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Abstract
Compared with an extensive list of automotive radar datasets that support autonomous
driving, indoor radar datasets are scarce at a smaller scale in the format of low-resolution
radar point clouds and usu- ally under an open-space single-room setting. In this paper,
we scale up indoor radar data collection using multi-view high-resolution radar heatmap in
a multi-day, multi-room, and multi-subject setting, with an emphasis on the diversity of
environment and subjects. Referred to as the millimeter-wave multi-view radar (MMVR)
dataset, it consists of 345K multi-view radar frames collected from 25 human subjects over
6 different rooms, 446K annotated bounding boxes/segmentation instances, and 7.59 mil-
lion annotated keypoints to support three major perception tasks of object detection, pose
estimation, and instance segmentation, respectively. For each task, we report performance
benchmarks under two protocols: a single subject in an open space and multiple subjects
in several cluttered rooms with two data splits: random split and cross-environment split
over 395 1-min data segments. We anticipate that MMVR facilitates indoor radar perception
development for indoor vehicle (robot/humanoid) navigation, building energy management,
and elderly care for better efficiency, user experience, and safety. The MMVR dataset is
available at https://doi.org/10.5281/zenodo.12611978.
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Abstract. Compared with an extensive list of automotive radar datasets
that support autonomous driving, indoor radar datasets are scarce at a
smaller scale in the format of low-resolution radar point clouds and usu-
ally under an open-space single-room setting. In this paper, we scale
up indoor radar data collection using multi-view high-resolution radar
heatmap in a multi-day, multi-room, and multi-subject setting, with an
emphasis on the diversity of environment and subjects. Referred to as the
millimeter-wave multi-view radar (MMVR) dataset, it consists of 345K
multi-view radar frames collected from 25 human subjects over 6 dif-
ferent rooms, 446K annotated bounding boxes/segmentation instances,
and 7.59 million annotated keypoints to support three major percep-
tion tasks of object detection, pose estimation, and instance segmen-
tation, respectively. For each task, we report performance benchmarks
under two protocols: a single subject in an open space and multiple sub-
jects in several cluttered rooms with two data splits: random split and
cross-environment split over 395 1-min data segments. We anticipate
that MMVR facilitates indoor radar perception development for indoor
vehicle (robot/humanoid) navigation, building energy management, and
elderly care for better efficiency, user experience, and safety. The MMVR
dataset is available at https://doi.org/10.5281/zenodo.12611978.
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1 Introduction

Compared with popular automotive radar perception efforts and datasets [3–5,
12,14,15,17–21,23,25,28,32], indoor radar perception receives less attention but
it is essential in applications such as indoor vehicle (robot/humanoid) navigation,
building energy management, and elderly care under low light and emergence
(smoke, fire, and dust) situations with benefits of low device cost and less privacy
concerns. As a result, its development lags and the open datasets are limited in
terms of size, annotation, tasks, and benchmarks.
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Fig. 1: Radar signal representations: pre-CFAR heatmap versus post-CFAR point
cloud (PC) corresponding to a scene in our MMVR dataset. The heatmap ((a) for
a 3D view and (b) for the top-down view) shows an extended vertical profile of a
subject in terms of multiple clustered reflections over the elevation (height) domain.
In contrast, the CFAR operation compares the heatmap with a threshold plane (the
semi-transparent surface in (a)) to declare a few detection points (red squares in (a)
and (c)), greatly suppressing weaker reflections from the subject.

A few lines of effort have explored radar signals and processed results for
indoor perception. The earliest work is RF-Pose [33] using a T-shape antenna
array [1] (16 horizontal and 4 vertical antennas) in the 5 − 7 GHz band. It
takes two orthogonal radar heatmaps generated by the T-shape array as the
input, uses a convolution-based autoencoder network to fuse features from the
two radar views, and regresses multi-person keypoints for 2D image-plane pose
estimation. It is noted that RF-Pose is not publicly accessible. More recently,
HuPR has made a similar effort collecting two orthogonal LR radar heatmaps for
action classification in an empty room (see Fig. 2 (a)) and pose estimation and
publicly releases the dataset [13]. Due to the fact that their angular (azimuth
and elevation) resolution is limited to 15◦ [13,33], we refer to RF-Pose and HuPR
as multi-view low-resolution (LR) radar heatmap datasets in Table 1.

Table 1: Indoor Radar Perception Datasets.

Datasets Year Sensor Views Data Tasks Size Public

RadHAR [26] 2019 LR (low-resolution) Single PC (Point Cloud) Action 167K ✓
mm-Pose [24] 2020 LR Multi PC Action, Pose 40K ✕

mmMesh [30] 2021 LR Single PC 3D Mesh 480K ✕

mRI [2] 2022 LR Single PC Action, Pose 160K ✓
MM-Fi [31] 2023 LR Single PC Action, Pose 320K ✓

RF-Pose [33] 2018 LR Multi Heatmap Pose - ✕

HuPR [13] 2023 LR Multi Heatmap Pose 141K ✓

HIBER [29] 2023 HR (high-resolution) Multi Heatmap Box, Pose, Seg. 179K Partial
MMVR(ours) 2024 HR Multi Heatmap Box, Pose, Seg. 345K ✓

LR: low-resolution radar with an angular resolution of 15◦.
HR: high-resolution radar with an angular resolution of 1.3◦.
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Fig. 2: Snapshots of indoor radar heatmap datasets in Table 2. HuPR [13] and HI-
BER [29] were collected at a single location and, respectively, multiple locations inside
a single open-space/open-foreground room. Our MMVR was collected in multiple lo-
cations over multiple open-foreground (d1-d4) and cluttered (d5-d9) rooms.

Following RF-Pose but with commercial radar sensors, other earlier efforts
use TI’s single-chip millimeter-wave (mmWave) radar consisting of 3 transmitters
and 4 receivers in the 60 − 64 GHz and 76 − 81 GHz bands. These single-chip
radar sensors achieve a comparable angular resolution of around 15◦ as the RF-
Pose due to a lower wavelength. Other than the multi-view radar heatmaps,
indoor radar datasets such as RadHAR [26], mm-Pose [24], mRI [2], and more
recently, MM-Fi [31] collect single-view LR point cloud (PC), usually along
the horizontal orientation, as shown in the first block of Table 1.

The difference between PC and heatmap may have significant consequences
on the downstream tasks such as the image-plane pose estimation and segmen-
tation. This is illustrated in Fig. 1, where radar PC is obtained by applying
the constant false alarm rate (CFAR) operation [22] to the radar heatmap for
a scene with a person moving at a distance of 2m in our MMVR dataset. The
heatmap ((a) for a 3D view and (b) for the top-down view) shows an extended
vertical profile of a subject in terms of multiple clustered reflections over the
elevation (height) domain. In contrast, simple CFAR operations compare the
heatmap with an adaptively determined threshold plane (the semi-transparent
surface in (a)) to declare a few detection points (red squares in (a) and (c)),
greatly suppressing weaker reflections from the subject and missing fine-grained
features for challenging tasks. As shown in Table 1, these single-view LR point
cloud datasets are mainly used for tasks such as action classification [2,24,26,31].

To enable more fine-grained radar feature extraction, multi-view high-
resolution (HR) heatmaps have been considered more recently for indoor
radar perception such as HIBER [29]. However, HIBER was collected at multiple
locations within the same room with open foreground (see Fig. 2 (b)). And there
is no natural occlusion (table, chair, furniture) in front of subjects. To advance
indoor radar perception in more complex environments (multiple rooms with
cluttered space) and motivate challenging indoor downstream tasks using radar
signals, we introduce a large-scale indoor radar perception dataset: Millimeter-
wave Multi-View Radar (MMVR) with the following main contributions:

– First, our dataset MMVR has 345K data frames collected from 25 hu-
man subjects over 6 different rooms (e.g, open/cluttered offices and meeting
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rooms) spanning over 9 separate days. To the best of our knowledge, this is
the largest open-source indoor radar dataset in a truly multi-day, multi-
room, and multi-subject setting.

– Second, MMVR consists of 2 parts: 1) 107.9K data frames of P1: Open
Foreground in a single open-foreground space with a single subject; see
the first row of Fig. 2 (c) for snapshots; and 2) 237.9K data frames of P2:
Cluttered Space in 5 cluttered rooms with multiple subjects; see the second
and third rows of Fig. 2 (c). P1 is used to establish the best possible radar
perception benchmarks, while P2 is designed for more challenging scenarios
and for cross-environment and cross-subject generalization.

– Third, MMVR has annotated about 446K bounding boxes, 7.59 million
keypoints, and 446K segmentation instances (see Table 2 for detailed dataset
statistics). We leverage state-of-art RGB-based pipelines, i.e., Mask2Former [9]
and HRNets [27], to generate high-confidence image-plane annotation labels
(bounding boxes, keypoints, and segmentation pixels) with human curation
involved to support three perception tasks: 1) object detection, 2) pose esti-
mation, and 3) instance segmentation, respectively.

– Finally, we re-implement or modify state-of-art radar perception baseline
methods: RF-Pose [33] and RFMask [29], for all three tasks and establish
benchmarks under both P1 and P2. Ablation studies show the impact of
factors such as the number of input frames, the number of radar views, and
different data splits on all considered perception tasks.

2 Related Work: Indoor Radar Perception Datasets

As shown in Table 1, the last few years have witnessed the release of several
indoor radar perception datasets. Most datasets focus on exploring single-view
LR point clouds for tasks such as action classification and pose estimation. Rad-
HAR [26] collected a dataset consisting of point clouds using mmWave radar to
classify only 5 human activities from 2 subjects. mm-Pose [24] used the CNN
as the backbone network to estimate and track 25 body joints when the sub-
ject performed one of the 4 actions: walking, left-arm swing, right-arm swing,
and both-arm swing. The dataset is rather limited with 39.7K frames in to-
tal. mmMesh [30] used single-view LR radar point clouds to directly estimate
realistic-looking human meshes with encoded human body models to overcome

Table 2: Comparison of multi-view heatmap-based indoor radar datasets.

Dataset Resolution Annotations Statistics
Range Azi. Ele. BBox KP Seg Rooms Subjects Actions Sequences Frames Room Setting

RF-Pose† 10.0 cm 15◦ 15◦ ✕ ✓ ✕ 50 100 free-form - - -
HuPR 4.8 cm 15◦ 15◦ 141K 1.97M ✕ 1 6 static, walking 235 141K open space
HIBER 12.2 cm 1.3◦ 1.3◦ 231K 3.23M 231K 1 10 free-form 152 179K open foreground
MMVR(ours) 11.5 cm 1.3◦ 1.3◦ 446K 7.59M 446K 6 25 free-form 395 345K open & cluttered

†RF-Pose is not publicly available.
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Fig. 3: MMVR sensor setup (a) with two mmWave radars and one RGB-D camera; (b)
each frame includes two orthogonal high-resolution radar heatmaps and the synchro-
nized RGB image; (c): the two radar heatmaps are inputs to radar perception models
for the three perception tasks with the supervision from RGB-based labels.

the sparsity of point clouds. It collected radar data on 8 daily activities from
20 subjects within a confined open-space area, yielding 480K radar frames in
total. Both mm-Pose and mmMesh datasets are not publicly accessible. More
recently, mRI [2] and MM-Fi [31] targeted indoor rehabilitation activities and
related pose estimation (14 daily activities and 13 rehabilitation exercises) from
multi-modal sensors with single-view mmWave radar point cloud included.

RF-Pose [33] and HuPR [13] are the two datasets leveraging two orthogonal
radar heatmaps with an angular (azimuth and elevation) resolution of 15◦. While
RF-Pose was comprehensive in terms of data size and the diversity of subjects
(100) and rooms (50), it is not publicly accessible. On the other hand, HuPR
released 141K data frames with 2D bounding boxes and keypoint annotations.
However, as shown in Table 2, the diversity of rooms, subjects, and actions is
rather limited and no segmentation annotations are included. In 2023, HIBER
partially released 179K data frames collected from 10 subjects in a single room
with an open foreground, using two orthogonal high-resolution radar heatmaps.
To bridge the gap between open-source HIBER and inaccessible RF-Pose, our
dataset MMVR emphasizes the diversity of rooms, subjects and tasks, setting
a stage for cross-environment and cross-subject performance evaluation and ad-
vancing the generalization capability of radar perception models. Moreover, our
dataset has almost double the size of annotation labels than that of HIBER.

3 MMVR Sensor Setup

For MMVR, we develop a portable sensor testbed with two high-resolution radar
sensors and a paired RGB-D camera in Fig. 3 (a). Following the red line, we use
the Intel RealSense D455 sensor to obtain images of the scene in Fig. 3 (b)
and generate image-based annotation labels in Fig. 3 (c) via pretrained annota-
tion models. Separately, following the light blue line, we use two TI AWR2243
mmWave cascade radars to generate two radar views in the range-azimuth and
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range-elevation domains in Fig. 3 (b), and both views are fed to baseline predic-
tion models to output prediction results for three perception tasks in Fig. 3 (c).

3.1 RGB-D Camera

Thanks to the small form factor of the RealSense camera, we place it on the
upper right side of our testbed box, just right above the horizontal radar sensor.
RealSense camera D455 provides up to 1280 × 800 resolution for RGB images
and up to 1280 × 720 resolution for stereo depth. The depth operating range
is about 6m (varies with lighting conditions). In our data collection, we choose
the image resolution of 480 × 640 with a frame rate of 15 fps. As shown in
Fig. 3 (b), the RGB image can be projected from the 3D camera coordinate into
the image plane using a pinhole camera model. The timestamp of RGB-D images
is synchronized to the connected desktop with a sample timestamp accuracy of
50 microseconds.

3.2 Multi-View High-Resolution Radar
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Fig. 4: Comparison between (a) low-
resolution and (b) high-resolution radar
heatmaps of a corner reflector.

To achieve high resolution in both az-
imuth and elevation domains, we place
two AWR2243 cascade radar sensors
along the horizontal and vertical orien-
tations in Fig. 3 (a). Coherently com-
bining 4 single-chip FMCW radar sen-
sors, the cascade radar forms a virtual
array of 86 half-wavelength-spaced ele-
ments and offers an angular resolution
of 1.3◦ at the boresight direction1, sig-
nificantly better than the angular resolution of 15◦ offered by the single-chip
radar chips, e.g., IWR1443 and IWR1843, used by RadHAR [26], mRI [2], MM-
Fi [31], and HuPR [13]. With the perpendicular radar configuration, the two
radars achieve simultaneously high-resolution radar views in both the range-
azimuth and range-elevation planes, as illustrated in Fig. 3 (b). Fig. 4 com-
pares the range-azimuth heatmap of a corner reflector using the high-resolution
(AWR2243) and low-resolution (IWR1843) radar sensors.

3.3 Calibration

The camera-radar coordinate calibration is performed using measured 3D posi-
tions of a corner reflector at multiple locations in the camera and, respectively,
radar coordinate systems. Denoting the measured camera-coordinate and radar-
coordinate positions as Bcamera,Aradar ∈ R3×N , where N is the number of cal-
ibration positions, the radar-camera calibration is done by finding a rotation

1 The boresight direction is the direction of peak gain of the antenna array.
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Fig. 5: Camera-Radar coordinate calibration.

matrix R and a translation vector t such at

min
R,t

N∑
i=1

∥RBcamera[:, i] + t−Bradar[:, i]∥22 (1)

The above calibration can be solved using the singular value decomposition
(SVD) to align two sets of points in the 3D space. Refer to Appendix D for the
detailed calibration steps. Fig. 5 shows the corner reflector at multiple calibration
locations (a) and its positions in the camera and radar coordinate systems before
(b) and after (c) the camera-radar coordinate calibration.

4 Dataset

MMVR supports a range of perception tasks: object detection, pose estimation,
and instance segmentation under a diverse setting of 6 rooms and 25 subjects.

4.1 Data Collection

MMVR consists of 345K data frames collected in 2 protocols:

– Protocol 1 (P1: Open Foreground): 107.9K data frames in a single open-
foreground room with a single subject; see Fig. 6 (a) for the floorplan of P1
and the first row of Fig. 2 (c) for a snapshot. These data were collected
over 4 separate days (d1-d4) with one or two sessions per day. The subject
walking and jumping in the space remains unobstructed to both radar and
RGB camera observations.

(a) P1: open foreground in a single room

10m

9.5m

Large conference room

6m

7m Lobby

7m

Small 
conference 

room
Medium-
size office

3m

Small 
office 4m

(b) P2: cluttered space in multiple rooms

6m

3m

7m
Small 

conference
room

d1-d4 d5 d6 d7 d8 d9

Fig. 6: Floorplans of 6 diverse room settings for Protocol 1 and Protocol 2.
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Fig. 7: Visualization of data collection (P1: open foreground in the first row and
P2: cluttered space in the second and third rows), RGB (first column), correspond-
ing multi-view (horizontal and vertical) radar heatmaps (second and third columns),
baseline prediction results (fourth columns), and annotation labels (fifth columns).

– Protocol 2 (P2: Cluttered Space): 237.8K data frames in 5 cluttered
rooms with single and multiple subjects; see Fig. 6 (b) for the floorplans
of P2 and the second and third rows of Fig. 2 (c) for snapshots. Starting
from Day 5 (d5), 6 data sessions were collected in one room. During the
data collection, the subjects were doing diverse activities such as walking,
sitting, stretching, reading, writing on the board, and having conversations.
Additional snapshots for all data sessions are provided in Appendix E.

We split all data frames into non-overlapping 1-min data segments, each
having about 900 data frames, given the frame rate of 15 fps. Each data frame
includes one RGB frame, one horizontal radar heatmap frame, one vertical radar
heatmap frame, bounding box labels, segmentation labels, and keypoint labels. In
total, we have 122 data segments for P1 and, respectively, 273 data segments for
P2. More details about the data collection protocol, number of segments in each
data session, occlusion, and activities can be found in Table 8 of Appendix F.

4.2 Annotation

We utilize pretrained image-based deep learning models: Mask2Former [9] and
HRNet [27], to generate annotation labels.

Object Detection We take our RGB image through a pretrained backbone,
i.e., the Swin Transformer, to get a list of low-resolution feature maps. Then
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d5 d6 d7 d8

Fig. 8: Annotation curation: remove spurious labels (magenta boxes) due to the human
presence behind the glass, highly reflective whiteboards, and a hanging suit.

Mask2Former [8, 9] enhances these features using a pixel decoder module to
get high-resolution features. The Mask2Former decoder takes in a set of input
queries, cross-attends the queries to feature maps from the encoder, and trans-
forms them into a set of bounding boxes and classes. For our dataset, we only
extract the bounding boxes with the “person” class with a shape of (n, 5) for n
objects and [xmin, ymin, xmax, ymax, confidence score] for each object. One exam-
ple is shown in the last column (Label) of the first row of Fig. 7, where n = 1.

Pose Estimation HRNet [10,27] maintains high-resolution representations by
connecting high-to-low resolution convolutions in parallel, where there are re-
peated multiscale fusions across parallel convolutions. Such strong high-resolution
representations can support multi-person semantic keypoint extraction. For each
RGB frame, we applied a HRNet pretrained with the COCO Keypoints 2017
dataset to extract 17 COCO keypoints for each person. The shape of keypoint
labels is given as (n, 17, 3) for n objects and each keypoint represented by 3
elements: (pixelheight, pixelwidth, confidence score). One example is shown in the
last column (Label) of the second row of Fig. 7, where n = 3.

Instance Segmentation Mask2Former [8, 9] extends the above object detec-
tion to instance segmentation by further regressing the set of input queries into a
set of binary mask and class predictions, conditioned on the pixel decoder’s fea-
tures. The format of the instance segmentation is a (n, 480, 640) binary (Boolean)
tensor, where 480 and 640 are the height and width of the RGB image, respec-
tively. One example is shown in the last column (Label) of the third row of Fig. 7,
where n = 2 for two subjects in the RGB image.

Fig. 9: Quality of curated annotations.

Annotation Curation Although the
above annotation models facilitate au-
tomatic label generation at a high vol-
ume, spurious labels still exist. For in-
stance, in the lobby setting of d5 in
Fig. 8, RGB-based annotation pipelines
generate high-confident annotation la-
bels for passing-by people outside of the lobby (behind the glass), while radar
sensors operating at 77GHz have limited penetration capability through the
glass. As a result, we remove these spurious annotation labels from frames when



10 M. Rahman et al.

there are people passing by. One can find other cases in offices where a highly
reflective whiteboard is present (see d6 and d7 of Fig. 8) and where there is a
hanging suit (see d8 of Fig. 8). After data curation, Fig. 9 shows the histograms
of confidence scores of the annotated bounding box (BBox) and keypoints. Please
refer to Appendix G for other statistics of annotation in our dataset.

4.3 Preprocessing for Multi-View Radar Heatmaps

Fig. 10 shows our multi-view radar heatmap preprocessing chart from the two
radar sensors forming two orthogonal virtual arrays of 86 half-wavelength-spaced
elements while sending multiple pulses. By sampling the returned pulses, one
can collect a 3D data cube along (horizontal/vertical) virtual array, ADC sam-
ples (intra-pulse or fast-time), and pulse (inter-pulse or slow-time) samples.
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Fig. 10: Multi-view heatmap preprocessing.

By applying 3D fast Fourier
transform (FFT) over the dat-
acube, one can obtain radar
spectrum over the angle (az-
imuth for horizontal radar and
elevation for vertical radar),
range, and Doppler velocity do-
mains. We further integrate the
3D radar spectrum along the Doppler domain to enhance the SNR, generating
two (range-azimuth and range-elevation) radar heatmaps in the radar polar co-
ordinate. We further project the two radar heatmaps into the radar Cartesian
coordinate system and, with the help of the radar-camera calibration of Sec. 3.3,
convert them into range-azimuth and range-elevation views in the camera Carte-
sian coordinate system.

4.4 Synchronization

For synchronization between radar and camera, we use two alignment steps: an
initial alignment and a refined alignment. For the initial alignment, we place
a metal corner reflector in front of our MMVR sensor board at the beginning
of each session such that we can identify the starting frame for the horizontal
radar sensor, vertical radar sensor, and RGB camera; see Appendix H for an
illustration. Even with the initial alignment, the clocks of the three sensors may
drift over time. To this end, we perform a refined alignment to adjust the frames
of all three sensors by synchronizing keyframes where notable motions, e.g., sit,
stand up, are aligned at all three sensors.

5 Evaluation and Benchmarks

In this section, we introduce the benchmark setup, performance metrics, baseline
methods, and main results.
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5.1 Benchmark Setup

To evaluate the model, we provide two data split strategies.

– Data Split 1 (S1: Random Split) randomly splits the non-overlapping
1-min data segments (122 for P1 and 273 for P2) into train, validation and
test sets at a ratio of 80 : 10 : 10.

– Data Split 2 (S2: Cross-Session and Unseen Split) first splits all
data segments in d5, d6, d7, and d9 into train, validation, and test sets.
Then, we include all data in d8 in the test set such that one can assess the
generalization performance of trained model for an unseen environment (d8).

The details about S1 and S2 can be found in Table 9 of Appendix I.

5.2 Metrics and Methods

Object Detection We adopt average precision on intersection over union (IoU)
[11] as an evaluation metric. IoU is the ratio of the overlap to the union of a
predicted BBox A and annotated BBox B as:

IoU(A,B) =
|A

⋂
B|

|A
⋃
B|

. (2)

We present three variants of average precision: AP50, AP75, and AP, where the
former two represent the loose and strict constraints of IoU, while AP is the
averaged score over 10 different IoU thresholds in [0.5, 0.95] with a stepsize of
0.05. We use the latest RFMask [29] as the baseline method but modify it such
that we can directly calculate the BBox loss using the BBox annotation in the
image plane rather than the BBox loss at the two radar-view planes in HIBER.
More details are described in Appendix J.

Pose Estimation We adopt average precision on object keypoint similar-
ity (OKS) [16] as an evaluation metric. OKS is scale-invariant and defined as

OKSi = exp

(
− d2i
2s2k2i

)
, i = 1, · · · , 17, (3)

for the i-th keypoint, where di is the Euclidean distance between the prediction
and corresponding ground truth, ki is a constant predefined uniquely for each
joint, and s is the scale of the subject being targeted. Similarly, we calculate
AP50, AP75, and AP for each keypoint and the average score over the 17 key-
points. We re-implement RF-Pose [33] from scratch for the baseline and further
extend it to predict both keypoint-based heatmap and part affinity field (PAF) [6]
for more robust multi-person association.

Instance Segmentation Instance masks are predicted by RFMask, and aver-
age precision over IoU is used as the evaluation metric. The segmentation IoU is
computed by Eq. 2, where the area of interest is determined by pixels, instead
of BBoxes, that are predicted or annotated to belong to a person [11].
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Table 3: Baseline benchmarks for 3 tasks under 2 protocols and 2 data splits.

Protocol Split Object Detection Pose Estimation Instance Seg.
AP AP50 AP75 AP AP50 AP75 IoU

P1 S1 25.53 67.30 15.86 46.24 62.88 47.45 71.98
S2 24.46 66.82 11.22 29.82 43.03 30.29 67.03

P2 S1 31.37 61.50 27.48 32.13 44.22 32.58 65.30
S2 6.03 22.77 0.88 7.11 11.98 6.76 56.07
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Fig. 11: AP breakdown over keypoints under 2 protocols and 2 data splits.

5.3 Main Results

Object Detection Table 3 shows the baseline performance of object detection
from RFMask by taking 4 consecutive radar frames as input. It achieves AP50

scores at more than 65 under P1 for both data splits. These AP scores of our
dataset MMVR are comparable to those numbers previously reported in the
literature. For instance, RF-Pose [33] reported an AP score at 30.8 with 6 radar
frames, which is similar to our benchmarks of AP at 25.53 and 24.46 under P1.
Qualitatively, we observe more failure cases when the subject was about 1m or
closer to the radar sensors.

For P2, the performance under S1 is much better than that of S2 as there is
a significant drop in all AP metrics, suggesting limited generalization capability
of the baseline method, particularly towards unseen cluttered environments.

Pose Estimation Table 3 also consists of the baseline performance of pose
estimation using RF-Pose with 4 consecutive radar frames. Under P1, it achieves
AP50 of about 63 and 43 for S1 and S2, respectively. On the other hand, under
P2, it maintains reasonable performance for S1 with an AP50 score at 44.22,
while the performance drops significantly when the data split is S2, a similar
effect we observed previously for object detection. Fig. 11 further breakdowns
the AP score for multiple keypoints. It is seen that lower AP scores are more
likely for keypoints such as limb and face parts.

Instance Segmentation In the last column of Table 3, we show relatively good
and consistent performance of RFMask over the four combinations of 2 protocols
and 2 data splits. On one hand, under the same protocol (P1 or P2), the perfor-
mance drops slightly from S1 to S2, suggesting better generalization capability



MMVR: Mmwave Multi-View Radar dataset and benchmark 13

Table 4: # of Frames: Using longer time horizon improves the performance.

# of frames Detection Pose Estimation Segmentation
AP AP50 AP75 AP AP50 AP75 IoU

4 25.53 67.30 15.86 46.24 62.88 47.45 71.98
12 33.12 71.17 26.84 46.86 63.22 48.14 71.81
18 32.78 72.03 25.44 46.70 63.07 47.95 73.28

over unseen environments. On the other hand, performance degradation appears
to be slightly larger over protocols than over splits.

Visualization We provide visualization results for all three tasks in the column
of Prediction of Fig. 7. In these snapshots, the considered baseline methods are
able to distinguish radar signals from the subject from those from the back-
ground. Additional visualization results of good and failure cases under all 6
rooms are included in Appendix K.

5.4 Ablation Study

We report on several ablation studies using S1 under P1.

Number of Frames From Table 4, longer sequences generally lead to better
performance for each task. In particular, the object detection performance is
increased significantly when 12 radar frames are used. At a frame rate of 15 fps,
18 frames for a duration of 1.2 seconds lead to slightly worse performance than
the use of 12 frames.

Single View versus Dual View Table 5 presents a comparison between using
a single view (feeding the horizontal view only), and using dual views (feeding
both the horizontal and vertical views). The results indicate that using the dual
views improves performance for both RFMask and RF-Pose. This improvement
implies that, while the horizontal view is informative enough to determine the
location and relative scale of the subjects in the image plane, the vertical view
may provide additional features about a subject in the elevation domain and
add more fine-grained and distinguished characteristics for different body parts.

Comparison of Detection Backbones We also take the more advanced
DETR architecture [7] as another simple baseline method without significant
customization towards radar frames. We compare the performance of object de-
tection and instance segmentation between RFMask and DETR in Table 6. It
appears that exploiting backbone feature self-attention and query-feature cross-
attention in DETR leads to consistently better performance for the two consid-
ered tasks.
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Table 5: Single/Dual: Using the dual
views works the best.

Method View AP AP50 AP75 IoU

RFMask Single 24.64 66.17 15.21 70.64
Dual 25.53 67.30 15.86 71.98

RF-Pose Single 22.22 30.99 22.64 -
Dual 46.24 62.88 47.45 -

Table 6: Method: DETR can improve
the performance.

Method View AP AP50 AP75 IoU

RFMask Single 24.64 66.17 15.21 70.64
DETR Single 35.78 78.59 28.02 72.65

Table 7: Baseline benchmarks between HIBER [29] and MMVR.

Room Setting Dataset Object Detection Instance Seg.
AP AP50 AP75 IoU

Open HIBER (Walk) 17.77 52.46 6.78 48.47
Foreground MMVR (P1) 24.46 66.82 11.22 67.03

Comparison over Different Radar Datasets An interesting ablation study
involves training the radar perception model on one radar dataset, such as
MMVR, and evaluating its performance on another dataset, like HIBER, or
vice versa. However, this study requires dataset-dependent 3D radar-camera co-
ordinate calibration and 3D-to-2D projection in the camera coordinate, due to
varying relative geometries between the camera and radar and the use of differ-
ent cameras in different datasets. Instead, we directly compare the same tasks
across different datasets under similar environmental settings: a single subject
walking in an open-foreground room. This is achieved using the “walk” data split
in HIBER and “P1” in our MMVR. As shown in Table 7, the performance be-
tween the two datasets is comparable. Note that we used refined bounding boxes
in the 2D image plane for the HIBER evaluation as the original bounding boxes
were excessively large around the subjects.

6 Conclusion

In this paper, MMVR scales up indoor radar data collection using multi-view
high-resolution heatmaps in a multi-day, multi-room, and multi-subject setting,
with an emphasis on the diversity of the environment and subjects. It complies
with an extensive collection of 345K radar heatmap frames from 25 subjects and
6 different rooms to benchmark three mainstream perception tasks such as ob-
ject detection, pose estimation, and instance segmentation with 446K bounding
boxes/segmentation instances and 7.59 million keypoints annotated. We hope
that MMVR can stimulate the development of robust radar perception mod-
els that can operate effectively in varied real-world applications in smart home
systems, security, elderly care, and navigation assistance for visually impaired
individuals, contributing positively to society.
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A Contributions

M. Rahman, P. Wang, and P. Boufounos contributed to the development of
the MMVR testbed. M. Rahman and P. Wang coordinated and participated in
data collection. P. Li and P. Wang established the annotation pipeline for la-
bels used in object detection, pose estimation, and segmentation with P. Wang
contributing to label curation. S. Kato and P. Wang worked on the pose esti-
mation baseline with S. Kato evaluating benchmarks under various data splits
and protocols and visualizing the results. R. Yataka, A. Cardace, and P. Wang
contributed to the object detection and segmentation baselines with R. Yataka
evaluating benchmarks under various data splits and protocols benchmarks and
visualizing the results. M. Rahman and P. Wang worked on the initial alignment
between the camera and radar frames, the camera-radar calibration, and the
signal processing pipeline to generate radar heatmaps. R. Yataka contributed to
the refined alignment between camera and radar frames. S. Kato, R. Yataka, and
P. Wang contributed to data segmentation, sequence splits, and the organization
of the final data structure. P. Wang initiated the MMVR effort for indoor per-
ception applications at MERL and led the project from its inception. P. Wang
and P. Boufounos supervised the project.

B Responsibility to Human Subjects

Our data collection for MMVR was approved by our institutional review board
(IRB). We initiated a call-for-volunteers in our institution and recruited 25 par-
ticipants. At the beginning of each data session, we informed participants about
our experiment, its research goal, the procedure, potential exposure to high-
frequency radio frequency waves, and the use of the camera. We notified the
participants that de-identified data would be made publicly accessible for re-
search purposes. A consent form was signed by all participants.

C Limitations and Potential Harms

Our dataset MMVR has limitations regarding annotations and benchmarks. Our
annotation pipeline is based on RGB images. In cases of natural occlusion (chair,
table, sofa) in a cluttered room of P2, the annotated BBox, keypoints, and seg-
mentation pixels are also occluded or have extremely low reliability. As a result, it
is unclear if radar-based approaches can lead to better perception performance
than camera-based approaches under these natural occlusions. The maximum
number of subjects in a session is limited to 3. Radar perception in a dense crowd
is less explored and the dataset is extremely limited. Although radar perception
has fewer privacy concerns than the camera, MMVR can be potentially utilized
to classify and estimate attributes of subjects such as gender, size, height, and
gait. It may be also used to advance technologies for indoor surveillance without
acknowledgment or permission.
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D Detailed Steps for Camera-Radar Calibration

Given N pairs of measured camera-coordinate positions Bcamera ∈ R3×N and
radar-coordinate positions Aradar ∈ R3×N , the rotation matrix R and a transla-
tion vector t can be found by minimizing the Euclidean distance error in Eq. 1.
This can be numerically solved in the following steps:

– Centering the Calibration Position Sets: Compute the centroids of both
position sets Aradar and Bcamera as µradar = mean(Aradar, axis = 1) ∈ R3×1

and µcamera = mean(Bcamera, axis = 1) ∈ R3×1. Then translate both sets to
have their centroids at the origin:

Ãradar = Aradar − µradar,

B̃camera = Bcamera − µcamera. (4)

This initial alignment separates the calculation of the rotation matrix from
that of the translation.

– Computing the Covariance Matrix: Calculate the covariance matrix
between the centered calibration position sets Ãradar and B̃camera:

H = ÃradarB̃
T
camera, (5)

where (·)T denotes the matrix transpose.
– Singular Value Decomposition (SVD): Perform the singular value de-

composition on the covariance matrix:

[U,S,V] = SVD(H), (6)

where U and V are unitary matrices, and S is a diagonal matrix.
– Determining the Rotation Matrix R: The rotation matrix is found as

R = VUT . (7)

Since U and V are unitary matrices, R is guaranteed to be a rotation matrix
with a determinant of 1.

– Calculating the Translation Vector t: Once the rotation matrix R is
found in Eq. 7, the translation vector t can be determined as

t = µcamera −Rµradar. (8)

The above step first applies the rotation to the radar-coordinate calibra-
tion set centroid µradar and then subtracts it from the camera-coordinate
calibration set centroid µcamera.

E Additional Snapshots of All Data Sessions

We provide additional snapshots of all data sessions in Fig. 12. Each row rep-
resents a day (d) while each column represents a session (s) with the session
duration indicated.
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Fig. 12: Gallery of additional snapshots.

F Details of Data Sessions

F.1 Content

Table 8 enumerates the details of all data sessions included in our dataset
MMVR. Our dataset includes two protocols: P1 and P2. Under each proto-
col, each session is split into non-overlapping one-minute data segments. The
number of data segments in each session is listed in the column of # of seg.,
along with the column of # of frames. Other statistics of each data session
such as storage size, room type, obstacles for occlusion, number of subjects, and
action types of the subjects are also listed.
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Table 8: Details of data sessions.

Protocol Session # of seg. # of frames Room Occlusion # of Sbj. Action

P1

d1s1 39 35,085 large conference - 1 walking
d1s2 20 17,618 large conference - 1 walking
d2s2 20 17,563 large conference - 1 jumping
d3s1 19 16,962 large conference - 1 jumping
d3s2 9 7,436 large conference - 1 walking
d4s1 15 13,238 large conference - 1 walking

Total d1-d4 122 107,902 - - - -

P2

d5s1 9 7,808 lobby chair, table, vase 1 walking, sitting, stretching, reading
d5s2 9 7,407 lobby chair, table, vase 1 walking, sitting, reading, writing, stretching
d5s3 10 8,817 lobby chair, table, vase 1 walking, sitting, reading, writing, stretching, eating, drinking
d5s4 9 8,040 lobby chair, table, vase 1 walking, sitting, reading, writing, stretching
d5s5 6 5,382 lobby chair, table, vase 2 walking, sitting, reading, drinking, stretching, talking
d5s6 10 8,821 lobby chair, table, vase 3 walking, sitting, reading, stretching, talking
d6s1 10 8,592 small office chair 1 walking, sitting, reading, writing, stretching
d6s2 10 8,852 small office chair 1 walking, sitting, writing, stretching
d6s3 10 8,552 small office chair 2 walking, sitting, reading, writing, stretching, talking
d6s4 10 8,842 small office chair 2 walking, sitting, reading, writing, stretching, talking
d6s5 1 430 small office chair 2 walking, sitting, reading, writing, stretching, talking
d6s6 10 8,677 small office chair 1 walking, sitting, reading, writing, stretching
d7s1 10 8,757 small conference chair, table 1 walking, sitting, reading, writing, stretching
d7s2 10 8,392 small conference chair, table 1 walking, sitting, reading, writing, stretching
d7s3 10 8,855 small conference chair, table 1 walking, sitting, reading, writing, stretching
d7s4 10 8,844 small conference chair, table 2 walking, sitting, reading, writing, stretching, talking
d7s5 10 8,795 small conference chair, table 2 walking, sitting, reading, writing, stretching, talking
d8s1 10 8,623 medium office chair, table 1 walking, sitting, reading, stretching, talking
d8s2 10 8,177 medium office chair, table 1 walking, sitting, reading, writing, stretching, playing
d8s3 10 8,758 medium office chair, table 1 walking, sitting, reading, writing, stretching
d8s4 10 8,872 medium office chair, table 1 walking, sitting, reading, writing, stretching
d8s5 10 8,880 medium office chair, table 2 walking, sitting, reading, writing, stretching, talking
d8s6 10 8,805 medium office chair, table 2 walking, sitting, reading, writing, stretching, talking, playing
d9s1 9 7,964 small conference chair, table 1 walking, sitting, reading, writing, stretching
d9s2 10 8,795 small conference chair, table 1 walking, sitting, reading, writing, stretching
d9s3 10 8,770 small conference chair, table 1 walking, sitting, reading, writing, stretching
d9s4 10 8,677 small conference chair, table 2 walking, sitting, reading, writing, stretching, talking
d9s5 10 8,817 small conference chair, table 2 walking, sitting, reading, writing, stretching, talking
d9s6 10 8,797 small conference chair, table 3 walking, sitting, reading, writing, stretching, talking

Total d5-d9 273 237,798 - - - -

Total 395 345,700 - - - -

F.2 Folder Structure

Fig. 13 illustrates the folder structure of our dataset MMVR. Below the root
folder, we have one data folder of dxsy for each data session, where x and y
are the indices for the day and session, respectively. Under each data folder
or data session, we group the data frames into separate non-overlapping data
segment folders named using a three-digit, zero-filled convention based on the
chronological order of the data segment. For instance, the first one-minute data
segment corresponds to the folder 000, while the second data segment folder is
named after 001.

Under each data segment folder, there are three types of files: meta, radar,
and annotation including bounding boxes, keypoints and segmentation masks for
each radar frame, named using a five-digit, zero-filled convention. For instance,
d1s2/000/00001_meta.npz contains the metadata for the second data frame
00001 in the first data segment 000 of the data session d1s2. Under the same
data segment folder, 00001_radar.npz contains the horizontal and vertical radar
heatmaps. The annotation files are saved separately for each perception task
to facilitate the data loading. For instance, 00001_bbox/pose/mask.npz contain
the bounding boxes, keypoints, and segmentation masks for the corresponding
frame.
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Fig. 13: The folder structure of our MMVR dataset.

G Statistics of Annotation Labels

Fig. 14 shows the average number of annotation labels for each data session
between d5 and d9. Each color represents a session number (s1-s6) within a day.
It is seen that earlier sessions, e.g., s1, s2, s3, are mostly single-subject sessions,
while later sessions have multiple subjects. The distribution of single-person,
two-person, and three-person annotations over data frames is shown in Fig. 15.

Fig. 16 further analyzes the distribution of annotated BBox sizes (height and
width) in terms of pixel numbers. We categorize the BBoxes into small, medium,
and large boxes in the height domain with a snapshot of each category shown
in the picture above the distribution. This distribution indicates that the BBox
annotations are well-balanced with a variety of distances between the camera
and the subjects and sufficient diversity of subject postures.

Fig. 17 breaks down the keypoint annotation confidence scores over selected
joints or body parts. Note that the displayed scores represent the average values
for the left and right sides of all body parts except the nose. With human curation
involved, Fig. 17 suggests that our annotation process yields high-confidence
labels across the board. However, it’s noteworthy that body parts located on the
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Fig. 16: The distribution of annotated bounding box sizes (height and width).

torso are annotated with significantly greater confidence compared to limbs and
facial parts. Specifically, the nose, eyes, knees, and ankles exhibit a pronounced
peak around zero confidence. This lower confidence level primarily arises from
these parts being prone to occlusion, such as when a person is facing away from
the camera or is seated behind a desk.

H Synchronization

The initial alignment between the camera and two radar sensors is done with the
use of a passive device, a corner reflector. A corner reflector is a passive device
designed to reflect radar waves back toward the radar transceivers, regardless
of the angle of incidence, with a geometric shape with three mutually perpen-
dicular, flat surfaces or planes. As an ideal target for calibration and testing of
radar sensors, we place it in front of our MMVR sensor testbed such that both
camera and radar sensors can identify its presence at the beginning of each data
collection session.
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Fig. 17: The distribution of keypoint annotation confidence scores over selected joints,
e.g., nose, shoulder, hip, etc..

Fig. 18: Initial alignment between camera and two radar sensors using a corner reflec-
tor.

One example is shown in Fig. 18 for the data session d5s1. The corner reflector
is visualized in an RGB image frame which is identified as Frame 0 for the image
stream. Meanwhile, we preprocess the radar raw waveform, obtain the range-
azimuth heatmap for the horizontal radar, and identify the frame with strong
reflection (bright yellow) at the close distance (less than 50 cm) as Frame 0
for the vertical radar. A similar procedure is done for the vertical radar in the
range-elevation heatmap. Once identifying Frame 0 for the camera and two radar
sensors, the consequent frames are automatically aligned due to the use of the
same frame rate of 15 fps. For the refined alignment, please refer to the enclosed
demo videos.

I Details about Data Splits S1 and S2

Table 9 presents the detailed list of data segments within the two data splits S1
and S2 under both protocols P1 and P2. These non-overlapping data segments
were randomly selected once and then fixed to training, validation, and test sets,
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Table 9: The detailed list of data segments for two data splits S1 and S2 under the
two data collection protocols P1 and P2.

Protocol Split Type Data Sessions/Data Segments

P1

S1
Training

d1s1/000, d1s1/001, d1s1/002, d1s1/003, d1s1/004, d1s1/005, d1s1/008, d1s1/011, d1s1/012, d1s1/013, d1s1/014, d1s1/015, d1s1/016,
d1s1/017, d1s1/018, d1s1/019, d1s1/020, d1s1/021, d1s1/022, d1s1/023, d1s1/024, d1s1/025, d1s1/026, d1s1/027, d1s1/028, d1s1/029,
d1s1/030, d1s1/031, d1s1/032, d1s1/033, d1s1/034, d1s1/035, d1s1/036, d1s2/000, d1s2/001, d1s2/002, d1s2/004, d1s2/005, d1s2/006,
d1s2/007, d1s2/008, d1s2/009, d1s2/010, d1s2/011, d1s2/012, d1s2/013, d1s2/014, d1s2/015, d1s2/017, d1s2/018, d1s2/019, d2s2/000,
d2s2/001, d2s2/002, d2s2/003, d2s2/004, d2s2/005, d2s2/008, d2s2/009, d2s2/010, d2s2/011, d2s2/012, d2s2/013, d2s2/015, d2s2/016,
d2s2/017, d2s2/018, d2s2/019, d3s1/000, d3s1/001, d3s1/002, d3s1/003, d3s1/004, d3s1/005, d3s1/006, d3s1/007, d3s1/010, d3s1/014,
d3s1/015, d3s1/017, d3s1/018, d3s2/000, d3s2/004, d3s2/005, d3s2/006, d3s2/007, d3s2/008, d4s1/000, d4s1/001, d4s1/002, d4s1/003,
d4s1/005, d4s1/007, d4s1/008, d4s1/009, d4s1/010, d4s1/011, d4s1/012.

Validation d1s1/009, d1s1/010, d1s1/037, d1s2/016, d2s2/006, d3s1/008, d3s1/012, d3s1/016, d3s2/002, d3s2/003, d4s1/004, d4s1/014
Test d1s1/006, d1s1/007, d1s1/038, d1s2/003, d2s2/007, d2s2/014, d3s1/009, d3s1/011, d3s1/013, d3s2/001, d4s1/006, d4s1/013

S2
Training

d1s1/000, d1s1/001, d1s1/002, d1s1/003, d1s1/004, d1s1/005, d1s1/006, d1s1/007, d1s1/008, d1s1/009, d1s1/010, d1s1/011, d1s1/012,
d1s1/013, d1s1/014, d1s1/015, d1s1/016, d1s1/017, d1s1/018, d1s1/019, d1s1/020, d1s1/021, d1s1/022, d1s1/023, d1s1/024, d1s1/025,
d1s1/026, d1s1/027, d1s1/028, d1s1/029, d1s1/030, d1s1/031, d1s1/032, d1s1/033, d1s1/034, d1s1/035, d1s1/036, d1s1/037, d1s1/038,
d1s2/000, d1s2/001, d1s2/002, d1s2/003, d1s2/004, d1s2/005, d1s2/006, d1s2/007, d1s2/008, d1s2/009, d1s2/010, d1s2/011, d1s2/012,
d1s2/013, d1s2/014, d1s2/015, d1s2/016, d1s2/017, d1s2/018, d1s2/019, d2s2/000, d2s2/001, d2s2/002, d2s2/003, d2s2/004, d2s2/005,
d2s2/006, d2s2/007, d2s2/008, d2s2/009, d2s2/010, d2s2/011, d2s2/012, d2s2/013, d2s2/014, d2s2/015, d2s2/016, d2s2/017, d2s2/018,
d2s2/019

Validation
d3s1/000, d3s1/001, d3s1/002, d3s1/003, d3s1/004, d3s1/005, d3s1/006, d3s1/007, d3s1/008, d3s1/009, d3s1/010, d3s1/011, d3s1/012,
d3s1/013, d3s1/014, d3s1/015, d3s1/016, d3s1/017, d3s1/018, d3s2/000, d3s2/001, d3s2/002, d3s2/003, d3s2/004, d3s2/005, d3s2/006,
d3s2/007, d3s2/008

Test d4s1/000, d4s1/001, d4s1/002, d4s1/003, d4s1/004, d4s1/005, d4s1/006, d4s1/007, d4s1/008, d4s1/009, d4s1/010, d4s1/011, d4s1/012,
d4s1/013, d4s1/014

P2

S1

Training

d5s1/001, d5s1/002, d5s1/003, d5s1/004, d5s1/005, d5s1/007, d5s1/008, d5s2/000, d5s2/001, d5s2/002, d5s2/005, d5s2/006, d5s2/007,
d5s2/008, d5s3/001, d5s3/003, d5s3/004, d5s3/005, d5s3/006, d5s3/007, d5s3/008, d5s3/009, d5s4/000, d5s4/001, d5s4/003, d5s4/004,
d5s4/005, d5s4/006, d5s5/000, d5s5/002, d5s5/004, d5s6/000, d5s6/001, d5s6/002, d5s6/003, d5s6/004, d5s6/005, d5s6/007, d5s6/008,
d5s6/009, d6s1/000, d6s1/001, d6s1/002, d6s1/003, d6s1/004, d6s1/005, d6s1/006, d6s1/007, d6s1/008, d6s1/009, d6s2/000, d6s2/001,
d6s2/003, d6s2/005, d6s2/008, d6s2/009, d6s3/000, d6s3/001, d6s3/002, d6s3/003, d6s3/005, d6s3/007, d6s3/009, d6s4/000, d6s4/001,
d6s4/002, d6s4/003, d6s4/004, d6s4/005, d6s4/006, d6s4/007, d6s4/008, d6s5/000, d6s6/000, d6s6/001, d6s6/002, d6s6/003, d6s6/004,
d6s6/005, d6s6/006, d6s6/009, d7s1/000, d7s1/001, d7s1/003, d7s1/004, d7s1/005, d7s1/006, d7s1/007, d7s1/009, d7s2/000, d7s2/001,
d7s2/003, d7s2/004, d7s2/005, d7s2/006, d7s2/007, d7s2/008, d7s2/009, d7s3/000, d7s3/001, d7s3/003, d7s3/005, d7s3/006, d7s3/007,
d7s3/008, d7s3/009, d7s4/000, d7s4/001, d7s4/002, d7s4/003, d7s4/004, d7s4/005, d7s4/006, d7s4/007, d7s4/008, d7s5/001, d7s5/002,
d7s5/003, d7s5/004, d7s5/005, d7s5/007, d7s5/008, d7s5/009, d8s1/000, d8s1/001, d8s1/002, d8s1/003, d8s1/004, d8s1/005, d8s1/006,
d8s1/007, d8s1/008, d8s1/009, d8s2/000, d8s2/002, d8s2/003, d8s2/004, d8s2/005, d8s2/006, d8s2/007, d8s2/008, d8s2/009, d8s3/000,
d8s3/001, d8s3/002, d8s3/003, d8s3/004, d8s3/006, d8s3/007, d8s3/008, d8s3/009, d8s4/001, d8s4/002, d8s4/003, d8s4/004, d8s4/005,
d8s4/006, d8s4/007, d8s4/008, d8s4/009, d8s5/000, d8s5/001, d8s5/003, d8s5/004, d8s5/005, d8s5/006, d8s5/008, d8s6/000, d8s6/001,
d8s6/003, d8s6/004, d8s6/005, d8s6/006, d8s6/007, d8s6/009, d9s1/001, d9s1/002, d9s1/005, d9s1/006, d9s1/007, d9s1/008, d9s2/000,
d9s2/001, d9s2/003, d9s2/004, d9s2/005, d9s2/006, d9s2/007, d9s2/008, d9s3/001, d9s3/003, d9s3/004, d9s3/005, d9s3/006, d9s3/007,
d9s3/008, d9s3/009, d9s4/001, d9s4/002, d9s4/003, d9s4/006, d9s4/007, d9s5/000, d9s5/001, d9s5/002, d9s5/003, d9s5/004, d9s5/005,
d9s5/006, d9s5/007, d9s5/008, d9s5/009, d9s6/000, d9s6/001, d9s6/002, d9s6/003, d9s6/006, d9s6/007, d9s6/008

Validation
d5s1/000, d5s1/006, d5s2/003, d5s2/004, d5s3/000, d5s4/002, d5s4/008, d5s5/001, d5s5/005, d6s2/002, d6s3/004, d6s3/008, d6s6/007,
d6s6/008, d7s2/002, d7s5/000, d8s3/005, d8s5/002, d9s1/004, d9s2/002, d9s3/000, d9s3/002, d9s4/000, d9s4/004, d9s4/008, d9s4/009,
d9s6/005

Test
d5s3/002, d5s4/007, d5s5/003, d5s6/006, d6s2/004, d6s2/006, d6s2/007, d6s3/006, d6s4/009, d7s1/002, d7s1/008, d7s3/002, d7s3/004,
d7s4/009, d7s5/006, d8s2/001, d8s4/000, d8s5/007, d8s5/009, d8s6/002, d8s6/008, d9s1/000, d9s1/003, d9s2/009, d9s4/005, d9s6/004,
d9s6/009

S2

Training

d5s3/000, d5s3/001, d5s3/002, d5s3/003, d5s3/004, d5s3/005, d5s3/006, d5s3/007, d5s3/008, d5s3/009, d5s4/000, d5s4/001, d5s4/002,
d5s4/003, d5s4/004, d5s4/005, d5s4/006, d5s4/007, d5s4/008, d5s5/000, d5s5/001, d5s5/002, d5s5/003, d5s5/004, d5s5/005, d5s6/000,
d5s6/001, d5s6/002, d5s6/003, d5s6/004, d5s6/005, d5s6/006, d5s6/007, d5s6/008, d5s6/009, d6s2/000, d6s2/001, d6s2/002, d6s2/003,
d6s2/004, d6s2/005, d6s2/006, d6s2/007, d6s2/008, d6s2/009, d6s3/000, d6s3/001, d6s3/002, d6s3/003, d6s3/004, d6s3/005, d6s3/006,
d6s3/007, d6s3/008, d6s3/009, d6s5/000, d6s6/000, d6s6/001, d6s6/002, d6s6/003, d6s6/004, d6s6/005, d6s6/006, d6s6/007, d6s6/008,
d6s6/009, d7s1/000, d7s1/001, d7s1/002, d7s1/003, d7s1/004, d7s1/005, d7s1/006, d7s1/007, d7s1/008, d7s1/009, d7s3/000, d7s3/001,
d7s3/002, d7s3/003, d7s3/004, d7s3/005, d7s3/006, d7s3/007, d7s3/008, d7s3/009, d7s4/000, d7s4/001, d7s4/002, d7s4/003, d7s4/004,
d7s4/005, d7s4/006, d7s4/007, d7s4/008, d7s4/009, d9s1/000, d9s1/001, d9s1/002, d9s1/003, d9s1/004, d9s1/005, d9s1/006, d9s1/007,
d9s1/008, d9s2/000, d9s2/001, d9s2/002, d9s2/003, d9s2/004, d9s2/005, d9s2/006, d9s2/007, d9s2/008, d9s2/009, d9s4/000, d9s4/001,
d9s4/002, d9s4/003, d9s4/004, d9s4/005, d9s4/006, d9s4/007, d9s4/008, d9s4/009, d9s5/000, d9s5/001, d9s5/002, d9s5/003, d9s5/004,
d9s5/005, d9s5/006, d9s5/007, d9s5/008, d9s5/009

Validation
d5s2/000, d5s2/001, d5s2/002, d5s2/003, d5s2/004, d5s2/005, d5s2/006, d5s2/007, d5s2/008, d6s4/000, d6s4/001, d6s4/002, d6s4/003,
d6s4/004, d6s4/005, d6s4/006, d6s4/007, d6s4/008, d6s4/009, d7s5/000, d7s5/001, d7s5/002, d7s5/003, d7s5/004, d7s5/005, d7s5/006,
d7s5/007, d7s5/008, d7s5/009, d9s6/000, d9s6/001, d9s6/002, d9s6/003, d9s6/004, d9s6/005, d9s6/006, d9s6/007, d9s6/008, d9s6/009

Test

d5s1/000, d5s1/001, d5s1/002, d5s1/003, d5s1/004, d5s1/005, d5s1/006, d5s1/007, d5s1/008, d6s1/000, d6s1/001, d6s1/002, d6s1/003,
d6s1/004, d6s1/005, d6s1/006, d6s1/007, d6s1/008, d6s1/009, d7s2/000, d7s2/001, d7s2/002, d7s2/003, d7s2/004, d7s2/005, d7s2/006,
d7s2/007, d7s2/008, d7s2/009, d9s3/000, d9s3/001, d9s3/002, d9s3/003, d9s3/004, d9s3/005, d9s3/006, d9s3/007, d9s3/008, d9s3/009,
d8s1/000, d8s1/001, d8s1/002, d8s1/003, d8s1/004, d8s1/005, d8s1/006, d8s1/007, d8s1/008, d8s1/009, d8s2/000, d8s2/001, d8s2/002,
d8s2/003, d8s2/004, d8s2/005, d8s2/006, d8s2/007, d8s2/008, d8s2/009, d8s3/000, d8s3/001, d8s3/002, d8s3/003, d8s3/004, d8s3/005,
d8s3/006, d8s3/007, d8s3/008, d8s3/009, d8s4/000, d8s4/001, d8s4/002, d8s4/003, d8s4/004, d8s4/005, d8s4/006, d8s4/007, d8s4/008,
d8s4/009, d8s5/000, d8s5/001, d8s5/002, d8s5/003, d8s5/004, d8s5/005, d8s5/006, d8s5/007, d8s5/008, d8s5/009, d8s6/000, d8s6/001,
d8s6/002, d8s6/003, d8s6/004, d8s6/005, d8s6/006, d8s6/007, d8s6/008, d8s6/009

following the procedure outlined in Sec. 5.1. We highlight that, for S2 under the
multi-room data collection P2, we exclude all data segments of d8 from the
training and validation sets such that S2 can be used to assess the perception
performance under an unseen environment.

J Details of Evaluation Hyper-Parameters and Baseline
Methods

J.1 Evaluation Hyper-Parameters

Table 10 lists detailed information on the data and training hyper-parameters.
For the data part, we list the number of data frames for training, validation,
and test sets under each evaluation scenario, the input radar heatmap size, seg-
mentation mask size, and the output size used to compute the training loss. For
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Table 10: Details about evaluation parameters.

Name Notation Value

D
at

a
P1

S1
# of training - 86579
# of validation - 10538
# of test - 10785

S2
# of training - 70266
# of validation - 24398
# of test - 13238

P2

S1
# of training - 190441
# of validation - 23899
# of test - 23458

S2
# of training - 118280
# of validation - 33841
# of test - 85677

Input radar heatmap size H ×W 256×128
Original segmentation mask size H ×W 480×640
Input segmentation mask size H ×W 240×320
Fixed-height size (pixel) H 36
Heatmap/PAF size for pose estimation H ×W 46×46
Scale - log

T
ra

in
in

g

batch size - 32
epoch - 100
early stopping patience - 5
early stopping check val every N epoch - 2
optimizer - Adam
learning rate - 1e-4
sheduler Linear × 0.1 - 50
weight decay - 1e-4

the training part, we include hyper-parameters such as batch size, number of
epochs, parameters related to early stopping, learning rate, etc.

J.2 Baseline Methods for Object Detection and Segmentation

We use RFMask [29] as one baseline method for BBox and segmentation tasks.
Unlike the HIBER dataset with the BBox labels on the two radar views, our
dataset MMVR annotates the BBox labels directly on the image plane. As a
result, we modify RFMask in a way that the BBox loss is calculated directly on
the image plane and backpropagates to trainable parameters in an end-to-end
fashion.

Fig. 19 shows the modified RFMask architecture with the loss function com-
puted directly on the image plane. Specifically, we add an Img BBox Regression
module alongside a Hori BBox Regression module, enabling the conversion of
BBox offsets to the image plane. By computing loss with respect to these offsets,
we can directly learn BBoxes on the image plane. Additionally, the region pro-
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Fig. 19: Baseline method for object detection and segmentation: RFMask [29].
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Fig. 21: Additional baseline for Object Detection and segmentation: DETR [7].

posals estimated by the region proposal network (RPN) are transformed into 3D
BBoxes based on the fixed-height size (see Table 10), the same as the original
RFMask. These 3D BBoxes are then projected onto the image plane using the
Camera-Radar calibration of Sec. 3.3 and a 3D-to-2D projection using intrinsic
parameters obtained from the RealSense camera D455.

In Sec. 5.4, we also consider an additional baseline method that borrows
the more advanced Detection Transformer (DETR) [7] for the radar perception
tasks of object detection and instance segmentation. The DETR-based architec-
ture is shown in Fig. 21, with a modification to convert BBoxes predicted on the
horizontal plane to the image plane. The BBoxe loss is calculated on both the
horizontal and image planes. For the segmentation task, UNet is added and the
mask loss is computed. During the training, only the parameters of the Trans-
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former Decoder and BBox head are initially updated, and then, the parameters
of the segmentation head and UNet are updated while keeping the parameters
of the Transformer Decoder and BBox head fixed.

J.3 Baseline Method for Pose Estimation

We use RF-Pose [33] as a baseline method for the evaluation of pose estimation
performance on our dataset MMVR. The original RF-Pose aims at predicting
only a confidence heatmap for each joint, which is then used for multi-person
association. We extend its architecture by using two encoder-decoder sets to pre-
dict both heatmap and part affinity map (PAF), to follow the common practice
in the bottom-up pose estimation in computer vision and provide better multi-
person association [6]. Fig. 20 shows our implementation of RF-Pose with the
exact the same encoder and decoder structures as RF-Pose [33, Sec. 4.3] (e.g.,
3D convolution, stride and convolution kernel parameters) with the loss function
combining both the keypoint heatmap and PAF.

K Additional Visualization Results

We provide additional qualitative inspection of results in Fig. 22 for object de-
tection, Fig. 23 for pose estimation, and Fig. 24 for instance segmentation, re-
spectively. For each perception task, we select one frame from d1 in P1 and one
frame from each of the 5 days (d5-d9) in P2. Meanwhile, we show failure cases
for each perception task in Fig. 25.

K.1 Object Detection

As shown in Fig. 22, it is possible to localize the subject in the image plane using
two radar views. The results for d1 (the first row) show that the radar features
can support the BBox prediction that includes the spread arms and legs of a
subject. On the other hand, the first two rows of Fig. 25 show missing detection
when the subject is close to the radar and camera, and when the subject is
stationary for a long duration of time.

K.2 Pose Estimation

Fig. 23 shows reasonably good performance of baseline pose estimation in the
single-person session such as d1 and the performance degrades in multi-person
sessions. While the location and relative scale of subjects are estimated with
small errors, the end of limbs like wrists and ankles tends to have larger errors,
especially in more complex environments in P2. For the failure cases shown in
the third and fourth rows of Fig. 25, one can observe that certain connections be-
tween keypoints can be twisted or a subset of keypoints were missed or estimated
with small confidence scores.
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K.3 Instance Segmentation

Finally, for instance, segmentation results in Fig. 24, the baseline RFMask can
capture the rough shape of subjects. On the other hand, as shown in the last
two rows of Fig. 25, segmentation mask predictions may be missing in the multi-
person scenarios, and mask pixels in between legs can be identified as part of
the predicted instance mask.
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Fig. 22: Visualization of baseline object detection results.
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Fig. 23: Visualization of baseline pose estimation results.
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Fig. 24: Visualization of baseline instance segmentation results.
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Fig. 25: Visualization of failure cases.
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