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Abstract
Single-channel speech dereverberation aims at extracting a dry speech signal from a recording
affected by the acoustic reflections in a room. However, most current deep learning-based
approaches for speech dereverberation are not interpretable for room acoustics, and can be
considered as black-box systems in that regard. In this work, we address this problem by
regularizing the training loss using a novel physical coherence loss which encourages the
room impulse response (RIR) induced by the dereverberated output of the model to match
the acoustic properties of the room in which the signal was recorded. Our investigation
demonstrates the preservation of the original dere- verberated signal alongside the provision
of a more physically coherent RIR.
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Abstract
Single-channel speech dereverberation aims at extracting a

dry speech signal from a recording affected by the acoustic re-
flections in a room. However, most current deep learning-based
approaches for speech dereverberation are not interpretable for
room acoustics, and can be considered as black-box systems
in that regard. In this work, we address this problem by regu-
larizing the training loss using a novel physical coherence loss
which encourages the room impulse response (RIR) induced by
the dereverberated output of the model to match the acoustic
properties of the room in which the signal was recorded. Our
investigation demonstrates the preservation of the original dere-
verberated signal alongside the provision of a more physically
coherent RIR.
Index Terms: Speech dereverberation, hybrid deep learning,
room acoustics, acoustic matching, speech processing

1. Introduction
An acoustic signal captured in a closed room comprises several
correlated components: a more so-called direct-path signal and
a combination of early reflections plus late reverberation col-
lectively coined as reverberation signal. The reverberation phe-
nomenon may not be desirable in speech recording as it low-
ers its perceptual intelligibility [1]. This justifies the need to
transform the reverberant signal to mitigate its effects in speech-
related tasks such as speech enhancement or automatic speech
recognition [2]. The process of speech dereverberation consists
in removing the early reflections and late reverberation from a
reverberant signal, thereby approximating the dry signal. This
presents yet an ill-posed problem since it depends on decon-
volution where the impulse response is unknown. In theory,
the convolutive model used for dereverberation should repre-
sent the Room Impulse Response (RIR), which uniquely char-
acterizes reverberation. As RIR is not minimum-phase [3] or
lacks robustness to spatial variations [4], a wide range of models
mitigate deconvolution errors using regularization of the known
RIR [5, 6], deep generalization to a spatial neighbourhood [7],
or by a posterior sampling of a diffusion process informed by
the RIR [8].

A first approach is to directly model either the dry signal,
the reverberant signal, or both for dereverberation purposes. Re-
garding the modelling of reverberation, it has been represented
as a convolutive distortion, and approaches have been devel-
oped to concurrently represent the convolutive model and the
dry signal [9]. One of the most notable methods is the Weighted
Prediction Error (WPE) [10]. This method has widely benefited
from further refinement, including hybrid approaches combin-
ing WPE with deep learning [11,12]. While WPE estimates the
time-frequency (T-F) filter used to synthesize a dry signal from
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Figure 1: Overview of the proposed method.

a reverberant one, Forward Convolutive Prediction (FCP) [13]
aims at estimating the filter mapping a dry signal estimated by
a neural network to a reverberant mixture. It has been applied
to tasks such as dereverberation in a monaural setting [14], un-
supervised multichannel dereverberation [15] and source sepa-
ration [16, 17].

The FCP is moreover closely related to the Convolutive
Transfer Function (CTF) approximation, which considers rever-
beration as a subband filtering process. An observation model
based on CTF has been used in conjunction with nonnegative
matrix factorization (NMF) [18] and a diffusion model in [19].
However, neither the backward filter estimated by WPE nor the
FCP or CTF have been constrained to be realistic with respect
to room acoustics. Most state-of-the-art single-channel DNN-
based dereverberation algorithms such as TF-GridNet [20] or
UNet-based architectures [21] have shown good performance
in various scenarios, yet are purely data-driven designed. The
dereverberation task can on the other hand leverage not only the
RIR itself but also the physical properties that constrain it lead-
ing to a physics-driven dereverberation paradigm. This has been
made possible by the recent advances in blind room acoustic pa-
rameters estimation [22]. This approach has first been used to
leverage the reverberation time RT60 in classical models [23],
and refined using DNNs in [24, 25] for instance. At inference,
they require a preliminary estimation of the RT60 but do not
constrain the model output to match this property. Similarly,
FullSubnet [26] has been used to target a signal with a short-
ened RT60 [27]. While this physically realistic approach sim-
plifies the learning target of the DNN, the predicted signal is not
necessarily dry.

This paper aims to bridge the gap between convolutive
models and room acoustic properties estimation to constrain a
deep dereverberation model. More precisely, for this prelimi-
nary study, we choose FullSubNet as a weakly physics-driven



dereverberation algorithm and design physical losses inherited
from a CTF model. Our contribution is two-fold: we show that
1) DNNs designed to only dereverberate speech are also able to
implicitly model reverberation without increasing the number of
parameters and 2) explicitly synthesize an RIR from a derever-
beration model. More precisely, our proposed speech derever-
beration constrained on RIR procedure demonstrates, through
obtained objective scores, that we can maintain the overall qual-
ity of the original FullSubNet output while exhibiting a more
physically consistent RIR. For reproducibility purposes and to
help future research, we publicly distribute our code and pre-
trained models1.

2. Reverberation in the T-F domain
Time-domain formulation: Assuming fixed source and micro-
phone positions and no additive noise, a monaural reverberant
(or wet) signal y can be represented as a convolution between
a dry signal x and the room impulse response (RIR) h between
the source and the microphone:

yn = (h ∗ x)n, (1)

where n denotes the time index and ∗ the convolution operator.
STFT filtering and Convolutive transfer function: The time-
invariant linear system of Eq. (1) can be formulated in the short-
time Fourier transform (STFT) domain as interband and inter-
frame convolution [28]:

Yf,t =

F−1∑
f ′=0

∞∑
t′=−∞

Hf,f ′,t′Xf ′,t−t′ , (2)

where Yf,t is the STFT coefficient of the reverberant signal at
frequency f = 0, . . . , F − 1 and time t = 0, . . . , Ty − 1,
H ∈ CF×F×Th is a tridimensional representation of the RIR
and X ∈ CF×Tx is the STFT of the dry signal. As shown
in [28], H can be obtained in closed form from the RIR h.
Several approximations can be made from this model. Among
them, the subband filtering operation, also named convolutive
transfer function (CTF), considers the case where Hf,f ′,t′ is
nonzero only if f = f ′ [9]. Crossband modelling, investigated
in [28], considers an interband convolution kernel Cf of size
(2F ′ + 1)Th for each frequency band f . The crossband filter
can be estimated from the STFT coefficients of the dry signal
(or an estimate of it) and the reverberant signal via a frequency-
dependent least-squares optimization problem:

Cf (X) = argmin
Cf

∥∥X̄fCf − Yf

∥∥2

2
, (3)

where

Cf ≜
[
CT

f,f ′

]f+F ′

f ′=f−F ′
∈ C(2F ′+1)Th , (4)

X̄f ≜
[
X

(T)

f ′

]f+F ′

f ′=f−F ′
∈ CTy×(2F ′+1)Th . (5)

Cf (X) is the concatenation of the crossband filters CT
f,f ′ map-

ping the frequencies f ′ = f − F ′, . . . , f + F ′ of X to the fre-
quency f of the reverberant STFT Y . X̄f is the column-wise
concatenation of the Toeplitz matrices X

(T)

f ′ of size Ty × Th

constructed from frequency bands f ′ = f − F ′, . . . , f + F ′ of
the dry STFT coefficients.

1https://louis-bahrman.github.io/SD-cRIRc/

Room parameter estimation: Given an STFT representation
H of an impulse response h, the energy decay relief (EDR) [29]
is defined for each time-frequency bin (f, t) as:

EDR(H)f,t ≜
+∞∑
t′=t

|Hf,t′ |2. (6)

The EDR can be interpreted as a subband energy decay curve
(EDC), representing a frequency-dependent energy decay. It
has been used as a loss for RIR estimation [30].

3. Proposed Method
3.1. Overview

We propose to introduce a new loss term that imposes physi-
cal constraints on the RIR characteristics measured via the CTF
approximation when training a dereverberation deep neural net-
work (DNN). The general procedure to define our physical loss
term is as follows. From the dereverberated output X̂ obtained
by the DNN from a reverberant signal Y , a convolutive model
computes the CTF C(X̂) mapping the output of the DNN to
its reverberant input, following Eq. (3), and from it an esti-
mate I(X̂) of the STFT of the corresponding RIR. A physical
model is then used to compute an estimated physical property
Φ(I(X̂)) from the estimated CTF, and similarly a target phys-
ical property Φ(I(X)) from the oracle CTF obtained with the
ground-truth anechoic signal. Their distance is finally used to
define our physical loss function Lϕ.

This new loss term Lϕ can be combined with a classical
dereverberation loss Ld (e.g., assessing the reconstruction qual-
ity of the dry or direct-path signal) to train the DNN. A diagram
of the training procedure is shown in Fig. 1.

Because the convolutive and physical models are not para-
metric, they do not need to be trained. At inference, for the
dereverberation task, these blocks are discarded, and only the
DNN is used. Hence, the number of parameters, as well as the
computational complexity and memory footprint are the same
as for the original model.

3.2. Corrected Convolutive Model

The number of crossbands is limited by the dimension of the
least-squares system to solve at Eq. (3). For the system to have
a unique solution, it is required that X̄f is full-rank, hence the
relation (2F ′ + 1)Th < Ty must hold. Taking into account the
length of the dry signals and RIRs in our training data, as well
as the computational load, we limit ourselves to considering the
subband (F ′ = 0) and 3-band (F ′ = 1) cases for the CTF. We
solve Eq. (3) using QR decomposition.

It can be proven that the STFT H of the impulse response h
can be computed from the convolutive interframe and interband
filter Hf,f ′,t (if it were known):

Hf,t =

F−1∑
f ′=0

(−1)f
′
Hf,f ′,t (7)

where the multiplication by (−1)f
′

stems from the centering of
the first STFT window. We can use this relationship to obtain
an estimate of the STFT of the RIR from the CTF computed by
either the clean speech X or its estimate X̂:

I(X)f,t =

f+F ′∑
f ′=f−F ′

(−1)f
′
Cf,f ′,t(X), (8)



and similarly for X̂ . Because our model only considers a few
crossbands, this estimate will not yield the exact STFT Hf,t of
the RIR, but an approximation, even if it is computed on the
CTF C(X) obtained from the clean speech X . We define the
modeling error at each T-F bin as Ef,t = I(X)f,t −Hf,t.

To make physical properties less dependent on this approx-
imation, we attempt to compensate for the error via a spectral-
subtraction-based correction. The spectral subtraction yields
I(X)cf,t, an estimator of the RIR spectrum. The same error
correction can be applied to the estimate I(X̂) of the RIR ob-
tained from the estimate X̂ of the dry speech:

I(X)cf,t =
(
|I(X)f,t|2 − |Ef,t|2

)1/2
ej∠I(X)f,t , (9)

I(X̂)cf,t =
(
|I(X̂)f,t|2 − |Ef,t|2

)1/2

ej∠I(X̂)f,t . (10)

Note that adjusting both target and estimated convolutive trans-
fer functions by the same quantity will alter the nonlinear be-
haviour of the physical model employed.

If the spectrogram of the RIR that has been used for data
generation is not available, one can still compare the physical
properties estimated from I(X̂) and I(X) directly without ap-
plying the correction.

3.3. Physical coherence loss

As an example of physical characteristic of interest to be used as
a constraint on the RIR, we consider the dB-scaled EDR [29].
Given an STFT of an RIR or an approximation of it, R, the
dB-scaled EDR is obtained as:

Φf,t(R) ≜ EDRs(R)f,t = 10 log10
EDR(R)f,t
EDR(R)f,0

. (11)

The physical coherence loss LΦ can then be defined as a point-
wise mean-squared error between the dB-scaled EDRs obtained
from an estimate R̂ and a target R. Since the tail of the EDR is
very sensitive to CTF approximation errors and has high values
on the log scale, both target and estimated EDRs are masked to
exclude time-frequency bins where the target EDR is lower than
−20 dB:

LΦ(R̂,R) =
∑
f,t

∣∣Φf,t(R̂)−Φf,t(R)
∣∣21{Φf,t(R)>−20}.

(12)

We consider several variants for the selection of R̂ and R, such
as I(X̂)c and I(X)c, as described in Section 4.1.

3.4. Multi-objective training

To balance both physical coherence and reconstruction losses in
a multi-task training setting, we use GradNorm [31]. GradNorm
ensures that the gradients of both LΦ and Ld losses have equal
norms across all weights. In our setting, LΦ is highly noncon-
vex with respect to the network parameters, so we prioritize the
reconstruction loss over the physical coherence loss to stabilize
training. After GradNorm has been applied, we further multiply
the physical coherence loss by a constant weight wΦ. Based on
preliminary experiments, we set wΦ = 0.1.

4. Experiments
4.1. Model variants

We assess several variants of our method with FullSubNet
(FSN) [26] as the baseline dereverberation model (see Fig. 1).

The ability of FullSubNet to process spectrograms both in the
full-band and subband directions is required to estimate a cross-
band convolutive model. It has also been successfully used
to solve the physically meaningful task of reverberation-time
shortening [27]. We select its bidirectional version and keep the
original training loss expressed as a mean square error on its
complex ratio mask output [32] as the dereverberation loss Ld.

The following variants are considered, representing differ-
ent ways to compute the convolutive model. We define two
kinds of approaches depending on whether subband or cross-
band filters are considered to obtain the estimates of the RIR
STFT, and which estimates and targets are compared:

• Subband approach (SB): LΦ(I(X̂),H), comparing the esti-
mate from X̂ with ground-truth RIR STFT H .

• Symmetric Subband approach (SSB): LΦ(I(X̂), I(X)),
comparing the estimate from X̂ with the estimate from X .

• Corrected Subband approach (CSB): LΦ(I(X̂)c, I(X)c),
comparing the corrected estimate from X̂ with the corrected
estimate from X .

• 3-band approach (3B): LΦ(I(X̂),H), similar to SB but
computed using F ′ = 1 crossbands.

4.2. Miscellaneous configurations

As in the original FullSubNet, 49151 sample excerpts (around
3 s at 16 kHz) reverberant audios are processed in the STFT
domain using a 512-sample Hann window with an overlap of
50 %. The network is trained for 330, 000 steps using the Adam
optimizer with an initial learning rate (LR) of 10−4 and a One-
cycle-LR with a maximum at 10−3.

4.3. Training dataset

Similarly to [20], we simulated a training dataset by dynami-
cally convolving dry speech signals with simulated RIRs. The
dry speech signals are randomly sampled from the close-talking
microphone recordings in the WSJ0 dataset [33]. The training
set is composed of a total of 61 hours of recordings split into
31,350 audio excerpts. The simulated RIR dataset consists of
32,000 RIRs simulated using the pyroomacoustics library [34]
with 2000 rooms whose dimensions and RT60 are uniformly
sampled in the respective ranges of [5, 10]×[5, 10]×[2.5, 4] m3,
and [0.2, 1.0] s. In each room, a source is randomly posi-
tioned and 16 microphones are sampled such that the source-
microphone distance D is uniformly distributed in [0.75, 2.5] m
and both source and microphone are at least 50 cm from the
walls. At training time, we use a dynamic mixing procedure
consisting in randomly selecting a dry signal and RIR pair. In
order to align the dry signal target and the direct-path, the sam-
ples before the direct path are discarded and it is normalised (so
that the first impulse is of amplitude 1). This does not change
the RIR distribution and compensates for the delay induced by
the direct-path, both on the STFT H and on the oracle EDR
Φ(H) so that they will start decreasing at the first frame.

We evaluate the proposed method on two different tasks:
speech dereverberation and room impulse response characteri-
zation.

4.4. Metrics for evaluation and tasks

We evaluate the generalization performance of our metrics to
both unseen sources and rooms. For dry sources, we consider
the test set of WSJ0 [33], and Librispeech clean [35]. Two re-
verberation datasets are considered: one simulated using un-



Table 1: Dereverberation scores ± standard deviation (std.) for FullSubNet (FSN) and its constraints versions.

Matched RIRs Mismatched RIRs

WSJ0 LibriSpeech clean WSJ0 LibriSpeech clean

STOI SISDR WB-PESQ STOI SISDR WB-PESQ STOI SISDR WB-PESQ STOI SISDR WB-PESQ

FSN 0.93± 0.07 5.1± 4.1 2.23± 0.60 0.90± 0.11 3.1± 4.3 2.06± 0.55 0.87± 0.06 0.9± 2.6 1.60± 0.21 0.84± 0.10 −0.8± 3.4 1.53± 0.24
+ SB 0.92± 0.07 4.3± 4.2 2.10± 0.56 0.89± 0.11 2.5± 4.6 1.98± 0.51 0.86± 0.06 −0.3± 2.9 1.46± 0.19 0.82± 0.10 −1.9± 3.5 1.42± 0.21
+ CSB 0.92± 0.07 4.2± 4.6 2.11± 0.65 0.89± 0.11 2.2± 5.1 1.99± 0.59 0.86± 0.06 −0.7± 2.9 1.43± 0.18 0.82± 0.10 −2.4± 3.8 1.41± 0.21
+ SSB 0.93± 0.07 4.8± 4.1 2.19± 0.59 0.89± 0.11 2.6± 4.5 1.99± 0.52 0.87± 0.06 0.6± 2.7 1.57± 0.20 0.83± 0.10 −1.3± 3.8 1.49± 0.23
+ 3B 0.93± 0.07 4.9± 4.1 2.24± 0.60 0.90± 0.11 2.9± 4.6 2.07± 0.57 0.87± 0.06 0.7± 2.6 1.61± 0.21 0.84± 0.10 −1.0± 3.7 1.54± 0.25

input 0.86± 0.09 −0.2± 4.8 1.76± 0.67 0.85± 0.12 −1.0± 5.5 1.89± 0.76 0.75± 0.07 −4.5± 2.9 1.20± 0.11 0.74± 0.10 −5.2± 3.7 1.24± 0.16

seen rooms matching the same physical parameters as the train-
ing dataset described in Section 4.3 (”Matched RIRs”), and
the other matching harder conditions (”Mismatched RIRs”):
RT60 ∈ [1.0, 1.5] s room size range in [10, 15] × [10, 15] ×
[4, 6] m3, D ∈ [2.5, 4.0] m. The dereverberation performance
between the baseline and the proposed approaches is evaluated
using the Short-time-objective Intelligibility STOI, the Scale In-
variant Signal-to-noise ratio (SISDR) [36], and the wide-band
Perceptual Evaluation of Speech Quality WB-PESQ.

To demonstrate the acoustic matching capability acquired
by the network constrained by RIR characteristics, we compare
the energy decay curves (EDCs) predicted at the output of each
version of the DNN using 3 convolutive models:

• EDC-Fourier: LΦ

(
IDFT

[
DFT(yn)
DFT(xn)

]
, hn

)
,

where (I)DFT is the (inverse) discrete Fourier transform, and
Φn(r) =

∑+∞
n′=n |r(n′)|2 [27].

• EDR-Subband: Corresponds to the SB loss, which we con-
sider as a metric.

• EDR-Crossband: Corresponds to the 3B loss, which we con-
sider as a metric.

5. Results and Discussion
5.1. Dereverberation

The results for the dereverberation task are presented in Table 1.
Our proposed solution, FSN+3B, has a higher WB-PESQ on
all datasets and acoustic conditions than the FSN baseline. All
physically constrained variants exhibit similar performance in
terms of STOI as the baseline. This means that the physical
coherence loss and the dereverberation loss can be jointly op-
timized and that they both converge to equally performing op-
tima in terms of STOI on the space of the DNN weights. The
poorer results of our methods compared to the baseline in terms
of SISDR can be explained by the DNN encountering difficulty
in optimizing the phase of the complex mask mapping Y to
X when it is constrained by a convolutive model. Considering
this metric, the model trained on SSB performs similarly to the
model trained on 3B. These losses are the ones that introduce
the least constraints on the training and that are the least well-
defined (SSB by introducing subband modelling errors, and 3B
by being unstable). Because these two losses regularize the
training in a physically realistic manner, they enable the model
to perform better on unseen cases and to generalize to out-of-
domain RIRs and source signals. Further experiments show that
the dereverberation performance remains consistent when high
SNR noise is added to the reverberant input of the model at test
time. These results reflect FullSubNet’s underlying design as-
sumption that both Full- and Subband modelling are needed for
the dereverberation task.

Table 2: RIR estimation scores ± std. on the WSJ0 test set.

Matched RIRs Mismatched RIRs

EDC EDR EDC EDR

Fourier Subband Crossband Fourier Subband Crossband
FSN 66.2± 28 39.0± 12 99.6± 24 86.4± 15 37.8± 7 116.7± 6
+SB 60.5± 21 32.7± 7 100.7± 22 66.3± 16 27.6± 6 114.9± 7
+CSB 52.6± 24 34.1± 13 97.8± 24 63.1± 16 25.6± 4 113.6± 7
+SSB 76.4± 23 39.9± 10 102.9± 23 86.2± 14 40.4± 8 117.9± 6
+3B 67.1± 27 38.7± 11 100.0± 24 86.8± 15 37.5± 7 117.2± 6

dry 0.0± 0 36.7± 10 75.0± 19 0.0± 0 38.4± 8 84.4± 12

5.2. RIR estimation

Table 2 compares the performance of all proposed approaches
with respect to the energy decay of several convolutive models.
The line denoted ”dry” shows LΦ(I(X),H) for each convolu-
tive model and energy decay EDC-Fourier, EDR-Subband, and
EDR-Crossband. It represents the best theoretical performance
each convolutive model can offer. The results of the 3B met-
ric show a very high error and variance. This can be explained
through Avargel’s error analysis of the Crossband filtering [28],
where it is shown that for a given SNR on the dry and rever-
berant signal, there exists only one single tuple (F ′, Tx) min-
imizing the mean-squared error. Further analysis shows that
the length of the signal considered was too short for the Cross-
band method to perform well, hence its poor results. The results
suggest that the RIR estimation task competes with the derever-
beration task, as indicated by their differing performance rank-
ings. The FSN+CSB variant is performing the best and is ca-
pable of modelling the subband model even better than the or-
acle subband model I(X). This can be explained by the fact
that forcing the model output to respect a subband model while
maintaining its ability to process crossbands in its latent repre-
sentation is very efficient to predict the STFT, but insufficient to
perform dereverberation correctly. This assumption is indeed at
the core of FullSubNet’s design. Accordingly, a general guide-
line might be to resort to FSN+CSB for the RIR estimation task,
and to FSN+3B for the dereverberation task.

6. Conclusion
We have proposed a novel approach for speech dereverberation
which constrains the estimated room impulse response to well
capture the acoustic properties of the room in which the signal
was recorded. While the overall dereverberation performance
remains comparable to the baseline model, having access to a
realistic room impulse response characterizing the reverberated
environment opens the path to a variety of controllable acoustic
transformation applications (acoustic sound matching, realistic
room shape modifications,...). Future work will be dedicated to
the generalization of our approach to other DNN architectures.
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