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Abstract
While offline speech separation models have made significant
advances, the streaming regime remains less explored and is
typically limited to causal modifications of existing offline net-
works. This study focuses on empowering a streaming speech
separation model with autoregressive capability, in which the
current step separation is conditioned on separated samples
from past steps. To do so, we introduce pseudo-autoregressive
Siamese (PARIS) training: with only two forward passes
through a Siamese-style network for each batch, PARIS avoids
the training-inference mismatch in teacher forcing and the need
for numerous autoregressive steps during training. The pro-
posed PARIS training improves the recent online SkiM model
by 1.5 dB in SI-SNR on the WSJ0-2mix dataset, with minimal
change to the network architecture and inference time.
Index Terms: autoregressive, speech separation, source sepa-
ration, online

1. Introduction
Speech signals often overlap with each other in natural scenes,
but the human brain has the inherent ability to separate such
signals. It is crucial to equip machines with such ability, which
is termed as the “cocktail party problem” [1], as it serves as a
crucial frontend for other tasks such as automatic speech recog-
nition or speaker localization.

The task of speech separation [2] tackles the “cocktail party
problem” by separating a mixture signal into individual clean
signals. Many great network architectures have been designed
in the deep learning era, such as Conv-TasNet [3], DPRNN [4],
TF-GridNet [5], and others [6–10]. Target speaker extraction is
another active line of research that aims at only separating the
speech of a person of interest, conditioned on an auxiliary signal
such as reference speech [11–13], visual recordings [14–18],
brain signals [19, 20], metadata [21], or distance [22].

The majority of speech separation and extraction networks
are primarily designed and evaluated for offline processing. On-
line streaming models typically emerge as causal modifications
of offline networks. However, such offline networks are usually
developed for utterance-level processing, which is available to
them, while online processing naturally entails having access to
the separated speech signal from past steps when processing the
newly acquired mixture signal at the current step, making the
case for actively exploiting this information. Speech generation
networks such as WaveNet [23] and SampleRNN [24] have un-
veiled the power of generating high-fidelity natural speech in an
autoregressive (AR) manner by feeding in past-step model out-
puts. Similarly, we aim to use the separated signals in the past
step as a prior to condition the model in the current-step sepa-
ration in an autoregressive manner, with the hope of enhancing

the separated speech quality.
Although autoregressive models are powerful, their train-

ing is tedious as the model needs to forward-pass every feature
frame sequentially in steps. A common technique to train AR
networks is teacher forcing [25], which uses ground truth as
the past-step estimate during training and utilizes model output
during inference, but the mismatch may become problematic in
speech models as the error propagates quickly with high frame
rates of speech signals.

In the literature, the Listen and Grouping network at-
tempted online autoregressive speech separation by proposing
a multi-time-step prediction training (MCT) [26, 27]. For each
batch in training, the model is initialized with teacher forcing
and then performs the forward pass for a number of time steps
before back-propagation. The model performs better when the
number of steps is close to the model’s receptive field. Alter-
natively, a speech enhancement work proposed iterative autore-
gression (IA) [28], which forward-passes the whole utterance
instead. IA trains the model using teacher forcing in a first pass,
then replaces the conditioning ground truth with the model’s
own outputs for multiple passes iteratively, and the loss is back-
propagated only for the last pass. Both works involve forward-
passing the model many times to reduce the mismatch between
teacher-forcing training and autoregressive inference.

Unlike generative language models in which the autoregres-
sive feedback conditioning signal is a necessity, speech separa-
tion models are usually non-generative, and thus can separate
the mixture signals adequately based only on mixture speech
signals. Taking advantage of this, it is possible to use such
non-autoregressive model output as the conditioning signal to
train an autoregressive speech separation model. The Neuro-
Heed [29] speaker extraction model used a non-autoregressive
model output to train an autoregressive speaker encoder for en-
hancing the online speaker representation. Inspired by it, we
aim to use such non-autoregressive model output, which we re-
fer to as pseudo-autoregressive separated speech signals in this
paper, to enhance the model’s separation capability in an au-
toregressive way.

We propose PARIS, a Pseudo-AutoRegressIve Siamese
training paradigm to train an online autoregressive speech sep-
aration model. In training, the model performs two passes at
the utterance level in a Siamese-style network. The first pass is
through the first network, which only takes in the mixture signal
as input and the output is treated as the pseudo-autoregressive
separated speech signals. The second pass is through the sec-
ond network, which takes in the mixture signal and the shifted
pseudo-autoregressive separated speech signals from the first
pass to perform speech separation. The model weights of the
networks are shared. During inference, the model is condi-
tioned on its own past step outputs in a real autoregressive
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Fig. 1: The proposed Pseudo-AutoRegressIve Siamese training (PARIS) for an online autoregressive speech separation model, which is
illustrated with chunk size L = 2. The upper network and lower network are identical with shared weights. Only the lower network is
used for streaming inference. All streams are encoded with the same encoder and concatenated (⊕) along the channel dimension.

way. We compare PARIS with traditional training on the skip-
ping memory long short-term memory network (SkiM) which is
known for its low latency and excellent performance for online
speech separation [30]. With only an additional projection layer
added to the network architecture to incorporate the past sepa-
rated speech signals, PARIS achieves a 1.5 dB improvement in
terms of scale-invariant signal-to-noise ratio (SI-SNR) [31] on
the WSJ0-2mix dataset [2].

2. Online Autoregressive Separation
Given a speech mixture waveform x = (xt)t=1,...,T of length
T , a two-speaker separation model estimates ŝ = (ŝ1, ŝ2)
that approximate the clean signal of individual speakers s =
(s1, s2). In online inference, a causal speech separation model
handles x in multiple steps, processing at each step k a chunk
of L newly acquired waveform samples x[tk:tk+L]

1, with start
time tk determined by the hop size. For an autoregressive
speech separation model f(·), the estimation of ŝ[tk:tk+L] is
further conditioned on the outputs ŝ[tk−L:tk] from the past step:

ŝ[tk:tk+L] = f(x[tk:tk+L], ŝ[tk−L:tk]) (1)

A speech separation model typically consists of a speech
encoder, a separator or a mask estimator, and a speech decoder,
irrespective of whether the model operates in the time domain or
the frequency domain. In the frequency domain, the chunk size
L is usually the short-time Fourier transform (STFT) window
length, while in the time domain, it is usually the kernel size
of the first one-dimensional convolutional layer (e.g., [3]). It is
common for the speech encoder to have a hop size typically a
fraction of the kernel size, and the speech decoder to have an
overlap-add operation with the same hop size. We here refer
to as “past step” the fully reconstructed chunk that ends just
before the beginning of the current chunk. Ideally, we would
like to use the same speech encoder to process the past signals
and the mixture signal, thus the chunk size of the past signal
used at each step is also set to L here.

The naive way of training an autoregressive model is to run
the model step-by-step for an utterance during training, but this
makes training extremely slow. In machine translation and natu-
ral language processing, teacher forcing [25] is commonly used
to speed up training, and scheduled sampling [32] is used to
minimize the resulting training-inference mismatch. Similarly,
MCT [26] and IA [28] have been proposed for speech sepa-
ration and enhancement respectively, but both involve teacher
forcing with several forward passes for each batch, which is
still slow compared to non-autoregressive model training.

1We use a Python-style notation here where the last index is omitted.

3. PARIS
We propose a Siamese-style training paradigm named PARIS
to train an autoregressive speech separation model, without the
need for teacher forcing or forwarding the model multiple steps
for each batch.

3.1. Network architecture

PARIS relies on two identical networks in parallel with shared
weights, as shown in Fig. 1. The network could be virtually
any speech separation or target speaker extraction model, as
networks generally follow the encoder-separator-decoder archi-
tecture. We build on top of the two-speaker-separation SkiM
model [30] in this work.

The network should receive the mixture signal and both
past-step output signals as inputs. Similarly to [33], we use
the same speech encoder to process the signals independently.
We opt for concatenation fusion, which concatenates the three
features along the channel dimension after the convolution layer
in the speech encoder. Only an additional linear layer is added
to the original SkiM model to project the concatenated features
back to the original feature dimension.

3.2. Data flow

We illustrate PARIS with chunk size L = 2 in Fig. 1. For
each batch in training, there are two forward passes before back-
propagation. The first pass is through the upper network to ob-
tain the “pseudo” past separated speech r̂ ∈ {r̂1, r̂2}. The up-
per network is similar to conventional speech separation model
training, except that there are two redundant zero vectors as in-
put besides the mixture signal x[0:T−L] to accommodate the
Linear projection layer after the speech encoder. The second
pass is through the lower network that simulates the autoregres-
sive speech separation, using pseudo past separated speech r̂ as
the conditioning prior. The r̂ is right shifted by the chunk size L
when inputting to the lower network such that the current step
estimation is paired with the last step pseudo-separated speech.
The gradient of r̂ is also detached from the computational graph
when feeding r̂ into the lower network.

Since the two networks have identical architecture and
shared weights, with the only difference being the condition-
ing signal, and they are both trained to separate the signals, we
expect their outputs to become similar as training progresses,
which is why we refer to r̂ as “pseudo” past separated speech.
During streaming inference, the data flows only through the
lower network step-by-step, with its outputs fed back as input
in the next step of processing, in a true autoregressive fashion.



Table 1: We use the validation set autoregressive streaming decoding results here to select the best settings for our proposed PARIS
training. The validation set (CV) and test set (TT) SI-SNR values are reported in dB. α is the scalar weight in Eq. (4), stop gradient
refers to detaching the gradient of r̂ from the computational graph when passing it into the lower network, training prior refers to the
whether pseudo speech r̂ or ground truth speech s is passed into the lower network, shared weights refers to sharing network weights
between the upper and lower network, and loss refers to whether SNR or SI-SNR loss is used in Eq. (2 and 3).

Sys. # α Stop gradient Train prior Share weights Loss CV SI-SNR TT SI-SNR

1 0.00
✓ Pseudo ✓

SNR 14.7 14.1
2 0.25 SNR 15.2 14.7
3 0.50 SNR 15.0 14.3

4

0.25

✗ Pseudo ✓ SNR 14.3 13.7
5 ✓ Pseudo ✓ SI-SNR 14.6 13.5
6 ✓ GoundTruth ✓ SNR 0.6 −4.5
7 ✓ Pseudo ✗ SNR 15.0 14.3

3.3. Loss function

Both outputs from the upper and lower networks are constrained
with a loss function, for which we maximize the signal-to-noise
ratio (SNR) between the network outputs and the clean speech
signal s1 and s2:

L1 = −10 log10(
||s||2

||r̂ − s||2 ) (2)

L2 = −10 log10(
||s||2

||ŝ− s||2 ) (3)

where L1 and L2 are applied to upper and lower network out-
puts respectively. Utterance-level permutation invariant train-
ing is applied during training to address the permutation prob-
lem [2, 34]. The overall loss is the weighted sum of the two
losses with a scalar α:

Loverall = α ∗ L1 + (1− α) ∗ L2 (4)

We choose the scale-sensitive loss function SNR instead
of the widely used scale-invariant signal-to-noise ratio (SI-
SNR) [31] for PARIS, as it would be difficult to properly nor-
malize the network output to be fed back as input in step-by-step
streaming settings if the SI-SNR loss were used.

4. Experimental setup
4.1. Dataset

We evaluated our method on the widely-used WSJ0-2mix
dataset [2]. We used the 8 kHz two-speaker “min” version of
the dataset, which contains 30 hours of training data (TR), 10
hours of validation data (CV), and 5 hours of test data (TT).
The two speaker’s speech signals are mixed at a random rela-
tive signal-to-noise ratio (SNR) between −5 and 5 dB.

4.2. Model and training settings

We use the online SkiM [30] model as our baseline in this pa-
per, with hyperparameters following the ESPNet configuration
[35]. The encoder has kernel size L set to 8, stride set to 4, and
embedding size set to 128. The SkiM separator LSTM has a
unit size of 384 and a non-overlapping segment size of 50.

We implement both the SkiM baseline and our proposed
model using PyTorch. We use the Adam optimizer [36] with an
initial learning rate of 0.001. After the 50th epoch, the learning
rate decreases by 3% every other epoch, and the training stops
at the 150th epoch. The batch size of the baseline is set to 16
while the batch size of our model is set to 8 such that the GPU

memory occupation during training are similar. During training,
the utterances are fixed to 4 seconds, while the full utterance is
used for evaluation.

5. Results
In this section, we first use the validation set result to select our
best training settings for PARIS, then compare our selected sys-
tem with the baseline SkiM. We evaluate the signal quality of
the separated speech signals using SI-SNR [31] and SDR [37],
and the perceptual quality using perceptual evaluation of speech
quality (PESQ) [38]. The higher the better for all three metrics.
We use SI-SNR as our main measure when describing the re-
sults, as other measures show similar trends. We give every
differently trained system a number (Sys. #) for clarity.

5.1. Model tuning

In Table 1, we first select the best α value by comparing Sys-
tems 1-3. System 2 with α = 0.25 achieves the best validation
SI-SNR of 15.2 dB, showing the importance of putting more
emphasis on the lower network as its data flow is closer to real
autoregressive settings compared to the upper network.

In System 4, we do not stop the gradient of r̂ when feed-
ing it to the lower network, thus L2 flows through the upper
network, affecting the upper network’s ability to estimate clean
speech signals as an independent network, and the validation
SI-SNR drops by 0.9 dB compared to System 2, justifying our
proposal to stop the gradient.

In System 5, we use SI-SNR loss for L1 and L2, so the
network outputs are not bounded and properly normalized, af-
fecting the lower network’s performance, and the validation SI-
SNR drops by 0.6 dB compared to System 2.

In System 6, we use teacher forcing to train the lower net-
work, which conditions on the ground truth s instead of r̂. Sys-
tem 6 can separate the training set very well but the validation
SI-SNR is only 0.6 dB, showing that there is significant mis-
match between training and inference.

In System 7, we do not share the weights between the upper
and lower networks, thus expecting a larger mismatch between
the upper and lower networks’ outputs. The validation SI-SNR
drops by 0.2 dB compared to System 2.

5.2. Comparison with baseline

We compare PARIS with baselines in Table 2 on the WSJ0-
2mix test set. Our main baseline is System 8, the original
SkiM model. Our autoregressive System 2 outperforms SkiM



Table 2: SI-SNR [dB], SDR [dB], and PESQ results for PARIS
and baselines on WSJ0-2mix test set. At inference, the same
PARIS system can be run in autoregressive (AR) mode (default),
non-AR mode (indicated by †), or pseudo-AR mode (indicated
by ‡). All systems have 7.9 million parameters.

Sys. # Method AR SI-SNR SDR PESQ

8 SkiM [30]
✗

13.2 13.6 2.79
9 SkiM (SNR loss) 13.0 13.4 2.78

2
PARIS

✓ 14.7 15.1 2.99
2† ✗ 13.9 14.3 2.87
2‡ Pseudo 14.8 15.1 2.99

1 PARIS (α = 0) ✓ 14.1 14.5 2.89
1† ✗ 9.0 9.5 2.34

10 Two-stage PARIS ✗ 14.6 15.0 3.00

by 1.5 dB in terms of SI-SNR and SDR, and 0.20 for PESQ.
As our System 2 is trained with SNR loss while SkiM in

System 8 is trained with SI-SNR loss, we also report System
9 in which SkiM is trained with SNR loss. System 9 has de-
graded performance compared to System 8, showing the advan-
tage of SI-SNR loss compared to SNR loss for conventional
speech separation models. In future work, it would be worth
exploring how to adapt SI-SNR loss into PARIS.

We also present the results of System 10, which is trained
the same way as System 2, except that we do not shift r̂ be-
fore passing into the lower network. Therefore, System 10 is
a two-stage network, which is non-autoregressive and requires
forwarding the network twice during inference, doubling mem-
ory cost and inference time. System 10 performs similarly to
System 2, with 0.1 dB lower SI-SNR and 0.01 higher PESQ.

We plot a histogram of the test samples’ SI-SNR in Fig. 2.
Comparing Systems 2 and 8, they have a similar number of
samples with negative SI-SNR, but System 2 has fewer sam-
ples with SI-SNR between 0 to 15 dB while more samples with
SI-SNR greater than 15 dB.

5.3. Ablation studies

We also present several ablation studies of different inference
modes in Table 2. Our proposed PARIS decoding in System 2 is
autoregressive. However, because of our Siamese-style training,
the same network can also be used in non-autoregressive (non-
AR) and pseudo-autoregressive (pseudo-AR) decoding modes.

The non-AR decoding mode, denoted as System 2†, corre-
sponds to using the output of the upper network in Fig. 1, with
only the mixture signal as input and zero vectors as condition-
ing. It obtains an SI-SNR of 13.9 dB, which is 0.8 dB lower
than System 2. Interestingly, it is better than SkiM (System 8)
by 0.7 dB in SI-SNR, which shows that the coupling with train-
ing the lower network appears to advantageously regularize the
weights when applied to the upper network compared to train-
ing the weights through the latter alone.

In the pseudo-AR decoding mode, denoted as System 2‡,
we use the upper network output r̂ instead of the real output ŝ
as the conditioning prior. System 2‡ is thus also a two-stage
network that involves forwarding both the upper and lower net-
works. System 2 has similar performance compared with Sys-
tem 2‡, with the latter being higher in SI-SNR by 0.1 dB.

To further investigate the difference between decoding
modes, we present scatter plots of the SI-SNR for different de-
coding modes on the test samples. In Fig. 3 (a), we plot System
2‡ (pseudo-AR) against System 2† (non-AR). With more sam-
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Fig. 3: Scatter plot of test samples SI-SNR for different decoding
modes of our proposed PARIS. Color represents the SNR of the
mixture signal.

ples located in the upper left region, we can see that, for most
samples, pseudo-AR decoding improves upon non-AR decod-
ing, showing that conditioning on already separated samples
helps in the separation of the incoming samples within an ut-
terance. In Fig. 3 (b), we plot System 2 (AR) against System
2‡ (pseudo-AR). We can see that the samples have a larger vari-
ance in the distribution along the two sides of the identity line.
This may be due to the fact that the separation performance of
the former steps accumulates and directly affects the latter steps
with a compounding effect, causing some samples to improve
significantly while some samples degrade significantly. On av-
erage, the two systems exhibit similar overall performance as
shown in Table 2.

We finally present in Table 2 the results of System 1 in AR
decoding mode together with System 1† in non-AR decoding
mode. Even though there is no loss applied to the upper network
in System 1, meaning that the network is not directly trained to
only receive mixture signals as input, the non-AR System 1†

still has an SI-SNR of 9.0 dB, showing that the Siamese system
creates non-trivial cooperation between the 2 networks

6. Conclusion

We presented PARIS, a training paradigm for autoregressive
speech separation models that uses a pseudo-autoregressive
scheme to reduce training complexity compared with fully au-
toregressive training, and training-inference mismatch com-
pared with teacher forcing. PARIS only performs two forward
passes for each batch during training, with a Siamese-style net-
work setup. With only minimal change to the network archi-
tecture, it results in 1.5 dB improvement on the WSJ0-2mix 2-
speaker dataset over regular training for the SkiM architecture.
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