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Few-shot Transparent Instance Segmentation for Bin Picking

Anoop Cherian, Siddarth Jain, and Tim K. Marks

Abstract— In this paper, we consider the problem of seg-
menting multiple instances of a transparent object from RGB
or gray scale camera images in a robotic bin picking setting.
Prior methods for solving this task are usually built on the
Mask-RCNN framework, but they require large annotated
datasets for fine-tuning. Instead, we consider the task in a few-
shot setting and present TrInSeg, a data-efficient and robust
instance segmentation method for transparent objects based
on Mask-RCNN. Our key innovations in TrInSeg are twofold:
i) a novel method, dubbed TransMixup, for producing new
training images using synthetic transparent object instances
created by spatially transforming annotated examples; and ii)
a method for scoring the consistency between the predicted
segments and rotations of an ideal object template. In our
new scoring method, the spatial transformations are produced
by an auxiliary neural network, and the scores are then used
to filter inconsistent instance predictions. To demonstrate the
effectiveness of our method, we present experiments on a new
few-shot dataset consisting of seven categories of non-opaque
(transparent and translucent) objects, each category varying in
the size, shape, and degree of transparency of the objects. Our
results show that TrInSeg achieves state-of-the-art performance,
improving fine-tuned Mask-RCNN by more than 14% in mIoU,
while requiring very few annotated training samples.

I. INTRODUCTION

From small medicine bottles to the giant window panes of
modern buildings, transparent objects are ubiquitous in our
daily lives. Commonplace transparent items such as glasses,
jars, and bottles—ubiquitous in both home and industrial
settings—pose both challenges and opportunities for robotic
manipulation. When deploying robotic agents to automate
our tasks, it is thus essential to ensure that these agents
can perceive and operate on transparent and semi-transparent
objects [1]. One such task is robotic bin picking, in which
a robot is required to pick up instances of an object from a
cluttered bin consisting of many object instances. This task
occurs in both factory settings (e.g., for kitting, assembly,
and packing) and home/business settings (e.g., picking a
glass bottle from a box of bottles to serve juice, or picking
wineglasses from a dish washer). The first step in solving the
bin picking problem is to segment the object instances from
each other and the background to produce a set of instance
candidates, which can be used in a grasp and motion planning
pipeline for effectuating the pick.

While many approaches to instance segmentation have
been proposed [2], [3], [4], [5], they typically assume in
the wild settings and very general contexts, and they operate
mainly on opaque objects. Although there are extensions of
these methods for transparent object segmentation [6], [7],
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Fig. 1. Left: Two example images from our few-shot dataset, each
containing multiple instances of a different transparent bottle captured using
a RealSense (top) or Ensenso (bottom) camera. Right: Instance segmentation
results on each image using our TrInSeg method.

[8], [9], [10], the problem of transparent instance segmen-
tation (segmenting individual instances of the same object)
has not received much attention in settings with limited
training data. Typically, the characteristics of transparent ob-
jects present significant challenges for robots in perception.
For example, these objects often lack discernible surface
features such as color and texture, relying heavily on the
background of the image for visual distinction. Moreover,
the reflective and refractive nature of transparent surfaces
complicate the acquisition of precise depth data using depth
sensors. Consequently, the collected data may prove invalid
or contain unpredictable noise, thereby exacerbating the
challenges associated with transparent object perception. Our
setting is further complicated by shadows and the existence
of non-transparent parts, as well as the overlap of transparent
objects on top of each other, making the problem of instance
segmentation of transparent objects particularly challenging.

In this paper, we consider this problem in a bin picking
setting using images from a camera overlooking the bin.
Figure 1 shows example images of instances in our setup.
A typical way to approach this problem is to leverage pop-
ular pre-trained deep learning-based instance segmentation
frameworks such as Mask-RCNN [2] and fine-tune them
on annotated data in a supervised manner. Some extensions
of Mask-RCNN for detecting transparent objects leverage
transparency cues. For example, in Kalra et al. [11] polarized
images are used with Mask-RCNN for transparent instance
segmentation, light-field images are considered in [12], en-



hanced matting is proposed in [13], stereo images are used
in [14], and RGB-D images in [15], [8], [16]. However,
unlike these approaches, we consider the task in the native
RGB or grayscale image setting without the need for any
other modality, thereby allowing our method to be generally
applicable. A common challenge in such a setting is the
demand for large annotated training sets for fine-tuning the
pre-trained model [8], [17], [18], [19]; however, producing
such training sets could be laborious, expensive, and often
inflexible when target objects vary frequently. While simula-
tions could be considered to bypass some of these issues [20],
bridging the sim-to-real gap may pose further challenges.

In this paper, we consider the problem of transparent
object instance segmentation using a Mask-RCNN backbone
(similar to prior methods [11], [17]). Unlike previous work,
however we approach the problem from the perspective of
few-shot learning in a robotic bin picking setting, which to
the best of our knowledge is a direction that has not been
explored before. Specifically, in comparison to prior meth-
ods that need hundreds or thousands of annotated training
images, our method requires far fewer (tens of annotated
images). A key insight of our method is based on the inherent
symmetry and rigidity of the transparent objects that we
consider (as illustrated in Figures 1 and 5); specifically, each
instance is a rigid spatial transformation of an underlying
object model that is rendered into the camera image and
adapted using physical characteristics of translucency. We do
not assume access to 3D CAD models of the objects; instead,
we use the annotated instances to form an approximate
template of the object. Based on this observation, we propose
TrInSeg, our few-shot Transparent Instance Segmentation
method, which leverages the training examples in two ways:
i) We generate a potentially infinite synthetic training set (for
training any deep learning instance segmentation backbone)
using the approximate object model obtained from the in-
stance annotations—a method we call TransMixup; and ii)
we filter the instances predicted by the backbone by scoring
their consistency with the object model. Our scoring method
is based on an auxiliary spatial transformer neural network
that predicts the rotation parameters of the object model that
are consistent with the instance predictions by the backbone.
This consistency has the additional advantage of inferring
instance occlusions.

To empirically evaluate our method, we provide exten-
sive experiments on a new real-world instance segmentation
dataset, consisting of RGB and gray-scale images of seven
different categories of objects in a bin picking setting. The
objects vary in their transparencies, shapes, sizes, and their
number in the bin. Our experiments clearly show that our
method greatly improves the instance segmentation accuracy
of Mask-RCNN, using mean intersection-over-union (mIoU).
Compared to fine-tuning the backbone using the original
annotated examples, TransMixup improves the mIoU by
nearly 8%, and our instance filtering method improves mIoU
by an additional 6%. Our method requires fewer than 30
annotated training samples; even if we use fewer than five
annotated examples, it can still achieve over 80% mIoU.

II. RELATED WORKS

Transparent Object Segmentation: Initial research on this
topic used hand-crafted characteristics, such as boundary
features [21]; however, recent years have seen a shift towards
deep learning methods [22], [9], [23], [10]. For example,
Mask-RCNN is extended to detect individual transparent
objects in [7], a Transformer encoder-decoder is introduced
in [24], and a three-stream encoder-decoder model that fuses
RGB, infrared, and RGB-IR images is presented in [25]. A
few studies address transparent object grasping by leveraging
both visual and tactile data [26]. While these methods
consider transparent object segmentation, or isolated instance
segments, we deal with the problem of segmentation with
several instances overlapping, where the model needs to
identify each instance of the same underlying object class.

Mixup Methods: Our approach has similarities to the pop-
ular cut-mix [27] and mixup [28] methods. There are also
adaptations of cut-mix to transparent data [6], [29]. The main
idea of cut-mix is to cut annotated image patches and paste
them at random locations in other images—so as to augment
training data—whereas mixup methods mix data features
extracted from an intermediate layer of a deep learning
model. While both methods are related to our proposed
scheme, there are two important differences. First, our setting
is for transparent instance segmentation, as opposed to the
object detection setting of these prior works. Second, cut-
mix methods do not consider any semantic context when
mixing up the data, and at a conceptual level act as training
regularizers—in contrast, TrInSeg offers a way to produce
large in-distribution training data from few-shot examples.

Depth Completion: Another approach is to improve the
quality of transparent depth surfaces through depth com-
pletion from RGB images. In Zhang et al. [16], a two-
stage depth completion pipeline is proposed that uses surface
normals and occlusion boundaries. However, this requires
solving a global optimization objective, which is improved
by Tang et al. [30] using a self-attentive adversarial net-
work. Zhu et al. [31] present a local implicit function for
depth refinement, while Xu et al. [32] combine completion
techniques with point clouds. More recently, multi-view
depth completion methods using NeRF [33] and physics-
based networks [34] are proposed to reconstruct the depth.
Real-world datasets for robotic applications, such as that of
ClearGrasp [8], are constrained by a limited sample size
due to the time- and labor-intensive process for generating
missing data. Synthetic datasets are commonly used for tasks
demanding precise ground-truth sensor data, as exemplified
by the Omniverse object dataset [31].

To improve generalization and applicability in real-world
robotic applications, there is a need for a few-shot model
that is tailored to transparent instance segmentation. Few-
shot segmentation holds particular importance for transparent
objects due to their unique optical properties and the scarcity
of suitable labeled datasets, which are often difficult to obtain
in sufficient quantity and quality. Our model needs only a
small amount of real-world data for effective deployment.



III. METHOD
Suppose X denotes an RGB or grayscale image of height

H and width W , containing multiple instances of an object
O . Let Y =

{
Y1,Y2, . . . ,Y#(X)

}
be the set of instance masks

for all the instances in X – one for each instance, where #(X)
indicates the total number of instances in X . We assume the
masks Y are of the same spatial dimensions as the image
X , but containing zeros everywhere except at pixel locations
overlapping with the corresponding instance in the image,
where the mask takes a constant numeric value identifying
the instance. We assume this instance identifier is unique
across the masks in Y . Further, let D = {(Xi,Yi)}n

i=1 denote
the few-shot training set consisting of n such pairs of an
image and all of its instance annotation masks. We assume
all the instances in a given image are annotated and the total
number of annotated instances in D is small. For example,
in the Medical Bottle object class used in our experiments,
the number of training images is about 10, and each image
has 1–5 annotated instances. Our objective is to train a
deep learning model Mθ with parameters θ that can take
as input an image X and predict an instance segmentation
mask similar to those in the ground truth Y . Note that in the
prediction refinement that we detail subsequently, we do not
assume a model will predict all of the ground truth instances;
however, the produced instances must have a quality score
higher than a specified threshold.

In this paper, we use a pre-trained Mask-RCNN backbone
for Mθ . We assume that during its pre-training, this backbone
has not seen the transparent objects that we will use. Thus, a
zero-shot transfer of the backbone model is prone to errors,
especially when dealing with transparent objects. A naı̈ve
approach to adapt the backbone to our data setting is then
to fine-tune the parameters θ on the images in D , but given
only a few annotated images, the training can be ineffective.
However, if there is a way we can produce a larger train-
ing set from the few-shot examples, where this additional
training data spans the space of the object appearances more
densely, that could lead to a better training of the Mask-
RCNN model. Inspired by this insight, we propose TrInSeg,
in which our key innovations are: (i) Using a method that we
call TransMixup, we leverage the few-shot instance masks
to approximately characterize an object model, which we
then use to synthetically produce an unlimited supply of
training data; and (ii) we use the object model as a way
to score the quality of the instance predictions produced by
our fine-tuned model, encouraging the selection of instances
that are unoccluded (i.e., not overlapped by other instances),
have complete masks so that their boundaries are clear, and
are potentially separable so that a grasping approach can be
applied. In this section, we explain these ideas in detail.

A. TransMixup: Transparent Instance Mixup

Our key idea to augment the few-shot training set is to use
the annotated examples to produce a shape and appearance
model of the object using randomly sampled annotated masks
and their respective image instance patches, which are then
spatially transformed and blended with the image to produce

Trans Mixup
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Fig. 2. Illustration of our TransMixup approach for synthetic data
generation from few-shot annotated data samples (marked by arrows).

diverse training images containing an arbitrary number of
instances in diverse spatial and overlapping instance con-
figurations. In Figure 2, we illustrate the key steps of this
method. Formally, let Y ∼ Y be a random mask from the
set Y for an image X , and let XY = cropY (X [Y ]) denote
the image patch produced after the operations of applying
a pixel-wise Hadamard product between X and the mask
Y (i.e., X [Y ] = X ⊙Y ) followed by an image crop using
the bounding box of the instance in the mask Y . Similarly,
let YY denote the corresponding instance crop of the mask
in Y . We only select a mask Y from Y if it is isolated
(not overlapping with other masks), and thus XY captures
an appearance of the underlying object O . In order to
produce augmentations, let T be a set of affine spatial
transformations (include spatial rotations, shrinking/skewing,
and others) operating on patches. To produce an augmented
patch X̃ and its corresponding mask Ỹ , we select a random
transformation t ∼ T to produce (X̃Y ,ỸY )← (t(XY ), t(YY )),
followed by pasting the image and mask patches at a random
spatial location z on a canvas of zeros the size of the
image, producing an augmented mask Ỹ = pastez(ỸY ) and the
respective masked image X̃ = pastez(X̃Y ). To be clear, X̃ and
Ỹ are an image and mask pair with the same spatial resolution
as the input image, but containing only a single augmented
instance. Next, we compose this transformed patch with the
original image to create a new training image. In order
to account for the transparency of the instances, we use
alpha compositing, denoted blend(X , X̃ ,Ỹ |α) with a blending
parameter 0≤ α ≤ 1, updating the input image as:

X [Ỹ ]← (1−α)X [Ỹ ]+αX̃ [Ỹ ], (1)

where with a slight abuse of notation, we assume X [Ỹ ] selects
image pixels at locations where Ỹ is non-zero.

As our new instances are always introduced above the
previous instances in the depth order, the mask instance
identifiers for the new instances supersedes those of previous
instances, and we blend the masks in the depth order when
using it for training the backbone. In order to produce diverse
training samples, we apply TransMixup recursively on the
same image, sampling the augmentation parameters and the
object masks. Our full TransMixup algorithm is summarized
in Alg. 1. Examples of synthetic transparent instance data
produced using TransMixup are provided in Figure 3. As is
clear, our method produces synthetic training samples that
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Fig. 3. Examples of synthetic data produced using our mixup approach.

look very similar to the original images, and the alpha-
blending step produces complex segmentation settings, es-
pecially with regard to instance overlaps and transparencies.

Algorithm 1 TransMixup Algorithm
Require: D := {(Xi,Yi)}n

i=1
D ′←D ▷ D ′ is our augmented dataset
while |D ′|< N do ▷ N is the augmented size

(X ,Y )∼D ,(X ′,Y ′)∼D
K ∼ [Kmax] ▷ maximum number of augmentations
for k = 1→ K do

XY ← cropY (X [Y ]),YY ← cropY (Y [Y ]), for Y ∼ Y
(X̃Y ,ỸY )← (t(XY ), t(YY )) , t∼T
(X̃ ,Ỹ )← (pastez(X̃Y ),pastez(ỸY )),z∼ [H]× [W ]
X ′← blend(X ′, X̃ ,Ỹ |α) for α ∼ [0.5,0.75]
Ỹ [Ỹ ]← |Y ′|+1 ▷ increment the instance id
Y ′← Y ′∪

{
Ỹ
}

end for
D ′←D ′∪{(X ′,Y ′)}

end while

B. Instance Prediction Refinement Using Templates

As is well-known, Mask-RCNN is built over the prior
Faster-RCNN backbone [35], which first produces object
proposals in the form of instance bounding boxes; these are
then scored to select boxes of high confidence, which are
used to produce mask segmentations using a deep convo-
lutional segmentation head. While the quality of the seg-
mentations produced may be high in relation to the scoring
metric used in Mask-RCNN, these scores may not strongly
correlate to the quality metrics useful for a downstream
task, such as robotic grasping. Consider, for example, the
case of overlapping instances; while it is possible for Mask-
RCNN to produce segmentation masks of high confidence
for instances that are overlapped by other instances, these
instances underneath might not be useful when deciding
which instances to grasp in a bin picking application. An-
other common issue with Mask-RCNN is that it produces
false positives in regions where there are no instances at all,
for example, due to specular reflections off the bin.

Extending our approach described above, we propose a
simple scheme to refine the predictions. Our key idea is

a variant of TransMixup, where we again select instance
mask patches that are representatives—called templates—
of the underlying object model. However, instead of using
these templates to augment the training data, we collect the
instance proposals produced by the backbone and score each
proposal for conformity with the templates; the ones that are
most conformal are selected as high-quality segmentations.
Those instances that are occluded, overlapped, or were
falsely detected will naturally have a low conformity (are
a bad match) with a template. However, a challenge when
implementing this setup is the problem of how to choose
the templates, given that instances can can vary in spatial
orientation, illumination, translucency, and specularity.

We observe that if we restrict the conformity to the
silhouette shape of the instance, as characterized by the
annotated instance masks, then the above issues can be easily
circumvented. Further, in real conditions, it is often seen
that there exist strong self-symmetries in the objects of our
interest (e.g., glass bottles, glass jars, wineglasses, etc.), and
many common transparent objects are long and thin with
only a few resting poses when dropped into a bin, e.g.,
along their major axis (although they may occasionally have
other pose variations). Taking into account these factors, we
need only a few (or even a single) annotation mask(s) to
characterize the object template, and the conformity can be
computed for a predicted instance mask with the template if
we can compute the pose that aligns the template with the
prediction.

To this end, in order to effectuate the refinement, TrInSeg
crops image patches based on the bounding boxes of the
predictions produced by Mask-RCNN, and passes each patch
to a new rotation prediction network that selects a template
among the model templates and predict the spatial pose
(angles) of the instance in the patch in relation to the
template; when this pose is used to transform the instance
mask template, it should produce the instance mask that
Mask-RCNN generated. The conformance of the predicted
template mask and the Mask-RCNN-predicted mask lets us
decide the quality of Mask-RCNN’s predictions, as well
as the possibility that the instance has undergone occlu-
sions/overlaps; the latter comes directly from the fact that
the template masks are assumed to come from non-occluded
instances.

Formally, let us denote the set of such templates as
C , where each template c ∈ C is a cropped and centered
annotated instance patch. In order to produce the pose of
the instance in a proposal image patch, our idea is to train
a template rotation predictor neural network Rβ : Rh×w×c→
[−π,π]k with trainable parameters β , where this network
takes as input the image patch cropped around the proposal
instance – with c color channels and resized to spatial size
h×w – and produces as output the k rotation angles of the
template.1 Suppose Ŷ is an instance mask produced by Mask-
RCNN for an input image X and if XŶ is the corresponding

1In our case, we use k = 1, as the objects in our dataset have only rotations
about an axis perpendicular to the base of the bin.
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Fig. 4. Architecture of our pose prediction and mask filtering setup using a template of the transparent object.

image patch cropped around Ŷ (using the notation described
in the last section), then our training objective for R is given
by:

min
β

E
(X ,Y )∼D ′

E
Y∼Y
∥trot(c; p)−YY∥1 ,where p = Rβ (XY ),

(2)
and trot(c; p) denotes the spatial rotation of the template c by
angles in p. When selecting the data for training using (2), we
assume the masks Y are taken from our augmented dataset
and are selected to have no other instance on top of the
selected instances in the depth order; thus we ensure that
occluded instances are not used during training. Note that R
is implemented as a spatial transformer network (STN) and
the template c is a pixel mask of an instance. See Figure 4
for an illustration of the refinement pipeline.

Once the model R is trained, for a given test image patch
XŶ from the predicted mask Ŷ , we compute the quality score
with respect to c using intersection-over-union (IoU) as:

scorec(XŶ ) = IoU(trot
(
c;Rβ (XŶ

)
),ŶŶ ). (3)

A higher score suggests better conformance between the
transformed template and the predicted mask. Further, pre-
dicting the poses p using a separate network R makes the
filtering process robust to biases in scoring (e.g., by the
backbone). An instance prediction is finally selected using
a combination of the template-based score and the Mask-
RCNN score scoreM , i.e., (scorec > ηc) ∧ (scoreM > ηM)
using thresholds ηc,ηM > 0.

IV. EXPERIMENTS

To empirically validate our approach, we present ex-
periments on real world images captured using an Intel
RealSense D35 and Ensenso cameras. Our dataset consists
of seven categories of bottles in a bin setting taken us-
ing a downward facing camera directly into the bin. The
RealSense camera images are RGB, while Ensenso images
are grayscale. The object categories we use are: (i) Small
Bottle, (ii) Large Bottle, (iii) Mayo Bottle, (iv) Pet Bottle, (v)
Medical Bottle, (vi) Sauce Bottle, and (vii) Soy Bottle—all
the categories constitute everyday objects. Example images
from these categories are shown in Figure 5 first row. As
is clear from the figure, each category is varied in object

shape, transparency, size, and the number of instances in
the bin. We collected 20 images per category and manually
annotated all the instances, each image consisting of 1–10
instances for each categories except Soy Bottle, which has
up to 50 instances in an image.

A. Training Details

We used a pre-trained Mask-RCNN model based on the
ResNet-50 backbone that was trained on the MS-COCO
dataset. We replaced its mask and the box prediction heads
with randomly initialized layers. We used 10 of the annotated
images for training/validation and the remaining 10 for
testing; all the training images had less than 5 instances
per image, while the test set images had 5-10 instances. We
used less than 25 annotated instances for training in total.
For TransMixup, we produced a maximum of 5 synthetic
instances per image as we found that a larger number
of instances produced too many overlapping instances that
resulted in making the model too difficult to train. For fine-
tuning the Mask-RCNN model, the entire training used new
instances, and thus the augmented data size N = batch size×
number of training iterations in Alg. 1. Each training itera-
tion took about 3 seconds (on an NVIDIA 3090 GPU) with
a synthetic batch size of 32, and the model was trained
for about 640 iterations when the performance was seen to
saturate on the validation set. The second phase in TrInSeg,
prediction filtering, was trained using the augmented dataset
and used a fixed object template produced from the original
training images. We used a ResNet-18 pre-trained model
(trained on ImageNet) as the backbone, where the last layer
was replaced to predict a scalar angle for the template pose.
Training this module took 2.5 seconds per iteration and was
trained for about 1600 iterations.

B. Comparison Methods

To the best of our knowledge, this is the first paper
describing segmentation of homogeneous transparent objects
in a bin, and thus there are no prior methods to compare to on
this task. To this end, we evaluate methods that are designed
for general purpose segmentation problems, some of which
we have adapted to our setup. Specifically, we evaluate
against: i) the Segment Anything (SAM) model [3], which
is a general purpose segmenter trained on millions of images



Method Small Large Mayo Medical Pet Sauce Soy Avg.
RealSense RGB Images

SAM [3] 68.1 58.5 78.9 78.1 22.4 68.9 66.4 63.1
Lang-SAM [36] 87.2 78.7 87.3 84.4 88.3 60.8 14.7 71.6

InstaSeg [37] 43.1 48.7 47.1 41.9 46.1 47.7 31.7 43.7
Mask-RCNN (FT) [2] 84.1 80.9 76.9 79.8 79.7 67.7 71.1 77.2
iFS-RCNN (FT) [38] 87.7 80.6 84.7 80.6 87.7 64.9 78.7 80.7

TrInSeg (ours) 90.1 88.9 88.4 85.3 88.1 74.6 82.5 85.4
TrInSeg + Filtering (ours) 92 95.5 93.1 92.2 93.7 84.4 85.4 90.9

Ensenso Grayscale Images
Mask-RCNN (FT) 84.1 81.9 44.0 80.8 85.7 62.4 65.1 72.0

iFS-RCNN (FT) [38] 91.4 80.5 76.9 90.2 83.8 63.5 73.5 79.9
TrInSeg + Filtering (ours) 98.1 96.6 93.1 96.3 96.8 88.5 91.1 94.3

TABLE I
COMPARISONS TO PRIOR INSTANCE SEGMENTATION METHODS ON MIOU ON BOTH RGB AND GRAYSCALE IMAGES ON OUR TEST SET. NOTE

THAT [3], [36] ARE ZERO-SHOT, [2], [37] ARE RE-PURPOSED FOR FEW-SHOT FINE-TUNING, AND [38] IS A FEW-SHOT MODEL.
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Fig. 5. First row shows RealSense RGB camera images from the seven categories of objects we use in our dataset and their instances. We also show
qualitative comparisons of detection and segmentation of our method TrInSeg versus state-of-the-art approaches. For the results on Mask-RCNN, we used
a model that is fine-tuned on our dataset, however without our TransMixup augmentation. The last two rows show the template filtered instances—the first
row is the predicted mask by TrInSeg, and the last row is the ground-truth mask.

(and thus we assume that it must have seen instances similar
to ours in its training set), ii) Lang-SAM [36], which is a
zero-shot extension of SAM guided by language, iii) Mask-

RCNN (FT), which is Mask-RCNN fine-tuned on our images
but without the synthetic augmentation, iv) iFS-RCNN [38]
which is a recent few-shot incremental instance segmentation
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Fig. 6. In (a), we plot mIoU against increasing number of few-shot
examples. We compare fine-tuning Mask-RCNN with data generated using
our TrInSeg and fine-tuning with original training data. In (b), we compare
the sensitivity of the filtering threshold and also reporting the ratio (in %)
of instances retrieved over the total number of instances.
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Fig. 7. Qualitative results showing the input RGB patch to the filtering
model (left), the transformed template using the rotation predicted by the
network (middle), and the TrInSeg predicted mask (i.e., Ŷ ) (right).

method built on Mask-RCNN, and iv) InstaSeg [37], a recent
segmentation model for opaque objects using depth images
we repurposed to use RGB images as well.

In Table I, we analyze the quantitative performances
of each of these methods on the predicted segmentations
versus their ground truths measured using the standard mean-
intersection-over-union (mIoU) metric using the RealSense
RGB images. Qualitative examples of segmentations are
provided in Figure 5. As is clear, SAM either over-segments
the image or the segmentations miss parts of the instance,
perhaps because it is not given cues on what needs to be seg-
mented in the given images. To address this, in Lang-SAM,
we provide the name of the object category as input, which
improves its segmentation quality; however, the performance
is significantly low for objects that it has perhaps not seen in
its training, such as the Soy Bottle class. The Mask-RCNN
(FT) and iFS-RCNN (FT) methods perform relatively better
as they are trained on our dataset, however, due to the few-
shot nature of the task, the performance is poor. The RGB-
D method InstaSeg performs poorly as the depth images
for transparent objects are noisy. Overall, we find that our
proposed method demonstrates large-margin improvements
in mIoU across the object categories, improving iFS-RCNN
(FT) by nearly 5% on average. We also find that our
prediction filtering further improves the accuracy by ∼6%.

In Figure 5 (last two rows), we show several qualitative
examples of our pose filtering scheme that selects a subset of
the Mask-RCNN predictions that are conforming to the class
template used. We show the selected instances as well as
their ground truth masks, clearly showing their conformance.
In Figure 7, we show two example inputs, the ground truth
instance masks, and the objects’ templates transformed using
the predicted poses. Note that the input to the filtering
module may have many instances; however, the rotation
prediction model needs to predict the pose of the instance at
the center of the patch, which is a difficult learning task.

In order to validate the generalizability of our method, we
also compare its performance on grayscale images from the
Ensenso camera, under the same training and test data set-
tings as described above. Qualitative results and quantitative
comparisons to Mask-RCNN (FT) and iFS-RCNN (FT) are
provided in Figure 8 and Table I (last row), respectively. As
is clear from these results, our method generalizes well to
few-shot training on grayscale images.

C. Ablation Studies

In this section, we provide ablation studies to gain insights
into the various hyperparameters in our model.
How many instances are needed to train TrInSeg? In Fig-
ure 6(a), we plot the performance (mIoU) of the prediction
model against the number of annotated examples needed for
three of our object categories. We compare Mask-RCNN
(FT) that uses only the original images and their instance
annotations for training (along with standard augmentations)
against our TransMixup method. As is clear, while Mask-
RCNN struggles to perform at a lower number of available
training instances, our method demonstrates nearly 85%
accuracy even when only a single instance is annotated.
Sensitivity of the filtering threshold? In Figure 6(b), we
evaluate two properties of our prediction filtering scheme:
i) how to select the template conformance threshold ηc and
ii) what fraction of the ground truth instances are retrieved by
the method for a given threshold. For the latter, we compute
the ratio of the number of instances returned by the filtering
module against the total number of instances annotated in
the image. We change the threshold from 0.05 to 2.0 in
increments of 0.05. We use the same setting for all three
object categories. As expected, the plot shows that when the
threshold is low and reasonable, the accuracy of the retrieved
instances is high (nearly 95%), but the number of instances
retrieved is low (about 50%); increasing the threshold to
higher values lead to a slight drop in performance while
reaching 100% retrieval accuracy. We use the setting of 0.1
for the experiments reported above.

V. CONCLUSIONS

In this paper, we proposed a simple, modular, and efficient
scheme for transparent object instance segmentation in a few-
shot setting. Our key idea is to extract segments from the few
annotated examples to produce synthetic examples, rendering
these instances through alpha compositing. Our experiments
show that this simple scheme can be used to effectively train
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Fig. 8. Top row: Ensenso grayscale images from the seven categories. Bottom row: The final instance segmentations produced by TrInSeg.

a Mask-RCNN model to achieve high performance. Further,
we also proposed a novel method for filtering the masks
predicted by the backbone via using one of the annotated
masks to form an object template and predicting a spatial
transformation using a neural network. Going forward, we
plan to integrate this approach with a grasp pose prediction
scheme and test on a real robot.
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