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tion” replacing the role of the modulus of convexity in the novel rates. This characterization
yields novel geometric insights on the relationship between the optimization landscape and
the attainable convergence rates.

IEEE Conference on Decision and Control (CDC) 2024

c© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139





From Convexity to Strong Convexity and Beyond:
Bridging The Gap In Convergence Rates

Orlando Romero1 Mouhacine Benosman2 George J. Pappas1

Abstract— In this paper, we re-examine the role of convexity
and smoothness on gradient-based unconstrained optimization.
While existing literature establishes the fundamental limits for
gradient-based optimization algorithms for the class FL of
L-smooth convex functions and the subclass Fµ,L of L-smooth
and µ-strongly convex functions, there is a notable gap
in the stark transition from their respective sublinear and
linear/exponential convergence rates that persists even as µ → 0.
This gap is notable since the classical rate of O(1/k) for gradient
descent in FL is often overly conservative compared to what is
observed in practice for convex functions that are not strongly
convex. In this work, we partially close the aforementioned
gap by leveraging the notion of uniform smoothness and
convexity, and their respective moduli, to quantify and more
comprehensively characterize the smoothness and convexity of
a given function. We show how, through a simple rescaling
of gradient descent informed by the modulus of smoothness,
we can recover the classic rates as edge cases and establish
novel rates for a wide variety of functions. Further, we examine
how uniform convexity can be replaced with the Kurdyka-
Łojasiewicz inequality, with the so-called “desingularizing
function” replacing the role of the modulus of convexity in
the novel rates. This characterization yields novel geometric
insights on the relationship between the optimization landscape
and the attainable convergence rates.

I. INTRODUCTION

Large-scale optimization and convex optimization are
integral to applications in a vast range of areas such as
deep learning, supply chain management, power systems,
scientific computation, and many more [1], [2]. Theoretical
understanding of the computational effort needed to solve
optimization problems informs us about bottlenecks and
scalability concerns, and ultimately provides intuition on
how to best tackle these issues [3], [4]. Complexity analysis
in optimization is, therefore, crucial for the effective resource
management in a multitude of critical applications.

Convexity plays a key role in large-scale optimization,
both at the practical and theoretical level, since it is one of
the simplest properties, while still broadly applicable, that
ensures we can find global minimizers numerically for generic
functions [5], [6]. Further, convexity enjoys a variety of
amenable properties that allows us to efficiently analyze the
convergence rate of gradient-based optimization algorithms,
particularly when paired with smoothness assumptions [7].

It is well established that, for the class FL of L-smooth
convex functions, the gradient descent (GD) algorithm
xk+1 = xk−η∇f(xk) with fixed learning rate η > 0 achieves
a convergence rate O(1/k), provided that η ≤ 1/L [7]. On
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the other hand, in the class Fµ,L of L-smooth and µ-strongly
convex functions, the same GD algorithm attains a much faster
linear rate O

(
(1− ηµ)k

)
with ρ = 1 − ηµ [7], [8]. While

the optimization algorithm did not change in the two cases
discussed above, the convergence rate is remarkably different.
This abrupt transition motivates us to more generally examine
the role that smoothness and convexity play in establishing
convergence rates.

Related Work
In [8], the authors conduct a comprehensive overview of

several alternatives to strong convexity found in the literature
at the time, in order to establish linear convergence. It is
established that the Polyak-Łojasiewicz (PŁ) inequality [14]
is the weakest of all conditions considered that guarantees
linear convergence to global local minima, with the quadratic
growth condition being weaker but admitting non-global
minima to exist. Further, the authors establish that all
conditions considered are equivalent in the case of convexity.
Interestingly, the PŁ inequality yields to an almost trivial
proof of linear convergence, as the authors show. However,

it is known that a rate O
((

1−κ
1+κ

)2k
)

with κ = L
µ can be

established in the class Fµ,L when using GD with learning
rate η = 2

L+µ , which is faster than the rate O
((

1− 1
κ

)k)
derived using the µ-PŁ inequality for GD with learning rate
η = 1/L.

In [9], the authors propose the notion of strong smoothness
of order p > 1 and exploit the notion of µ-uniform convexity
of order p and the closely related µ-gradient dominance of
order p (with p = 2 corresponding to µ-strong convexity and
µ-PŁ, respectively) to establish convergence rates on “descent
algorithms of order p”, which notably includes their proposed
rescaled gradient descent algorithm

xk+1 = xk − η
1

p−1
∇f(xk)

∥∇f(xk)∥
p−2
p−1
∗

, (1)

with η > 0 and p > 1. We will consider a unified notion
of smoothness and convexity that generalizes the conditions
considered in [9], while also being both less restrictive and
simplifying the convergence analysis.

The notion of smoothness and convexity that we will
consider is borrowed and adapted from the older works [10]
and [11], but it should also be noted that [12] recently revisited
these conditions (and more), modernized them, and provided
new insights (notably, in connection to generalization bounds
in statistical learning). A consequence of uniform convexity
is the Kurdyka-Łojasiewicz (KŁ) inequality, which has been



extensively studied in [13]. The KŁ inequality has recently
been used by [14], [15] to establish new iteration complexity
bounds on the stochastic gradient descent algorithm (SGD).
In this paper, we will also consider the KŁ inequality, with
our results extending those of [14], [15] in the deterministic
setting, but with the novelty of now allowing for cost functions
that need not be L-smooth.

Contributions
In this work, we revisit the notions of uniform smoothness

and uniform convexity and seek to establish a gradient-based
optimization algorithm with provable convergence rates that
subsumes the classical rates of O

(
L
k

)
and O

((
1− µ

L

)k)
for GD with learning rate η = 1

L over the classes FL and
Fµ,L, respectively. More concretely, our contributions are:

• We leverage uniform smoothness to propose a new
gradient-based optimization algorithm, in terms of the
modulus of smoothness σ, which we call σ-rescaled
gradient descent (σ-RGD).

• Next, we establish a descent lemma and a generalization
of the PŁ inequality.

• Using these tools, we establish the linear conver-
gence rate f(xk) − f⋆ = O

((
1− 1

c

)k)
for σ-

RGD under σ-smoothness and ϕ-convexity, where

c = sup
s>0

ϕ∗(s)

σ∗(s)
≥ 1 is a generalized condition number.

• Next, we revisit GD under L-smoothness and reduce
ϕ-convexity to φ-KŁ. With this, we establish the rate

f(xk)− f⋆ ≤ E−1
φ

(
Eφ(f(x0)− f⋆) +

ηk

2

)
,

where Eφ(s) is a function that we introduce as the
desingularizing energy. This rate allows novel geometric
interpretations on the relationship between the optimiza-
tion landscape and the rates achieved by GD.

• Lastly, we state our most comprehensive result: under
σ-smoothness and φ-KŁ, our σ-RGD algorithm satisfies
the convergence rate

f(xk)− f⋆ ≤ E−1
σ,φ

(
Eσ,φ

(
f(x0)− f⋆

)
+ k

)
,

where Eσ,φ(s) :=
∫∞
s

1
σ∗(1/φ′(r))dr.

II. PROBLEM FORMULATION

We consider the unconstrained optimization problem

min
x∈X

f(x) (2)

of minimizing f : X → R using a gradient oracle. We
will assume that (X , ∥ · ∥) is a real Banach space with dual
space (X ∗, ∥ · ∥∗) and duality pairing ⟨·, ·⟩ : X ∗ × X → R
so that ∥g∥∗ = sup∥x∥=1⟨g, x⟩ for g ∈ X ∗. We will assume
continuous Gateaux differentiability, meaning that the Gateaux
differential df(x; v) := limt→0

f(x+tv)−f(x)
t is well defined,

continuous (in both x ∈ X and v ∈ X ), and linear in v,
and thus df(x; ·) is an element of X ∗. We will re-brand
it as the gradient, denoted as usual by ∇f(x), interpreted
as the (assumed to exist and be unique) element of X ∗

for which ⟨∇f(x), v⟩ = limt→0
f(x+tv)−f(x)

t holds for all
v ∈ X . We will always assume that f is bounded from below,
i.e. f⋆ := inf f > −∞.

Recall that a class K function is a continuous and strictly
increasing function α : [0, r) → R, for some 0 < r ≤
∞, such that α(0) = 0. With this, we introduce the main
properties that will be used to study the optimization problem
discussed above. The following definitions are based on [12],
[11], [10]

Definition 1. We say that f is σ-smooth if

f(x) ≤ f(y) + ⟨∇f(y), x− y⟩+ σ(∥x− y∥), (3)

holds for every x, y ∈ X , for some differentiable and convex
class K function σ such that σ′(0) = 0.

Definition 2. We say that f is ϕ-convex if

f(x) ≥ f(y) + ⟨∇f(y), x− y⟩+ ϕ(∥x− y∥), (4)

holds for every x, y ∈ X , for some differentiable and convex
class K function ϕ such that ϕ′(0) = 0.

Df (x, y)

y x

Fig. 1: The Bregman divergence Df (x, y) := f(x)− f(y)−
⟨∇f(y), x−y⟩ can be used to characterize ϕ-convexity and σ-
smoothnesss. More precisely, f is σ-smooth and ϕ-convex if
and only if ϕ(∥x − y∥) ≤ Df (x, y) ≤ σ(∥x − y∥). They
characterize the optimization landscape by bounding the
curvature of the function.

Let us denote the family of σ-smooth convex functions
as Fσ , and the subclass of σ-smooth and ϕ-convex functions
as Fσ,ϕ. With these definitions, we are ready to state the
problem we seek to solve:

Problem 1. Design a 1-step gradient-based optimization
algorithm xk+1 = Fσ(xk,∇f(xk)) for the class Fσ, with a
provable convergence rate f(xk)−f⋆ ≤ Rϕ,σ(k, f(x0)−f⋆)
over the class Fϕ,σ. In particular, the algorithm and conver-
gence rate should subsume the rates f(xk) − f⋆ = O

(
L
k

)
and f(xk)− f⋆ = O

(
(1− µ

L

)k
) for GD with leargning rate

η = 1
L over the classes FL and Fµ,L, respectively.

III. PRELIMINARIES

Before we can study convergence for the gradient-based
algorithm that we will propose, let us establish two useful
lemmas that will ensure well-behavedness.

Recall that, for a function f : X → R ∪ {−∞,+∞} with
co-domain on the extended real line, its domain is given



by dom f = {x ∈ X : f(x) ∈ R}. When discussing a
class K function α : [0, r) → ∞, we will implicitly extend
it to α : R → R ∪ {+∞}, by setting α(s) = +∞ for
s ̸∈ [0, r). Additionally, recall that the convex conjugate of
f : X → R ∪ {−∞,+∞} is given by

f∗(y) = sup
x∈X

{⟨y, x⟩ − f(x)}

for y ∈ X ∗.

Lemma 1. If α is a differentiable class K function such that
α′(0) = 0, then α∗ is also a differentiable class K function.

Proof. Since α is differentiable in its domain, then so is α∗

in its domain. Note that α∗(0) = maxt{0 · t − α(t)} = 0
because α(t) ≥ 0 with α(0) = 0. Let [0, r) be the domain
of α, with 0 < r ≤ ∞. Let s ∈ [0, r). By the maximizing
argument property, we have

(α∗)′(s) ∈ argmax
0≤t<r

{st− α(t)}

and thus, noting that st − α(t) = 0 for t = 0, it follows
that (α∗)′(s) ≥ 0. Now, note that if (α∗)′(s) = 0, then
0 = s · 0−α(0) ≥ st−α(t) for all t. Therefore, s ≤ α(t)/t
for t > 0. Taking t → 0, we conclude that s ≤ α′(0) = 0,
and thus s = 0. Thus, (α∗)′(s) ≥ 0 for all s ∈ [0, r), with
equality only at s = 0. Therefore, α∗ is strictly increasing
over its domain. ■

Lemma 2. If α : R → R∪{+∞} has domain within [0,∞),
then (α ◦ ∥ · ∥)∗ = α∗ ◦ ∥ · ∥∗.

Proof. Let g ∈ X ∗. Then,

(α ◦ ∥ · ∥)∗(g) = sup
x∈X

{⟨g, x⟩ − α(∥x∥)}

= sup
t≥0

sup
∥x∥=1

{⟨g, tx⟩ − α(t)}

= sup
t≥0

{
t sup
∥x∥=1

⟨g, x⟩ − α(t)

}
= sup

t∈dom(α)

{t∥g∥∗ − α(t)}

= α∗(∥g∥∗)
= (α∗ ◦ ∥ · ∥∗)(g).

Assuming σ-smoothness with known σ, we propose the
following algorithm, similar in spirit to Nemirovski’s mirror
descent, which we call σ-rescaled gradient descent (σ-RGD):

xk+1 = xk − zk

zk ∈ argmax
z∈X

{⟨∇f(xk), z⟩ − σ(∥z∥)} (5)

Therefore, by the maximizing argument property of convex
conjugates, we have

xk+1 ∈ xk − ∂(σ ◦ ∥ · ∥)∗(∇f(xk)). (6)

For the important case of X = Rd with the Euclidean norm
∥ · ∥ = ∥ · ∥2, we thus have

xk+1 = xk − (σ∗)′(∥∇f(xk)∥2)
∇f(xk)

∥∇f(xk)∥2
, (7)

with the convention that (σ∗)′(∥∇f(x)∥2) ∇f(x)
∥∇f(x)∥2

= 0
when x is a stationary point of f .

IV. MAIN RESULTS

Similar to the typical analysis of gradient descent, let us
first establish a useful descent lemma.

Proposition 1 (σ-descent lemma). If f is σ-smooth, then the
σ-RGD algorithm (6) satisfies the descent condition

f(xk+1) ≤ f(xk)− σ∗(∥∇f(xk)∥∗)

for k ∈ {0, 1, . . .}.

Proof. By definition of σ-smoothness, we have

f(xk+1) = f(xk)−
(
⟨∇f(xk), zk⟩ − σ(∥zk∥)

)
(5)
= f(xk)− (σ ◦ ∥ · ∥)∗(∇f(xk)),

and the result follows by invoking Lemma 2. ■

A. Linear Rate for σ-RGD
In the generalized framework we have adopted, the analysis

that leads to a linear convergence rate is less technical and
more intuitive, so we will start there. Before we proceed, let
us establish a generalization of the Polyak-Łojasiewicz (PŁ)
inequality.

Proposition 2 (ϕ-Polyak-Łojasiewicz). If f is ϕ-convex, then

∥∇f(x)∥∗ ≥ (ϕ∗)−1 (f(x)− f⋆)

for every x ∈ X .

Proof. For every y ∈ X , we have

f⋆ = inf
x∈X

f(x)

≥ inf
x∈X

{
f(y) + ⟨∇f(y), x− y⟩+ ϕ(∥x− y∥)

}
= f(y)− sup

x∈X

{
⟨∇f(y), y − x⟩+ ϕ(∥y − x∥)

}
= f(y)− (ϕ ◦ ∥ · ∥)∗(∇f(y))

= f(y)− ϕ∗ (∥∇f(y)∥∗) .

Relabeling y and rearranging terms, we find that

ϕ∗ (∥∇f(x)∥∗) ≥ f(x)− f⋆, ∀x ∈ X

and the result follows by invoking Lemma 1. ■

Equipped with this generalization of the PŁ inequality, we
can readily combine it with the descent lemma to establish a
linear rate of convergence, provided that σ and ϕ satisfy a
relationship that is akin to L ≥ µ in the class Fµ,L.

Theorem 1. If f is σ-smooth and ϕ-convex, with σ, ϕ such
that, there exists some c ≥ 1 for which ϕ(cs) ≥ cσ(s) holds
for all s ≥ 0, then the σ-RGD algorithm (6) satisfies

f(xk)− f⋆ ≤
(
1− 1

c

)k

(f(x0)− f⋆) (8)

for all k ∈ {0, 1, . . .}.



The constant c ≥ 1 can be understood as a generalized
condition number. In particular, we can show that, setting

c = sup
s>0

ϕ∗(s)

σ∗(s)
, (9)

the relationship ϕ(cs) ≥ cσ(s) holds. However, such c need
not be finite, which would render the rate (8) vacuous. In the
the culmination of this section, we will obtain a non-vacuous
rate that subsumes the rates O(L/k) and O((1− µ/L)k) in
FL and Fµ,L for vanilla GD with learning rate η = 1/L.

To illustrate the aforementioned vacuousness, consider
functions in the class Fµ,L. In there, we have σ(s) = L

2 s
2

and φ(s) = µ
2 s

2, and thus

c = sup
s>0

(2µ)−1s2

(2L)−1s2
=

L

µ
.

Clearly then, as µ → 0, we find that c → ∞.

Proof. The proof closely resembles the argument used in [8]
for the linear convergence of vanilla gradient descent under
L-smoothness and the µ-Polyak-Łojasiewicz inequality.

Since ϕ(cs) ≥ cσ(s), then, by the order reversing and
scaling properties of the convex conjugate [?], it follows
that ϕ∗(s/c) ≤ cσ∗(s/c). By a straightforward change of
variables, we can see that ϕ∗(s) ≤ cσ∗(s). With this, we
have that δk := f(xk)− f⋆ satisfies

δk+1 ≤ δk − σ∗(∥∇f(xk)∥∗) (σ-descent lemma)

≤ δk − ϕ∗(∥∇f(xk)∥∗)
c

(ϕ∗ ≤ cσ∗)

≤ δk − δk
c

(ϕ-Polyak-Łojasiewicz)

=

(
1− 1

c

)
δk,

and the result follows by direct recursion. ■

Example 1. Suppose that f is and (L, p)-smooth, i.e.

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ L

p
∥x− y∥p

and (µ, p)-convex, i.e.

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ µ

p
∥x− y∥p

for some L ≥ µ > 0 and p ≥ 2. Then, the RGD algorithm

xk+1 = xk − η
∇f(xk)

∥∇f(xk)∥
p−2
p−1

converges at a linear rate

δk ≤
[
1− η

(
1− Lηp−1

p

)
p

p− 1
µ

1
p−1

]k
δ0,

where δk = f(xk) − f⋆, provided that 0 < η ≤ (p/L)
1

p−1 .
For the optimal choice of η > 0, which is η = 1/L

1
p−1 , the

rate becomes

f(xk)− f⋆ ≤
(
1− 1

κ
1

p−1

)k

(f(x0)− f⋆),

where κ := L/µ.

B. Novel Rates for Gradient Descent

Let us now consider the case when X = Rd is equipped
with the usual Euclidean norm, and σ(s) = L

2 s
2. This way,

our proposed RGD algorithm reduces to vanilla gradient
descent with the optimal learning rate η = 1

L . The results
presented in this paper do not heavily depend on the convexity
of f , and instead largely follow from the descent inequality
in combination with the generalization of the PŁ inequality
discussed earlier. This generalization can be seen as a
particular case of the more general standalone condition
known as the Kurdyka-Łojasiewicz (KŁ) inequality, which
notably does not require convexity (much like PŁ). However,
in both cases, the condition does require invexity, meaning
that every stationary point is a global minimizer (assuming
that the conditions are to hold globally).

Definition 3 ([13]). We say that f satisfies the Kurdyka-
Łojasiewicz (φ-KŁ) condition if

∥∇(φ ◦ (f − f⋆))∥ ≥ 1 (10)

holds pointwise for some class K function φ such that φ(s)
is continuously differentiable except at s = 0. The function φ
will be referred to as a desingularizing function for f at x⋆.

Intuitively, the idea is that, when φ is applied to f −
f⋆, it “bends” the cost function f without changing the
location of its minimizer but making the function “sharp” (no
longer differentiable) near the minimizer. We can quantify
how much “energy” is needed to achieve this by introducing
the desingularizing energy function

Eφ(s) =

∫ ∞

s

(
φ′(r)

)2
dr (11)

with domain s > 0. Clearly, Eφ(s) is strictly decreasing,
with s > 0 dictating the size of the neighborhood of x⋆ to
discard in the desingularizing energy. For many functions of
interest, we will have Eφ(s) → ∞ as s → 0. If the improper
integral diverges even for s > 0, we can make some minor
adjustments to the definition above and the way we use it
later on. However, for the sake of simplicity, let us assume
that Eφ(s) is well defined.

Example 2. Consider the function f(x) = c∥x− x⋆∥p with
c > 0, and p ≥ 2. We can easily verify that φ(s) = c−1/ps1/p

and Eφ(s) =
c−2/p

p(p−2)s
− p−2

p , with Eφ(s) = ∞ for p = 2.
Note that, as c → 0, the function becomes flatter, thus

requiring more energy to bend it sharp, as reflected in
lim
c→0

Eφ(s) = ∞ for every s > 0. See Fig. 2a. Likewise,

Eφ(s) ∼ 1
p2

1
s as p → ∞, which shows us that the function

becomes sharper away from x⋆ (as reflected by Eφ(s) → 0
as s → ∞) and flatter near x⋆ (as reflected by Eφ(s) → ∞
as s → 0). See Fig 2b.

We are ready to state our next main result:

Theorem 2. Suppose that f is L-smooth and φ-KŁ, with φ
strictly concave. Then, the gradient descent (GD) algorithm



c = 1.5
c = 1.0
c = 0.8
c = 0.6
c = 0.4
c = 0.2

(a)

p = 5.0
p = 4.0
p = 3.0
p = 2.5
p = 2.0

(b)

Fig. 2: f(x) = c∥x− x⋆∥p with varying c > 0 and p ≥ 2.

xk+1 = xk − η∇f(xk) converges at a rate

f(xk)− f⋆ ≤ E−1
φ

(
Eφ(f(x0)− f⋆) +

ηk

2

)
(12)

for all k ∈ {0, 1, . . .}, provided that 0 < ηk ≤ 1
L .

Proof. The condition (10) can be rewritten as |φ′(f(x) −
f⋆)∥∇f(x)∥ ≥ 1. Plugging this inequality in the descent
inequality obtained when σ(s) = (L/2)s2 yields

δk+1 ≤ δk − ηk
2

1

(φ′(δk)2
,

where δk := f(xk)− f⋆. This difference inequality can be
seen as the forward-Euler discretization of the differential
inequality δ̇ ≤ −α(δ), with time steps tk = kh and step sizes
h = η/2, for some class K function α(·) (in this case, α(s) =
1/(φ′(s))2). The proof will consist of carefully comparing
{δk} with the solution of the worst-case ODE

δ̇ = −α(δ) (13)

from one step to the next, and keeping track of the accumu-
lated error. Intuitively, if δ(t0) ≈ δ0, then δ(tk) ≈ δk. Let
us formalize this by considering the linear interpolation of
{(tk, δk) : k = 0, 1, . . .}, given by

δ̂(t) =

∞∑
k=0

1t∈[tk,tk+1)

[
δk +

t− tk
h

(δk+1 − δk)

]
(14)

as well as the piecewise solution with jumps, given by

δ̃(t) =
(

sol. of (13) with δ(tk) = δk

)∣∣∣
t

(15)

for each t ∈ [tk, tk+1). Until otherwise specified, we will
now always assume t ∈ [tk, tk+1) with fixed (but arbitrary) k.
In order to proceed, let us first note that

δ̃(t) = δk +

∫ t

tk

d

ds
δ̃(s)ds

by the Picard-Lindeöf theorem. Therefore, we can bound the
local truncation error as follows:

δ̂(t)− δ̃(t) =
t− tk
h

(δk+1 − δk)−
∫ t

tk

d

ds
δ̃(s)ds

= −(t− tk)α(δk) +

∫ t

tk

α(δ̃(s))ds

≤ −(t− tk)α(δk) + (t− tk)α(δ̃(tk))

= −(t− tk)α(δk) + (t− tk)α(δk)

= 0,

where the inequality originates by noting that α ◦ δ̃ is non-
increasing. Subsequently, since k was arbitrary, we have
δ̂(t) ≤ δ̃(t) for all t ≥ 0.

To proceed, we first adapt the argument in the proof of
Lemma 3.4 in [16] to note that

δ̃(t) = E−1
φ (Eφ(δk) + (t− tk))

for t ∈ [tk, tk+1). Indeed, such δ(t) must satisfy Eφ(δ(t)) =
Eφ(δk) + t− tk. Differentiating, we find −E′

φ(δ(t))δ̇(t) =

1. Noting that E′
φ(s) = −(φ′(s))2, it follows that δ̇(t) =

− 1
(φ′(δ(t)))2 = −α(δ(t)). Equipped with this solution, we

find that

δ̂(t) ≤ E−1
φ (Eφ(δk) + t− tk)

for t ∈ [tk, tk+1). Taking the limit t → tk+1 from below and
recalling that tk+1 − tk = h = η

2 , we find

δk+1 ≤ E−1
φ

(
Eφ(δk) +

η

2

)
by noting that δ̂(t) → δk+1 as t → tk+1. We can rewrite the
above inequality as Eφ(δk+1) ≥ Eφ(δk)+

η
2 (note thet Eφ is

non-increasing) and subsequently, perform a telescoping sum
(since k was arbitrary), leading to Eφ(δk) ≥ Eφ(δ0) +

ηk
2 .

The result follows by rearranging the terms. ■

In essence, our result summarizes how the curvature
and overall shape of the function impacts the convergence
rate of gradient descent. Specifically, functions with larger
desingularizing energy, as induced by unfavorable geometric
landscapes (e.g. flatter functions), are likely force GD to
converge slower than functions with smaller desingularizing
energy (e.g. functions closer to a quadratic one).

(needs touch-up)

Corollary 1. If f is locally L-smooth and (µ, p)-convex with
p > 2, then, in some neighborhood of the global minimizer
x⋆, the GD algorithm xk+1 = xk − 1

L∇f(xk) converges at
a sublinear rate f(xk)− f⋆ = O(1/k

p
p−2 ).



Proof. The assumed convexity implies that the Lojasiewicz
gradient inequality

p− 1

p
∥∇f(x)∥

p
p−1 ≥ µ

1
p−1 (f(x)− f⋆) (16)

holds in some neighborhood of the global minimizer x⋆.
Therefore, f is φ-KŁ with φ(s) ∝ s1/p. Thus, Eφ(s) ∝
1/s

p−2
p and therefore E−1

φ (s) ∝ 1/s
p

p−2 . Therefore, f(xk)−
f⋆ = O(1/k

p
p−2 ). ■

C. General Case
With the intuition from the previous two subsections, we

can now readily state the general rate for RGD under σ-
smoothness and φ-KŁ.

Theorem 3. If f is σ-smooth and φ-KŁ with strictly concave
φ, then the σ-RGD algorithm (6) satisfies the convergence
rate

f(xk)− f⋆ ≤ E−1
σ,φ

(
Eσ,φ

(
f(x0)− f⋆

)
+ k

)
, (17)

where Eσ,φ(s) :=
∫∞
s

1
σ∗(1/φ′(r))dr.

Proof. The proof follows the same general steps as that
of Theorem 2, with only minor adjustments needed on
the differential inequality to account for the more general
smoothness function σ. ■

V. CONCLUSION AND FUTURE WORK

We analyzed the convergence of our proposed σ-RGD
algorithm under σ-smoothness and ϕ-convexity or φ-KŁ. We
saw that, under a suitable relationship between σ and ϕ,
our algorithm converges at a linear rate. Further, under L-
smoothness and the Euclidean norm, our algorithm reduces
to vanilla gradient descent (GD), which allowed us to show
that the transition from sublinear to linear rate of GD under
convexity and strong convexity is not actually abrupt but
instead smoothly depends on ϕ. Further, our analysis provides
insights into how to optimization landscape affects the
complexity analysis for gradient-based optimization. Lastly,
we provide a general rate under σ-smoothness and the
Kurdyka-Lojasiewicz inequality.

For future work, this general result will be further refined
and studied in the context of deep learning, as motivated
by works such as [17], [18]. Indeed, we believe that our
framework can be used to further explain why gradient
clipping can accelerate gradient descent. To some extent, our
σ-RGD can be seen as a smooth form of gradient clipping,
particularly for functions that locally behave quadratic, but
grow fast outside the vicinity of local minima (e.g. σ(s) =
Θ(s2) for s → 0 and σ(s) = Θ(s2p) with p ≫ 1, as is
the case for sum of squared polynomials of order 2 through
p). For future work, we will also investigate the role of
smoothness and convexity on accelerated methods, hopefully
extending some of the results and ideas explored in [19].
We will also revisit backtracking from the lens of uniform
smoothness and convexity. Lastly, we will extend some of
our results to the online and stochastic optimization setting,
and we would like to establish lower bounds.
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