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detection technologies are highly desirable in the industry to predict and prevent such fail-
ures. Recent advances in machine learning have enabled data- driven models that identify
faults from signals monitored in the motors. However, those signals could be complex and the
features that indicate faults are subtle. Therefore, effective methods for extracting informa-
tive features relevant to faults from signals are desired. In this paper, we explore the use of
contrastive learning in the detection of bearing faults from phase current signals. We develop
a model architecture consisting of two parts, a feature extractor and a classifier, where the
feature extractor is pre-trained using supervised contrastive learning. Tested on the Pader-
born University bearing fault dataset, our model attains a high fault classification accuracy of
87%, which outperforms the conventional machine learning models. We also perform ablation
tests to demonstrate the importance of contrastive learning- based training in this model. By
investigating the classification results and extracted features of the models, we further ver-
ify the effectiveness of contrastive learning in extracting features that distinguish different
classes. We anticipate that contrastive learning can lay the foundation of more accurate fault
detection models and be extended to other practical fault detection tasks.
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Abstract—Various faults can cause electric machine failures,
causing downtime and asset losses. Fault detection technologies
are highly desirable in the industry to predict and prevent such
failures. Recent advances in machine learning have enabled data-
driven models that identify faults from signals monitored in the
motors. However, those signals could be complex and the features
that indicate faults are subtle. Therefore, effective methods for
extracting informative features relevant to faults from signals
are desired. In this paper, we explore the use of contrastive
learning in the detection of bearing faults from phase current
signals. We develop a model architecture consisting of two parts,
a feature extractor and a classifier, where the feature extractor is
pre-trained using supervised contrastive learning. Tested on the
Paderborn University bearing fault dataset, our model attains a
high fault classification accuracy of 87%, which outperforms the
conventional machine learning models. We also perform ablation
tests to demonstrate the importance of contrastive learning-
based training in this model. By investigating the classification
results and extracted features of the models, we further verify
the effectiveness of contrastive learning in extracting features
that distinguish different classes. We anticipate that contrastive
learning can lay the foundation of more accurate fault detection
models and be extended to other practical fault detection tasks.

Index Terms—fault detection, electric machines, bearing fault,
machine learning, contrastive learning

I. INTRODUCTION

Electric motors are crucial components in various industrial
and commercial applications, such as pumps, fans, conveyors,
and HVAC systems. The seamless operation of these motors
is essential for productivity, efficiency, and safety in various
sectors. However, like all mechanical and electrical compo-
nents, electric motors are susceptible to faults and failures over
time, leading to costly downtime and operational disruptions.
Therefore, the need for reliable and timely fault detection
in electric motors has never been more critical. This pursuit
not only ensures the longevity and optimal performance of
these vital machines but also contributes significantly to energy
efficiency and sustainability goals.

Advances in sensor technologies and data analysis tech-
niques have facilitated accurate and efficient motor fault detec-
tion. During the operation of a motor, multiple forms of signals
can be collected and monitored, including phase currents,
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vibration, acoustics, and temperature change. If there is prior
knowledge available about how faults may change specific
features of signals, faults can be detected by simply applying
some filters or rules. Unfortunately, in most cases, the effect
of motor faults can be complicated, and such knowledge is
not available. Without requiring domain knowledge, fault can
be identified via anomaly detection: signals that show distinct
features compared to other parts (assuming the motor is
healthy at most times) indicate the presence of faults. However,
anomaly detection merely finds outliers based on patterns in
the signals, but cannot reveal the type or severity of the fault,
and the detected signals often need human verification.

Among many types of motor faults, bearing faults are the
most common cause of motor failures [1]. Accurate bearing
fault detection has been a research focus in the industry.
Basic physical models have been established to identify the
connection between bearing faults and measurable signals,
including vibration [2], acoustic noise [3], and stator cur-
rent [4]. As a type of mechanical fault, bearing defects impact
the mechanical response of the motor system, which can
be directly reflected in vibration signals and high-frequency
acoustic noises. However, bearing fault detection accuracy
based on vibration or acoustic signals can be unreliable, due
to various factors, such as the often large background noises
in a factory environment, and signal variations depending on
sensor locations [5], [6]. The motor current signature analysis
(MCSA) approach, on the other hand, detects motor faults
based on stator current signals [7]–[9]. It has the advantage
of cost-saving with no additional sensors required. Physical
models for MCSA can be established for well-defined single-
point bearing faults, such as inner race fault, outer race fault,
and ball fault [10], [11]. Characteristic bearing fault frequen-
cies can be identified in motor current signals. However, in
naturally occurring bearing faults, the signals can be much
more complicated and challenging to model and identify with
MCSA.

On the other hand, data-driven approaches enable more gen-
eral and accurate electric motor diagnosis. Machine learning
(ML) models are capable of pattern recognition from high-
dimensional, complex data. With the simulated and experi-
mental data available for various fault types, ML could treat
fault detection in a supervised classification fashion, predicting



fault types and severity given observed signals. A plethora of
ML models have been developed for motor fault detection,
including conventional statistical ML as well as deep learning
methods [12]. Most of the existing works use vibration signals
as input for ML models, since faults usually exert significant
change in the motor’s vibration frequency, and thus detecting
fault is relatively easy. With MCSA, the information related
to bearing faults is much more subtle and difficult to detect
compared with conventional vibration analysis. Many ML
models work well on vibration signals but often fail on motor
current signals for fault detection purposes [12]. Therefore, it
is essential to be able to extract fault-related features in motor
current signals for the development of data-driven approaches
based on MCSA.

The representation of data plays a key role in data-driven
studies, including ML. For an ML model to effectively classify
signals, the input signal (in our case, currents) should be
presented in an appropriate format. In the context of classifi-
cation, the appropriateness of input format is associated with
classes (i.e., fault types). Ideally, the input data (1) captures
the difference between classes, and (2) discards the common
features that all classes share. It should also be compatible
with the model in terms of size, structure, etc.

To prepare ML-ready data from currents, several feature
engineering methods have been applied. One straightforward
way is to directly use the signal as time series data. The length
and resolution of such time series are carefully selected to
ensure that the data captures relevant information and has a
reasonable size. Another widely adopted feature engineering
technique is Fourier transform (FT). Because of the effect
of bearing fault on frequency, the frequency spectra obtained
from FT are expected to be relevant based on domain knowl-
edge. However, such feature engineering techniques do not
ensure the separability of classes, and classification remains
challenging.

To address the challenge, we seek more effective ways to
extract critical information from current signals. We choose
contrastive learning (CL), an effective representation learning
method, to facilitate bearing fault diagnosis. We show that
with supervised contrastive learning, effective bearing fault
detection can be achieved using motor current signals. The
remaining parts of this paper are organized as follows: Section
II describes the experiment dataset for the study and the
data analysis. Section III introduces the CL method and
its related applications. Sections IV–V present the CL-based
model development and results. Section VI discusses future
work and concludes the paper.

II. DATASET AND INITIAL ANALYSIS

A. Dataset Overview

In this work, we use the bearing fault dataset from Pader-
born University [13] as a testbed for our ML models. This
dataset contains the synchronous measurement of motor cur-
rent and vibration signals obtained from the test rig shown in
Figure 1, which consists of the following modules: an electric
motor (1), a torque-measurement shaft (2), a rolling bearing

test module (3), a flywheel (4) and a load motor (5). Bearings
under study are mounted in the external bearing test module,
which is directly coupled to the drive motor via a shaft.

Fig. 1. Experimental setup of the Paderborn University dataset [13]. Compo-
nent (1) is the driving motor where the currents are measured. Components
(3–4) are a “simulator” of motor, on which the bearing faults are manually
created. The load is controllable via component (5).

The dataset serves as a great benchmark for bearing fault
diagnosis and classification, as it includes data measured
and various bearing fault conditions, under various operating
conditions. It provides signals measured for bearings with 4
different fault conditions: healthy, inner race fault, outer race
fault, and mixed fault. These include both artificial (created
by machining of trenches, drilling, or engraving) and near
natural (through accelerated aging tests) faults. For each fault
type, 8 different severity levels are included, making 32 health
conditions in total. Each bearing is studied under 4 different
operating conditions (characterized by torque, rotational speed,
and radial force). 20 repetitive measurements are done for
every combination of bearing and operating conditions. Each
measurement lasts 4 seconds, with a sampling rate of 64 kHz,
producing a time series of length 256,000. Currents of 2 phases
and vibration in 1 direction are measured. In this work, we
focus on the effectiveness of ML models for bearing fault
detection using current signals only. Therefore only the phase
current data are used in the following sections. In addition,
for simplicity, we focus on detecting bearing faults at a single
location, without considering mixed faults (damage on both
inner and outer races).

B. Data Analysis

For both sanity checks and examination of feature engineer-
ing techniques, we perform some initial analyses of the data.
Figure 2 (a) shows segments of one phase current in a short
time period (0.05 s), obtained in one example measurement
of each class. Visually, they look similar (except for a phase
shift, which is irrelevant to fault detection). ML tests also
suggest that it is difficult to identify their differences as
related to faults. In Figure 2 (b), we show their frequency
spectra, obtained via FT and plotted in log-scale. In the
frequency domain, the features usually lie in characteristic
frequencies, reflected by peaks in the spectra. However, the
three classes exhibit almost identical sets of peaks, despite
changes in the relative heights. So, the frequency spectra might
contain features that distinguish fault types, but they are too



subtle to be found visibly and described clearly. Thus we
utilize contrastive learning based ML for the distinction of
those visually similar signals and bearing fault detection and
classification.

Fig. 2. Comparison of phase current signals for healthy motor (blue), inner
race fault (yellow), and outer race fault (red), in the time domain (a) and
frequency domain (b).

III. CONTRASTIVE LEARNING

Contrastive learning (CL) is a paradigm of ML that focuses
on differentiating between similar and dissimilar instances in
the data. This method is applicable in both supervised and
unsupervised settings. The core mechanism of CL involves
drawing contrasts between paired instances, a process that
facilitates intricate feature extraction and the learning of robust
representations. Crucially, CL leverages relational information
between samples, as opposed to isolating individual sample
characteristics. The following subsections will delve into the
specifics of CL, exploring its mechanics, its applications, and
the foundational principles that underpin its role within the
broader context of ML.

A. Basic concepts

Consider a set of data with corresponding classes {(xi, yi)},
where the class labels yi can be either explicitly known or
implicit. The samples x may take arbitrary forms, from simple
vectors to complex images or spectra. The goal of CL is
to learn a representation space (often referred to as “latent
space”), where samples of the same class are close, while
samples of different classes are far apart, as Figure 3 shows.

Fig. 3. Illustration of the goal of contrastive learning. The model maps a
sample x to a latent representation z. In the latent space, z1 and z3 which
represent samples of the same class are close, whereas z2, representing a
sample of a different class, are far from them.

Rather than a specific model architecture, CL defines a
general framework and a way of training ML models, distinct
from its counterparts such as supervised, unsupervised, and
reinforcement learning. The model f : x → z that maps
samples to latent representations can be designed according
to the samples’ format. The key component of CL is a
contrastive loss, built upon a similarity (or distance) metric for
z: minimizing the loss function enlarges the similarity within
the same class and shrinks across classes. A typical example
is the loss function presented in [14]:

L = −
∑
i∈I

log
exp(zi · zj(i))/τ∑

a∈A(i) exp(zi · za)/τ
, (1)

which is designed for the self-supervised setting, where all
samples are assumed to come from different classes. For an
“anchor index” i, zi · zj(i) is the cosine similarity between
it and positive samples j(i) obtained using data augmentation
from i; zi ·za is the cosine similarity between it and negative
samples in the set A(i) ≡ I \ {i}. A “temperature” parameter
τ controls the strength of the penalty on similarity with
negative samples. Various forms of contrastive losses employ
other similarity metrics and mathematical transformations to
improve the behavior of the function. An in-depth examination
of the contrastive losses can be found at [15].

B. Supervised contrastive learning

When class labels are available, CL can utilize the informa-
tion provided by labels to facilitate the organization of latent
space. The work [14] develops a modified loss function for
this purpose:

L =
∑
i∈I

−1

|P (i)|
∑

p∈P (i)

log
exp(zi · zp)/τ∑

a∈A(i) exp(zi · za)/τ
, (2)

where P (i) and A(i) are sets of positive and negative samples,
respectively. The idea is similar to its self-supervised counter-
part.

Even though complete knowledge of class labels allows
training a classification model via a conventional supervised
approach (e.g., by minimizing cross-entropy loss or hinge
loss), supervised contrastive learning (SCL) has its unique
advantages. Most importantly, contrastive learning focuses
on learning discriminative representations by pushing apart
dissimilar data points, thus extracting the distinctive features
of every class. Such features are often more robust and less
susceptible to minor variations (or noise) in input data. Be-
sides, this provides transferability: the learned representations
encapsulate meaningful and diverse characteristics of the data
and can be transferable to other tasks or domains. Contrastive
learning-based pre-training is also likely to mitigate the risk
of overfitting, especially when the amount of data is limited.

C. Related applications

There have been some efforts to apply CL to motor fault
detection. Ding et al. [16] use self-supervised CL for pre-
training followed by semi-supervised fine-tuning on partially
annotated data. The data are run-to-failure vibration signals



collected from accelerated experiments. Signals are collected
by accelerometers in two directions, at a sampling rate of 25.6
kHz. The model is built upon the momentum contrast method
[17] and a ResNet-50 backbone model. It takes time series data
as input and outputs a binary classification of normal/fault.
Some other deep learning models trained in a supervised way
are used as the baseline.

Another related work [18] differs from this one in method
and settings: using the vibration data from the Case Western
Reserve University (CWRU) dataset, the work aims at a more
specific classification of multiple bearing fault types (inner
race, outer race, ball damage) and severity. The representation
learning part uses a 4-layer convolutional neural network
(CNN) as backbone, and trains in a self-supervised CL fash-
ion using the semi-hard triplet loss [19]. Vibration signals’
frequency spectra are input to the CL-based representation
learning model, and the extracted “features” are used as inputs
for downstream classification (SVM) and clustering models.
The CL model is compared against other feature extractors,
such as autoencoders. A special setting considered in this work
is fault detection under “novel conditions”, i.e., testing the
model on operating conditions that are not in the training set.

There are also some works focusing on specific aspects.
Zhang et al. [20] use supervised CL to improve fault detection
using imbalanced data, e.g., abundant data for normal condi-
tions and scarce data for faults. Another work [21] focuses
on domain adaptation, i.e., improving the generalizability of
models trained on one domain (for example, artificial faults)
in the target domain (ideally, real faults). Both works use
CWRU’s vibration dataset.

In a broader sense, some related works apply CL to the
diagnosis (1) of other machinery and (2) using other methods.
As an example of (1), Wang et al. [22] uses self-supervised CL
to detect likely-fault vibration signals in marine engines. As
for (2), Yang et al. [23], [24] explore the use of CL in graph-
based fault diagnosis. Beyond the scope of fault diagnosis,
researchers (mainly in the ML community) have been tailoring
CL methods for high-frequency time series data, which is
arguably the most important data type for health monitoring.
Zhang et al. [25] develop a CL-based pre-training method for
time series; Chen et al. [26] uses CL to attain few-shot learning
for high-frequency time series. The methods therein could be
adopted for electric motor diagnosis.

While most existing fault diagnosis methods rely on vi-
bration signals, in this work we apply supervised contrastive
learning to motor stator current signals measured in the
Paderborn Unversity dataset, and show that effective bearing
fault detection can be achieved.

IV. MODEL DEVELOPMENT

We develop a fault detection model consisting of two parts:
(1) a feature extractor that maps input data to an embedding
space, and (2) a classifier (one fully connected layer) that maps
an embedding vector to class probabilities. Figure 4 shows the
architecture of our model.
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Fig. 4. Illustration of our motor fault detection model.

The input data for motor fault detection (time series or
frequency spectra) are usually long one-dimensional (1D)
sequences. Due to the cost of experimentation, the amount
of data is usually limited, so, the model should not have
too many parameters. Considering these, we choose the 1D
convolutional neural network (CNN) as the backbone of the
feature extractor model because of its expressiveness and
parameter efficiency. The input data goes through multiple 1D
convolutional (Conv1D) layers, with length reduced and the
number of channels increased after each layer. Every convolu-
tional layer contains max pooling, leaky ReLU activation, and
batch normalization. Then, an average pooling is performed
(along the length direction), followed by a fully connected
(FC) layer that outputs an m-dimensional embedding vector.
The embedding is rescaled to have a unit norm.

The model is trained in two stages. First, the “feature extrac-
tor” part is trained by minimizing the supervised contrastive
loss (Equation 2). Afterward, the weights are recorded, and the
whole model (feature extractor + classifier) is trained together
in a conventional classification setting, i.e., by minimizing the
cross-entropy loss. In this second stage, the weights of the
feature extractor are allowed to change. This can be viewed
as fine-tuning. At the end, the whole trained model is evaluated
on the test set.

To stabilize training and prevent overfitting, multiple strate-
gies are utilized. First, we train the model using the AdamW
optimizer [27] with a “weight decay”, which applies L2

regularization to the weights. Second, the learning rate is
controlled by a scheduler that reduces it on the plateau,
specifically, if the validation error has not improved more than
a small threshold for 10 epochs, the learning rate is reduced
by a factor of 10. Third, we use early stopping: after a preset
number of epochs (“patience”), if the validation error has not
improved for 10 epochs, training is terminated and the model
state exhibiting the lowest error is recorded. We have also
tested dropout, however, it is found to hinder training in our
case.

The model contains several hyperparameters. Some of them
are associated with model architecture, such as the number
and specification of convolutional layers. We have tested the
effects of these hyperparameters and combinations of them,
and choose optimal ones to build our model. When the



choice of certain hyperparameters makes little difference, we
use values that lead to a simpler model (e.g., two layers
instead of three; 32 filters instead of 64). Table I shows the
model specifications with the optimal hyperparameters we
find. Other hyperparameters control the training process, such
as “patience” for early stopping and strength of weight decay.
These are tuned each time when a model is trained on different
data.

TABLE I
MODEL SPECIFICATIONS: HYPERPARAMETERS FOR EVERY LAYER; SHAPE

FOR INPUT DATA AND THE EMBEDDING SPACE.

Layers Specifications

Input Shape: (2 channels, signal length)
Conv1D Layer 1 Kernel size: 3, stride: 2, padding: 1, 32 filters
Conv1D Layer 2 Kernel size: 3, stride: 2, padding: 1, 64 filters

Pooling Layer 1D adaptive average pooling
FC Layer 1 Dimensions: (64, 32)
Embeddings Dimension: 32
FC Layer 2 Dimensions: (32, 3)

V. RESULTS AND DISCUSSIONS

We test the capability of the SCL-enhanced motor fault
detection model using the Paderborn dataset. The experiments
have three purposes:

1) Find out what is a suitable representation of input data
for SCL.

2) Ablation test on the effectiveness of SCL compared to
conventional learning schemes.

3) Benchmark of the SCL-trained deep learning model
against conventional ML models.

The data preparation and experimental design are described as
follows.

A. Experimental Design

As SCL is a general framework designed to extract infor-
mation from data, we use common representations of current
signals in time and frequency domains, without too much fea-
ture engineering. For the time domain, we divide the raw data
(64 kHz, 4 s, 256,000 time steps) into segments with lengths
of 64 ms (4096 time steps), keeping the original sampling rate.
For the frequency domain, we first take segments of length 1
s, then downsample the signals to a rate of 2 kHz and perform
Fourier transform, yielding frequency spectra from 0 to 1000
Hz, with a frequency resolution of 1 Hz. The downsampling is
done by taking one time step out of every 32 (i.e., skipping 31
time steps). By shifting the downsample selection (i.e., 0-32-
64-... to 1-33-65-...), 32 distinct data points are taken from one
1-second segment. Fourier transforms are done for each phase
current, respectively. The frequency spectra are obtained using
the fast Fourier transform (FFT) algorithm [28], implemented
in the numpy and scipy packages. The real part of intensities
are taken and converted to decibels (dB). The final amounts
of data points are around 100,000 for the time domain and
around 205,000 for the frequency domain.

For the experiments, we split the dataset into three parts:
50% for training, 20% for validation, and 30% for testing.
The validation dataset is used to monitor the training process,
and the loss function value thereon is used in learning rate
adjustment and early stopping. The final accuracy and other
metrics are evaluated on the test set. Figure 5 illustrates the
preprocessing and split of datasets.

Dataset
(4 s, 64 kHz)

Time series
(64 kHz, 64 ms)

Fourier spectra
(0~1000 Hz)

Segment

Down 
sample

Fourier 
transform

Dimension: 
4096

Dimension: 
1001

50% Training 20% 
Validation 30% Testing

Fig. 5. Preprocessing and split of datasets.

We also used some other settings to mimic more realistic
application scenarios. One is to train (and validate) on data
of some operating conditions and test on other conditions.
The other is to train on data of artificially created faults
and test on faults from accelerated experiments. However, the
results are not satisfactory. The main reason is that operating
conditions (especially load) and the way faults are created
may have a significant impact on the phase currents. Another
potential reason is that deep learning models are sensitive to
the distribution shift of data, they require the training and
testing datasets to be retrieved from the same distribution. To
extend the model to these scenarios, a practical way is to fine-
tune the model using (a small amount of) data from the target
operating conditions after pre-training the model.

B. Model Performances

We first train the model with SCL pretraining, as described
in Section IV, using time-domain and frequency-domain data,
respectively. As both the data splitting and model training
processes contain stochasticity, we repeat training multiple
times using different random settings and compare the average
testing accuracies. Testing accuracy is defined as the fraction
of correctly classified samples in the testing set. The average
accuracy is around 87% using frequency data, and 77% using
time series data, which shows the advantage of frequency
spectra as input. Next, we choose frequency spectra as the
input format and perform an ablation study. We train the model
without SCL pretraining, i.e., directly train the whole model
(Figure 4) by minimizing cross-entropy loss, keeping all other
regularization and early-stopping settings. This is to assess
how SCL pretraining benefits the model. The accuracy without
SCL pretraining is 73%, which confirms that pretraining with
SCL leads to better accuracy. Table II lists the results of these
experiments.

As a benchmark study, we then train several conventional
statistical ML models to classify frequency spectra into dif-



TABLE II
ACCURACIES OF MODELS TRAINED ON DIFFERENT INPUT FORMATS,

USING DIFFERENT TRAINING SCHEMES.

Training Scheme Input Format Accuracy

With SCL Time series 77%

Frequency spectra 87%
Without SCL 73%

ferent health conditions, using the same way of defining
training and testing sets. Models we test include logistic
regression (linear classifier), support vector machine (SVM),
tree ensembles, and k-nearest neighbors (kNN). All models are
trained using the implementation of scikit-learn [29].
For SVM, the dimension of training data is first reduced using
principal component analysis (PCA), and radial basis function
(RBF) is used as the kernel function. The gradient boosting
classifier model takes too long to train because of the data size,
hence, it is excluded from the comparison. Accuracies of other
models are reported in Table III. Out of the tested models,
random forest attains the best accuracy, higher than a deep
learning model without SCL pretraining. This is potentially
related to the tabular nature of frequency spectra [30]. The
SCL-trained deep learning model outperforms random forest,
which again demonstrates the effectiveness of SCL.

TABLE III
ACCURACIES OF STATISTICAL ML MODELS TRAINED ON

FREQUENCY-DOMAIN DATA.

Model Accuracy Note

Random forest 81% Default settings
k-nearest neighbors 69% k = 10
Logistic regression 68% L2 regularization

PCA–SVM 72% RBF kernel

In addition, the SCL approach can be applied to any
model architecture, such as the lightweight CNN used here,
at negligible computational overhead, which is desirable for
industrial applications.

C. Interpretation

Accuracy just provides an overall summary of model per-
formances. To further investigate the performance difference
between models and their origins, we show the confusion
matrix in Figure 6. In these matrices, the diagonal values are
percentages of correct classifications, and off-diagonal values
reflect the misclassification. We can observe that the deep
learning model without SCL tends to make two mistakes:
(1) misclassify inner race fault as outer race fault, and (2)
misclassify healthy as faults. The random forest model does
not suffer as much from mistake (1), but it still tends to
misclassify healthy as inner race fault. The SCL-based deep
learning model reduces both of these two mistakes, which
accounts for its better overall accuracy.

As is introduced in Section III, the power of contrastive
learning is in extracting features that distinguish classes. For

Fig. 6. Confusion matrices for (a) deep learning model without SCL, (b)
deep learning model with SCL, and (c) random forest. In each matrix, the
rows are true labels and the columns are predicted labels. The percentages are
calculated based on the number of true labels (sum along rows), i.e., recalls.

the deep learning model, we consider the embeddings gener-
ated by the “feature extractor” as the features. To investigate
the features, we use t-distributed stochastic neighbor embed-
ding (t-SNE) to reduce them to 2 dimensions and visualize
them in Figure 7. As the dataset is large (size ∼ 106), only
1,000 samples are shown in each plot. In the top left part of
Figure 7 (a), many green dots (inner race fault) overlap with
purple and yellow ones (healthy), which indicates that inner
race fault is not well distinguished from other two classes in
the feature space learned by this model without SCL. Whereas
in Figure 7 (b), green and purple dots are better separated.
The yellow dots still overlap with others, which explains
the relatively low recall (83%) of outer race fault. Yet, the
feature space forms three clearer clusters, indicating that the
distribution of features reflects the classes. This demonstrates
that contrastive learning helps extract relevant features to help
the classification of healthy and different fault types.

Fig. 7. Visualization of extracted features, (a) without SCL and (b) with SCL.
Colors indicate different labels, i.e., health/fault conditions.

Finally, we discuss limitations and future work directions.
Due to its supervised nature, the SCL approach requires
labeled datasets, and its generalizability depends on data
quality. Moreover, in-depth interpretation could help identify
informative characteristics in the signal, thus offering insights
for fault detection technique development.

VI. CONCLUSIONS

In conclusion, we investigated the effectiveness of super-
vised contrastive learning in developing data-driven models for
bearing fault diagnosis. While most existing machine learning
approaches are based on vibration signals, we develop the
fault detection method using stator current signals, which are
generally considered to be more challenging to classify. We



applied a model architecture with a feature extractor pre-
trained using supervised contrastive learning, and a classifier.
We showed that our model not only achieves a higher fault
classification accuracy than the model without contractive
learning, but also outperforms conventional machine learning
models. In future work, we will implement the method on
other experimental datasets to further validate its effectiveness.
As a general framework, we expect that our proposed fault
detection method using contrastive learning can be generally
applied to other fault detection tasks.
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[29] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent
Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Pretten-
hofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos,
David Cournapeau, Matthieu Brucher, Matthieu Perrot, and Édouard
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