme based on OAI eMBMS codes. Conversely, in [136–138], they
exploited the Xilinx Virtex7 FPGA for implementation and tested the reconstruction quality as a
function of wireless channel SNRs.

Other studies [139, 140] implemented soft delivery on the prototypes of multi-user MIMO (MU-
MIMO) and long-term evolution (LTE) systems. For example, in [139], SoftCast is implemented on
BUSH, which is a large-scale MU-MIMO prototype that performs scalable beam user selection with
hybrid beamforming for phased-array antennas in legacy WLANs. They performed experiments
to evaluate the video quality in terms of peak signal-to-noise ratio (PSNR) and SSIM over a lossy
MU-MIMO channel.

4.7 Extension for Immersive Experiences
SoftCast and other soft delivery schemes mentioned in the previous sections were designed for
conventional images and video signals. In modern wireless and mobile communication scenarios,
the streaming of immersive content will be a key application for reconstructing 3D perceptual
scenes that provide full parallax and depth information for human eyes. The immersive contents can
be applied to various applications, such as three to six degrees-of-freedom (6-DoF) entertainment,
remote device operation, medical imaging, vehicular perception, VR/AR/MR, and simulated training.
Figures 7 (a) through (c) show the typical immersive contents of free-viewpoint video [142–144],
360-degree video, and point cloud [145] and Table 7 lists the features. Even in immersive contents,
the video frames are compressed in a digital manner, and the compressed bitstream is then channel-
coded and modulated in sequence. This means that cliff and leveling effects still occur in the
streaming of the immersive contents owing to the variation in the channel conditions. To prevent
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cliff, leveling, and staircase effects, some studies have extended soft delivery schemes toward
immersive content for future wireless multimedia services.

One of the key advantages of soft delivery schemes for immersive content is that they simplify
the optimization problem for image and video quality maximization. In immersive content delivery,
the main issue is to maximize the image and video quality considering the user’s perspective.
For example, the view synthesis distortion optimization problem and the viewport optimization
problem should be solved in free-viewpoint video and 360-degree video, respectively. In digital-
based delivery schemes, a sender needs to find the best bit and transmission power allocation for
video frames. However, it is often cumbersome to derive a solution. Soft delivery schemes simplify
the optimization problems by reformulating them into a simple power allocation problem since bit
allocation for quantization is not required in soft delivery schemes.

4.7.1 Free Viewpoint Video. Free-viewpoint videos enable us to observe a 3D scene from freely
switchable angles/viewpoints. Figure 7 (a) shows an example of a free-viewpoint video wherein
numerous closely spaced RGB and infrared (IR) camera arrays are deployed to capture the texture
and depth frames of a 3D scene, such as a football game. Even though the number of deployed
cameras in the field is limited owing to physical constraints, the receiver can synthesize intermediate
virtual viewpoints using rendering techniques, e.g., depth image-based rendering [146, 147] to
obtain numerous switchable viewpoints. To synthesize intermediate virtual viewpoints using the
rendering technique, the sender encodes and transmits the texture and depth frames of two or
more adjacent viewpoints, the format of which is known as multi-view plus depth (MVD) [148].

For conventional MVD video streaming over wireless links, digital video compression for MVD
video frames, e.g., MVC+D [149] or 3D-AVC [150], fully utilizes the redundancy between the
cameras and texture-depth for compression. In this case, the streaming schemes need to solve
view-synthesis problems in addition to cliff and leveling effects to yield better video quality even
in the synthesized virtual viewpoints. Specifically, the video quality of the virtual viewpoint is
determined by the distortion of each texture and depth frame. In digital-based MVD schemes, the
distortion depends on the bit and power assignments for each texture and depth frame. It is often
cumbersome to achieve the best quality at a target virtual viewpoint using parameter optimization
owing to the combinatorial problem with nonlinear quantization.

Some studies [151–155] designed a soft delivery scheme for a free-viewpoint video. Specifically,
FreeCast [151, 152] is the first scheme for a free-viewpoint video. Because MVD video frames
have redundancy of cameras and texture-depth, FreeCast jointly transforms texture and depth
frames using 5D-DCT to exploit inter-view and texture-depth correlations for energy compaction.
In addition, FreeCast can simplify the optimization problems of view synthesis by reformulating it
into a simple power assignment problem. This is because bit allocation, i.e., quantization, is not
required in FreeCast. They found that the power assignment problem for the texture and depth
frames can be solved using a quadratic function to yield the best quality at the desired virtual
viewpoint. Furthermore, FreeCast introduces a fitting function obtained from multi-dimensional
GMRF at the sender and the receiver to obtain the power information with few parameters for the
overhead reduction.

3DV SoftCast in [154] focused on the view synthesis problems under the 3D-DCT operations for
each camera’s texture and depth frames, and designed the power allocation method to solve the
problem. The main differences between 3DV SoftCast and FreeCast are that 3DV SoftCast performs
3D-DCT for each camera and controls the transmission power to minimize the view synthesis
distortion, while FreeCast performs 5D-DCT for better energy compaction of analog-modulated
symbols and multi-dimensional GMRF-based overhead reduction for reconstructing high-quality
MVD frames in band-limited environments. The study in [155] designed a soft delivery scheme
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for depth video. They found that a block-based DCT performs well on depth video compared to a
full-frame DCT because depth video has different characteristics from texture video. Although a
different soft delivery scheme is required for texture video, low-distortion depth video in [155] can
provide better virtual viewpoint quality in free viewpoint video.

4.7.2 360-Degree Video. Notably, 360-degree video contents build a synthetic virtual environment
to mimic the real world with which the users interact. Each user can watch 360-degree videos
through a traditional computer-supported VR headset or an all-in-one headset (e.g., Oculus Go).
When the user requests the 360-degree video, the sender sends the 360-degree video frames, and the
user may play a part of the 360-degree video frames, which is referred to as the viewport, through
the user’s headset. Here, 360-degree videos are mainly captured by an omnidirectional camera or a
combination of multiple cameras and saved in a spherical format. Before transmissions, the sphere
frames are mapped onto the 2D plane using a certain projection method, e.g., equirectangular and
cube map projections.
In 360-degree video streaming, the major issue is to yield better video quality in the user’s

viewport by effectively reducing perceptual redundancy within 360-degree video frames. Because
each user only watches the viewport via the headset at each time instance, excessive video traffic is
created if the sender sends the full resolution of the 2D-projected video frames with an identical
quantization parameter. One of the simplest methods to reduce perceptual redundancy is viewport-
only streaming [156]. In video playback, the user may move a viewing viewport according to the
user’s head/eye movement. Based on the movement, the user requests a new viewport from the
sender, and the sender sends back the corresponding viewport. Because the sender transmits one
viewport at each time instant, viewport-only streaming can mitigate the video traffic. However, the
user needs to receive a new viewport from the sender in every viewport switching, which causes
a long switching delay. A long switching delay, i.e., approximately 10 ms, may cause simulator
sickness [157]. Owing to a long delay in the standard Internet, it is difficult for viewport-only
streaming schemes to satisfy the switching delay requirements. To prevent simulator sickness,
conventional schemes [158] divide 360-degree video frames into multiple tiles and independently
encode them with different quantization parameters to yield better viewport quality within the
bandwidth constraint.
The studies [159–162] on soft delivery schemes focus on the quality optimization of the user’s

viewport in addition to cliff and leveling effect prevention. [159] is the first scheme for viewport-
aware soft 360-degree video delivery. According to the viewing viewport, the sender first adopts
pixel-wise power allocation to reduce the perceptual redundancy in 360-degree video frames
and then carries out the combination of one-dimensional DCT (1D-DCT) and spherical wavelet
transform (SWT) for decorrelation to utilize the redundancy in the sphere and time domains. Omni-
Cast [160] further considers the features of 360-degree videos into quality optimization. Specifically,
they analyze the relationship of the distortion between the spherical and projected 2D domains
as the spherical distortion for each projection method, and design power allocation to realize the
optimal quality in the 2D-projected 360-degree videos. 360Cast [161] and the extended version of
360Cast+ [162] adopt viewport prediction based on linear regression and foveation-aware power
allocation within the predicted viewport to further reduce the perceptual redundancy. They evaluate
360Cast+ with the existing digital-based schemes in terms of weighted-to-spherically uniform peak
SNR (WS-PSNR) [163]. Here, the digital-based schemes use HEVC Test Model (HM) 16.20 [164] and
the modulation format of BPSK. They found 360Cast+ improves the average WS-PSNR performance
compared with the digital-based schemes by preventing the cliff effect at low SNR regimes and
gradually improving the received video quality with the improvement of the wireless channel
quality.
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4.7.3 Point Cloud. Volumetric content delivery provides highly immersive experiences for users
through XR devices. The point cloud [145] is arguably the most popular volumetric data structure
for representing 3D scenes and objects on holographic displays [165, 166]. A point cloud typically
consists of a set of 3D points, and each point is defined by 3D coordinates, i.e., (X, Y, Z), and color
attributes, i.e., (R, G, B). In contrast to conventional 2D images and videos, 3D point cloud data are
neither well aligned nor uniformly distributed in space.

The major challenge in volumetric delivery over wireless channels is how to efficiently compress
and send numerous and irregular structures of the 3D point cloud within a limited bandwidth.
Some compression methods have been proposed for point clouds to deliver 3D data. Specifically,
Draco [167] employs 𝑘d tree-based compression [168] and a point cloud library (PCL) using octree-
based compression [169–171]. To further reduce the amount of data traffic in point cloud delivery,
two transform techniques have been proposed for energy compaction of the non-ordered and
non-uniformly distributed signals: Fourier-based transform, e.g., graph Fourier transform (GFT) and
wavelet-based transform, e.g., region-adaptive Haar transform [172]. For example, recent studies
used GFT for the color components [173] and 3D coordinates [174] of graph signals for signal
decorrelation. They used quantization and entropy coding for the compression of decorrelated
signals.
HoloCast [175] is a pioneering work on soft 3D point-cloud delivery for unstable wireless

channels. Specifically, they regard 3D points as vertices in a graph with edges between nearby
vertices to deal with the irregular structure of the 3D points motivated by [174, 176]. HoloCast
uses GFT for such graph signals to exploit the underlying correlations among adjacent graph
signals and directly transmits linear-transformed graph signals as a pseudo-analog modulation
over the channel. We have compared HoloCast with the conventional digital-based delivery, which
is based on point cloud digital compression used in PCL [169]. HoloCast gradually improves the
reconstruction quality with the improvement of wireless channel quality. In addition, the GFT-based
HoloCast can achieve better quality compared with the DCT-based HoloCast.
However, it has been found that graph-based coding schemes need to send the graph-based

transform basis matrix used in GFT as additional metadata for signal decoding. For example, the
sender needs to send 𝑁 2 real elements of the graph-based transform basis matrix as the metadata
when the number of 3D points is 𝑁 . In [177–179], Givens rotation [180, 181] was used for GFT
basis matrix compression. Givens rotation is used to selectively introduce zeros into a matrix to
create an identity matrix from the basis matrix using angle parameters. The angle parameters are
uniformly and non-uniformly quantized prior to the metadata transmission for overhead reduction.
From the evaluations, Givens rotation with the uniform quantization reduces the overhead up to
89.8% [177] compared with HoloCast without the overhead reduction. In addition, Givens rotation
with the non-uniform quantization further reduces the overhead up to 28.6% [178] compared with
the uniform quantization.

5 FUTURE DIRECTIONS
The existing soft delivery schemes have been studied to overcome the issues of conventional image
and video streaming in modern wireless and mobile networks. In this section, we foresee the future
directions of the soft delivery. Table 8 lists the features and challenges of each future direction.
Specifically, the integration of digital-based and deep neural network (DNN)-based operations
with soft delivery will be further discussed to yield better reconstruction quality. These studies
are called hybrid digital-analog (HDA) delivery and AI-empowered soft delivery. In addition, our
and other studies find that soft delivery can improve the delivery quality of the DNN architectures
and tactile data. The soft delivery-based schemes may become a new standard for such delivery.
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Table 8. Future directions and challenges of soft delivery schemes

Future directions Advantage Disadvantage Challenges

HDA delivery
Compact signal energy by

integrating with digital-based
operations

Cause cliff effect if
digital-coded symbols fail

Discuss trade-off between
coding delay and quality

AI-empowered
soft delivery

Realize energy compaction and
signal reconstruction by using

DNN-based architectures

Large computational
overhead

Deal with bandwidth heterogeneity,
Design an optimal architecture
for semantic communication

Soft delivery
for AI

Efficiently exchange model
parameters by using

simultaneous transmission

Require symbol-level
synchronization

Design power allocation
for low-energy FL

Soft delivery
for tactile Internet Meet strict delay constraint Consider a single

vibrotactile sensor

Deal with multiple
vibrotactile sensors,

Minimize the distortion of
human tactile perception
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Fig. 8. Typical framework of hybrid digital–analog delivery.

Although the neural network compression and haptic codec are designed for the delivery, it causes
low reconstruction quality owing to insufficient energy compaction.

5.1 Hybrid Digital–Analog Delivery
For further quality improvement, the pioneer studies of the HDA delivery [182, 183] integrate
low-rate digital-based encoding and decoding into soft delivery. They proposed the superposition
of analog-coded and digital-coded symbols to take advantage of conventional digital-based and
soft delivery schemes. Specifically, the digital-coded symbols provide the baseline quality of the
video frames, while the analog-coded symbols enhance the quality of the video frames according
to the wireless channel quality. Here, the low-rate digital-based operations can significantly reduce
the signal energy of the analog-coded symbols, e.g., the decrement of the ratio of the maximum
energy to the minimum energy of the source component. A theoretical study in [40] clarified that
a lower ratio improves the reconstruction quality of the analog-coded symbols. This means that
the amount of quality improvement with the improvement of the wireless channel quality in HDA
coding schemes becomes more significant compared to the pure soft delivery schemes. Nonetheless,
the integration with digital-based encoding has one drawback the cliff effect may occur when the
decoding of digital-coded symbols fails.
Figure 8 shows an overview of the HDA delivery schemes. The HDA delivery schemes consist

of the digital and analog coding parts. At the sender side, the video frames are first encoded
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by the digital video encoder and the digitally-coded bitstream is channel coded, modulated, and
assigned transmission power by the sender. Meanwhile, the residuals are coded, power-assigned,
and modulated by the soft delivery scheme. Both outputs from the digital and analog coding parts
are superposed and transmitted over wireless channels. In this case, the transmitted signal 𝑥𝑖 is the
sum of the BPSK-modulated vector signal 𝑥 ⟨d⟩

𝑖
and output vector signal of the soft delivery scheme

𝑥
⟨a⟩
𝑖

as follows:
𝑥𝑖 = 𝑥

⟨d⟩
𝑖

+ 𝚥𝑥
⟨a⟩
𝑖

, (6)
The BPSK-modulated symbol and the analog-modulated symbol are scaled by 𝑃d and 𝑔𝑖 , respectively.

𝑥
⟨d⟩
𝑖

=
√
𝑃d · 𝑏𝑖 , 𝑥

⟨a⟩
𝑖

= 𝑔𝑖 · 𝑠𝑖 , (7)

where 𝑏𝑖 ∈ X = {±1} is the BPSK-modulated symbol and 𝚥 =
√
−1 denotes the imaginary unit.

Here, the near-optimal solution of 𝑔𝑖 under the transmission power budget 𝑃a is based on Eq. (4).
We note that the budgets of the transmission power for the digital and analog parts need to satisfy
the total power budget 𝑃t, i.e., 𝑃t = 𝑃a + 𝑃d.

At the receiver side, it first decodes the digital-modulated symbols and then obtains the analog-
modulated symbols by subtracting the digital-modulated symbols from the received symbols. Finally,
the receiver reconstructs the baseline quality of the video frames from the output of the digital part
and enhances the video quality by adding the output of the analog part.

A key issue in HDA delivery is the assignment of transmission power to the digital and analog
parts [184]. Specifically, the power assigned to the digital part must guarantee the correct decoding
of the symbols. By contrast, the digital decoder treats the superimposed analog-modulated symbols
𝑥
⟨a⟩
𝑖

as noise. To achieve better decoding performance, the I component of 𝑥 ⟨a⟩
𝑖

should be kept as
small as possible. In [185], they only select the high-frequency coefficients, which are expected
to be very small values for superposition. The remaining low-frequency coefficients are delivered
using pseudo-analog modulation. The HDA framework in [186] regards the superposed symbols as
three main parts: 1) orthogonal analog symbols, 2) digital symbols, and 3) nonorthogonal analog
symbols superimposed onto digital symbols. They designed resource allocation among these three
parts to achieve a better balance between lowering interference and improving reconstruction
quality. Another study [187] designs a prediction model to describe the relationship between the
variance of residuals and the quantization parameter, and determines the optimal transmission
power for the analog part, which maximizes the reconstruction quality with the correct decoding
of the digital part. The HDA delivery scheme in [188] treats the imperfect decoding of the digital
part and finds the best assignment of the transmission power for the digital and analog parts. This
prevents too much power assignment for the digital part to ensure a low bit error rate (BER). In
contrast to the aforementioned studies, [189] treats the bandwidth of other digital traffic as hidden
resources for HDA video delivery. Specifically, they superimpose the analog-modulated symbols
and digital symbols of the other digital traffic to utilize the hidden resource under the constraint
that the BER requirement of the other digital traffic is not compromised.
Other studies have redesigned the power allocation in HDA delivery for practical wireless

channel environments, including fading [190, 191], OFDM [192, 193], MIMO [194], and relay
networks [195]. For example, the power allocation with perfect channel state information (CSI) is
designed in [190, 192, 194], whereas the power allocationwith imperfect CSI is designed in [191, 193].
In view of the packet loss resilience in HDA delivery, the study in [196] introduced compressive
sensing for the residuals.
Other studies [197–199] extend HDA video delivery for immersive contents. Swift in [197]

considers stereo video delivery and designs a zigzag coding structure for the stereo video to utilize
both intra- and inter-view correlations. In the zigzag coding structure, the odd frames in the left view
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and the even frames in the right view are encoded digitally, and the rest of the frames are encoded
in analog. Here, the reconstructions of the digitally coded frames are used as side information to
further remove redundant information from the analog-coded frames. Another study [198] extends
HDA delivery for MVD videos and solves the view synthesis optimization to yield the best quality
from an intermediate virtual viewpoint. HoloCast+ in [199] designs HDA delivery for point cloud
delivery.

In future work, the recent coding standards such as H.266/VVC, learned video compression [200,
201], and point cloud coding can be used for the digital part. Although they have achieved significant
energy compaction and can further improve the quality of the analog part, the recent coding
standards require a long coding delay for compression. The trade-off between coding delay and
reconstructed image and video quality is an open question in HDA delivery.

5.2 AI-Empowered Soft Delivery
Some recent studies integrate DNN architectures for nonlinear encoding and decoding operations
of the soft delivery, namely, AI-empowered soft delivery. The AI-empowered soft delivery schemes
utilize deep convolutional neural networks (DCNNs) [202, 203] and multi-layer perceptron (MLP)
networks for energy compaction, power allocation, and overhead reduction tasks.

TheMLP auto-encoder was first adopted to reduce the overhead of soft delivery [204]. Specifically,
the proposed encoder obtains a few latent variables from the pixel values, and the proposed decoder
decodes the accurate power information from the received latent variables for proper power
allocation. The reconstruction quality can be maintained even with only one metadata across
one GoP. Another study [205] designs deep joint source channel coding (DJSCC) for the energy
compaction of the image and video signals. The DJSCC schemes integrate a DCNN-based auto-
encoder into a soft delivery scheme. The proposed encoder directly compresses each image into
a limited number of latent variables, and the proposed decoder reconstructs the image from the
latent variables. Here, the latent variables are transmitted over wireless channels using pseudo-
analog modulation. Even though the latent variables are obtained by nonlinear functions and
delivered over wireless channels with a lower SNR, cliff and leveling effects can be prevented
via pseudo-analog modulation. Other studies have introduced the DNN architecture for power
allocation [206] and decoding operations [207]. The study in [206] uses a you-only-look-once (YOLO)
structure [208] to extract the region of interest (ROI) and non-ROI parts from each image and
then assign unequal transmission power across ROI and non-ROI parts for perceptual quality
enhancement. The proposed scheme in [207] integrates DCNN-based image denoising, specifically
deep-image-prior (DIP) [209], into soft delivery. The DIP finds linear and nonlinear noise effects
for reconstructing clean images from noisy images. The proposed scheme can remove fading and
noise effects from the received images using DCNN-based image restoration. Another study [210]
introduces graph neural networks (GNN) [211] for wireless point cloud delivery. The GNN is a
novel model for graph representation learning that allows the analysis of the irregular geometric
structure of graph data. GNN-based auto-encoder (GAE) [212, 213] was designed to encode 3D
point clouds into a limited number of latent variables. One of the benefits of the GAE is that it
allows graph signal reconstruction from a limited number of latent variables without requiring
additional metadata.

DJSCC schemes with the latest neural network architectures have been well-studied for further
energy compaction in recent years. As a result, they have achieved better image and video quality
without cliff, leveling, and staircase effects. However, the existing DJSCC schemes need to deal
with the bandwidth heterogeneity among the receivers. Here, how to adaptively improve the
image and video quality according to the available bandwidth using the same architecture remains
challenging work. In addition, DJSCC schemes have been considered as the fundamental techniques
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model over the digital-based, analog-based, and the proposed Federated AirNet schemes as a function of
wireless channel quality.

for realizing semantic communication [214, 215] in future wireless and mobile networks. Semantic
communication has been envisioned as a new transmission paradigm that delivers semanticmeaning
rather than a bit stream of transmitted messages. Another challenging issue is to design an optimal
DJSCC scheme for the given semantic triple.

5.3 Soft Delivery for AI
Our and other studies find that soft delivery can be utilized to support various AI architectures.
Specifically, manyAI-based applications need to exchange trained DNNmodels between the receiver
over wireless networks within a short delay including viewport prediction [216] in untethered XR
applications, and dead reckoning in autonomous driving [217, 218] and online gaming services [219].
In recent years, digital-based model compression schemes [220, 221] have been designed and
standardized for sharing the trained model over the networks. However, the existing studies found
that the cliff and leveling effects occur even in the DNN model transmissions. To prevent both
effects, analog modulation is effective in the model transmissions. AirNet [222] adopts analog
modulation to deliver the DNN model parameters over wireless networks. Specifically, AirNet
directly maps the model parameters to the transmission symbols and sends the analog-modulated
symbols via wireless channels. This process avoids the issues mentioned above and the model
restoration quality faithfully corresponds to the instantaneous channel condition. In addition,
AirNet adopts SK mappings [97] to reduce the number of transmission symbols for band-limited
channels.
In addition, the model parameter transmission is key technique to realize federated learn-

ing (FL) [223, 224] over wireless networks. Figure 9 (a) shows one typical FL example over wireless
networks. The FL is a decentralized learning approach, which trains the model over a federation of
distributed learners and an aggregator, to obtain an accurate model even with a limited dataset
in each distributed learner. Each learner in the federation uses only locally available data for
training. For the training over the distributed learners and aggregator, both learners and aggregator
exchange the model parameters over wireless channels. The existing studies found that the analog
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modulation-based solutions are efficient for exchanging the model parameters for the FL. The
analog over-the-air computation (AirComp) [225, 226] is a typical solution for the model param-
eter transmission in FL. All the learners simultaneously send the analog-modulated parameters
with channel inversion to the aggregator, and the aggregator can receive the aggregated model
parameters from the superimposed waveforms. Although the simultaneous analog transmission
can improve the throughput of the model parameter transmission, AirComp requires a precise
symbol-level synchronization between the distributed learners. In [227], we proposed the model
parameter transmission in a round-robin manner for quasi-asynchronous FL systems. Specifically,
Federated AirNet based on the HDA delivery integrates low-rate model parameter compression
and energy-compact analog modulation.

Figure 9 (b) shows the average top-1 classification accuracy of the global model as a function of
wireless channel SNR when an available number of transmission symbols is at most 6.0 Msymbols.
The number of transmission iterations from ten learners to aggregator is 10. We compare Federated
AirNet to two state-of-the-art digital and analog approaches, specifically, DeepCABAC and AirNet.
In the DeepCABAC scheme, the compressed bitstream is channel coded by a half-rate convolutional
code with a constraint length of 8 and digitally modulated by BPSK or 4-QAM formats. The
AirNet scheme directly maps each of the model parameters onto a transmission symbol in analog
modulation.We found that the AirNet and Federated AirNet schemes prevent the drastic degradation
in accuracy since they does not rely on quantization and entropy coding. In addition, the proposed
Federated AirNet scheme yields the best accuracy, in higher channel SNR regimes, achieving near
error-free performance.

Although the soft delivery schemes have the potential for the realization of FL, they cause a large
energy consumption because they consider the transmission power of each distributed learner as
identical. Although each learner can limit the transmission power to reduce energy consumption,
the limitation may cause a long delay for convergence and low global model performance. The
discussion on the transmission power allocation among the distributed learners will be a key issue
for the realization of FL with low energy consumption.

, Vol. 1, No. 1, Article . Publication date: June 2022.



28 Takuya, et al.

5.4 Soft Delivery for Tactile Internet
In addition to visual information, multiple sensorial media (mulsemedia) delivery can enhance the
quality of immersive experiences in XR applications. Tactile is one of the typical mulsemedia data.
Especially, tactile communications can support the untethered and immersive XR applications.
In contrast to visual information, the sampling rate of tactile information is relatively high, i.e.,
above 1,000 Hz, and the delay requirement for tactile communications is strict. In this case, the
sender does not retransmit the tactile under the channel quality fluctuation. Although the haptic
codec [228, 229], which is defined in IEEE 1918.1.1 standard, is designed to compress the tactile,
e.g., vibrotactile signals, the cliff and leveling effects also occur owing to the channel quality
fluctuation. We use the analog modulation with DCT and DWT for the vibrotactile signals to
discuss the feasibility of the soft haptic delivery. Figure 10 (a) shows an overview of the proposed
soft haptic delivery scheme and Fig. 10 (b) shows the reconstruction quality of the vibrotactile
signal over the soft haptic and the digital-based delivery schemes at the channel SNRs of 10 dB and
20 dB under different available bandwidths. Here, the digital-based delivery scheme uses the BPSK
modulation format and controls the quantization parameter to fit the transmission symbols into the
available bandwidth whereas the soft haptic delivery scheme discards high-frequency coefficients
for the same purpose. We used “1spike_Probe_-_aluminumGrid_-_fast” as the reference vibrotactile
data provided by IEEE 1918.1.1 standard. From preliminary evaluations, the soft haptic delivery
scheme yields better reconstruction quality of the vibrotactile signals irrespective of the available
bandwidth.
The soft haptic delivery scheme was designed only for the single vibrotactile sensor and to

minimize the MSE between the original and reconstructed vibrotactile signals. On the other hand,
vibrotactile signals from multiple sensors should be delivered to provide immersive experiences for
users. In addition, a psychohaptic model in [228, 229] demonstrated that each frequency band of
vibrotactile signals has unequal sensitivity for humans. Here, how to design energy compression
for vibrotactile signals from multiple sensors and power allocation to minimize the distortion
considering human tactile perception are challenging issues for the realization of haptic delivery.

6 CONCLUSION
In this paper, we present an exhaustive survey and research outlook of the soft delivery schemes.
We first review conventional digital-based video delivery schemes and the critical issues of the
schemes, including cliff, leveling, and staircase effects. We then provide an overview of the soft
delivery schemes and the taxonomy of the existing schemes from the perspectives of energy
compaction, power allocation, bandwidth utilization, packet loss resilience, overhead reduction,
and implementation. Some studies adopt the existing techniques of the energy compaction and
overhead reduction to the soft delivery for immersive contents and find the reconstruction quality
outperforms the digital-based delivery schemes even with the HEVC-based source coding. Finally,
we envision the future directions of the soft delivery based on preliminary evaluations. We expect
that soft delivery will be essential for sending high-quality model parameters and tactile information
over wireless and mobile networks.
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