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Learning control of underactuated double pendulum with Model-Based
Reinforcement Learning

Niccolò Turcato1, Alberto Dalla Libera1, Giulio Giacomuzzo1, Ruggero Carli1 and Diego Romeres2

Abstract— This report describes our proposed solution for the
second AI Olympics competition held at IROS 2024. Our solu-
tion is based on a recent Model-Based Reinforcement Learning
algorithm named MC-PILCO. Besides briefly reviewing the
algorithm, we discuss the most critical aspects of the MC-
PILCO implementation in the tasks at hand.

I. INTRODUCTION

In this short report, we present the Reinforcement Learn-
ing (RL) [1] approach our team implemented to tackle the
simulation stage of the second AI Olympics competition
held at IROS 20241. The algorithm we employed, Monte-
Carlo Probabilistic Inference for Learning COntrol (MC-
PILCO) [2], is a Model-Based (MB) RL algorithm that
proved remarkably data-efficient in several low-dimensional
benchmarks, such as a cart-pole, a ball & plate, and a
Furuta pendulum, both in simulation and real setups. MC-
PILCO is also the algorithm that won the first edition of this
competition [3]. MC-PILCO is part of the class of MB policy
gradient algorithms. It exploits data collected by interacting
with the system to derive a system dynamics model and
optimizes the policy by simulating the system, rather than
optimizing the policy directly on the system’s data. When
applied to physical systems, this approach can be highly
performing and more data-efficient than Model-Free (MF)
solutions.

This paper is organized as follows: Section II introduces
the goal and the settings of the competition. Section III
presents the MC-PILCO algorithm. Section IV reports the
experiments that have been performed, finally Section V
concludes the paper.

II. GOAL OF THE COMPETITION

The challenge considers a 2 degrees of freedom (dof)
underactuated pendulum [4] with two possible configura-
tions. In the first configuration, also called Pendubot, the
first joint, namely, the one attached to the base link is
active, and the second is passive. Instead, in the second
configuration, also named Acrobot, the first joint is passive
and the second is actuated. For each configuration, the
competition’s goal is to derive a controller that performs the
swing-up and stabilization in the unstable equilibrium point
of the systems. Both robots are underactuated, which makes
the task particularly challenging from the control point of
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view. The systems are simulated at 500Hz with a Runge-
Kutta 4 integrator for a horizon of T = 10 s. The competition
is composed of 2 stages. In the first stage, namely the sim-
ulation stage, controllers are assessed based on performance
and robustness scores in the simulated system. In the second
stage, namely the real hardware stage, the participating teams
test their controllers on the real system, with the possibility
of retraining their learning-based controllers. The winners of
the competition are chosen based on the performance and
the reliability of the submitted controllers.

III. MC-PILCO FOR UNDERACTUATED ROBOTICS

In this section, firstly we review MC-PILCO, secondly, we
discuss its application to the considered problem.

A. MC-PILCO review

MC-PILCO is a MB policy gradient algorithm, in which
GPs are used to estimate system dynamics and long-term
state distributions are approximated with a particle-based
method.

Consider a system with evolution described by the
discrete-time unknown transition function f : Rdx ×Rdu →
Rdx :

xt+1 = f(xt,ut) +wt, (1)

where xt ∈ Rdx and ut ∈ Rdu are respectively the state and
input of the system at step t, while wt is an independent
white noise describing uncertainty influencing the system
evolution. As usual in RL, a cost function c(xt) encodes the
task to be accomplished. A policy πθ : x → u that depends
on the parameters θ selects the inputs applied to the system.
The objective is to find policy parameters θ∗ that minimize
the cumulative expected cost, defined as follows,

J(θ) =

T∑
t=0

E[c(xt)], (2)

where the initial state x0 is sampled according to a given
probability p(x0).

MC-PILCO consists of a series of attempts, known as
trials, to solve the desired task. Each trial consists of three
main phases: (i) model learning, (ii) policy update, and (iii)
policy execution. In the first trial, the GP model is derived
from data collected with an exploration policy, for instance,
a random exploration policy.

In the model learning step, previous experience is used to
build or update a model of the system dynamics. The policy
update step formulates an optimization problem whose ob-
jective is to minimize the cost in eq. (2) w.r.t. the parameters

https://ai-olympics.dfki-bremen.de/


of the policy θ. Finally, in the last step, the current optimized
policy is applied to the system and the collected samples are
stored to update the model in the next trials.

In the rest of this section, we give a brief overview of the
main components of the algorithm and highlight their most
relevant features.

1) Model Learning: MC-PILCO relies on GP Regression
(GPR) to learn the system dynamics [5]. In our previous
work, [2], we presented a framework specifically designed
for mechanical systems, named speed-integration model.
Given a mechanical system with d degrees of freedom, the
state is defined as xt = [qT

t , q̇
T
t ]

T where qt ∈ Rd and
q̇t ∈ Rd are, respectively, the generalized positions and
velocities of the system at time t. Let Ts be the sampling
time and assume that accelerations between successive time
steps are constant. The following equations describe the one-
step-ahead evolution of the i-th degree of freedom,

q̇
(i)
t+1 = q̇

(i)
t +∆

(i)
t (3a)

q
(i)
t+1 = q

(i)
t + Tsq̇

(i)
t +

Ts

2
∆

(i)
t (3b)

where ∆
(i)
t is the change in velocity. MC-PILCO estimates

the unknown function ∆
(i)
t from collected data by GPR. Each

∆
(i)
t is modeled as an independent GP, denoted f i, with input

vector x̃t = [xT
t ,u

T
t ]

T , hereafter referred as GP input. Given
an input-output training dataset D(i) = {X̃,y(i)}, where
the inputs are X̃ = [x̃T

1 , . . . , x̃
T
n ]

T , and the outputs y(i) =

[y
(i)
1 , . . . y

(i)
n ]T are measurements of ∆(i)

t at time instants t =
0, . . . , Ttr, GPR assumes the following probabilistic model,

y(i) = f i(X̃) + e, (4)

where vector e accounts for noise, defined a priori as zero
mean independent Gaussian noise with variance σ2

i . The
unknown function f i is defined a priori as a GP with
mean m

(i)
∆ and covariance defined by a kernel function

k(x̃ti , x̃tj ), namely, f i(X̃) ∼ N(m
(i)
∆ ,KX̃X̃), where the

element of KX̃X̃ at row r and column j is E[∆
(i)
tr ,∆

(i)
tj ] =

k(x̃tr , x̃tj ). The mean function m
(i)
∆ can be derived from

prior knowledge of the system, or can be set as the null
function if no information is available. Instead, as regards
the kernel function, one typical choice to model continuous
functions is the squared-exponential kernel:

k(x̃ti , x̃tj ) := λ2e
−∥x̃ti

−x̃tj∥
2

Λ−1 (5)

where λ and Λ are trainable hyperparameters tunable by
maximizing the marginal likelihood (ML) of the training
samples [5].

As explained in [5], the posterior distributions of each ∆
(i)
t

given Di are Gaussian distributed, with mean and variance
expressed as follows:

E[∆̂(i)
t ] = m

(i)
∆ (x̃t) +Kx̃tX̃

Γ−1
i (y(i) −m

(i)
∆ (X̃))

var[∆̂
(i)
t ] = ki(x̃t, x̃t)−Kx̃tX̃

Γ−1
i KX̃x̃t

Γi = KX̃X̃ + σ2
i I

(6)

Then, also the posterior distribution of the one-step ahead
transition model in (3) is Gaussian, namely,

p(xt+1|xt,ut,D) ∼ N (µt+1,Σt+1) (7)

with mean µt+1 and covariance Σt+1 derived combining (3)
and (6).

2) Policy Update: In the policy update phase, the policy
is trained to minimize the expected cumulative cost in eq. (2)
with the expectation computed w.r.t. the one-step ahead
probabilistic model in eq. (7). This requires the computation
of long-term distributions starting from the initial distribution
p(x0) and eq. (7), which is not possible in closed form. MC-
PILCO resorts to Monte Carlo sampling [6] to approximate
the expectation in eq. (2). The Monte Carlo procedure starts
by sampling from p(x0) a batch of N particles and simulates
their evolution based on the one-step-ahead evolution in
eq. (7) and the current policy. Then, the expectations in
eq. (2) are approximated by the mean of the simulated
particles costs, namely,

Ĵ(θ) =

T∑
t=0

(
1

N

N∑
n=1

c
(
x
(n)
t

))
(8)

where x
(n)
t is the state of the n-th particle at time t.

The optimization problem is interpreted as a stochastic
gradient descend problem (SGD) [7], applying the reparam-
eterization trick to differentiate stochastic operations [8].

The authors of [2] proposed the use of dropout [9] of the
policy parameters θ to improve exploration and increase the
ability to escape from local minima during policy optimiza-
tion of MC-PILCO.

B. MC-PILCO for underactuated robotics

The task in object presents several practical issues when
applying the algorithm. The first one is that the control
frequency requested by the challenge is quite high for a
MBRL approach. Indeed, high control frequencies require
a high number of model evaluations which increases the
computational cost of the algorithm. Generally, this class
of systems can be controlled at relatively low frequencies,
for instance, [2] and [10] derived a MBRL controller for a
Furuta Pendulum at 33Hz. Indeed, in the real hardware stage
of the first edition of the competition, the MC-PILCO con-
troller was trained to work at 33Hz. However, the physical
properties of the simulated systems (no friction) make the
system particularly sensitive to the system input. For these
reasons, we selected a control frequency of 50Hz.

The second issue is that controllers are evaluated by a
performance and robustness score. In the robustness test, the
characteristics of the system and data acquisition vary. This
is an issue for data-driven solutions like MC-PILCO since
retraining of the controller is not allowed. For this reason,
we decided to focus only on solving the swingup task on the
nominal system, even if in our previous work we showed that
MC-PILCO can be robust to noise and filtering by including
these effects in the simulation.



Since the nominal model of the system is available to
develop the controller, we use the forward dynamics function
of the plant as the prior mean function of the change in
velocity for each joint. The available model is

But = M(qt)q̈t + n(qt, q̇t), (9)

where M(qt) is the mass matrix, n(qt, q̇t) contains the
Coriolis, gravitational and damping terms, and B is the
actuation matrix, which is B = diag([1, 0]) for the Pendubot
and B = diag([0, 1]) for the Acrobot. We define then

m∆(x̃t) =

[
m

(1)
∆

m
(2)
∆

]
:= Ts ·M−1(qt)(But−n(qt, q̇t)) (10)

as the mean function in eq. (6). It is important to point out
that eq. (10) is nearly perfect to approximate the system
when Ts is sufficiently small, but it becomes unreliable as
Ts grows. In particular, with Ts = 0.02 s the predictions of
eq. (10) are not good enough to describe the behavior at
the unstable equilibrium. The inaccuracies of the prior mean
are compensated by the GP models. To cope with the large
computational burden due to the high number of collected
samples, we implemented the GP approximation Subset of
Regressors, see [11] for a detailed description.

An important aspect of policy optimization is the particles
initialization, in this case, it is guaranteed that the system will
always start at x0 = 0̄, therefore the initial distribution can
be set to p(x0) ∼ N (0̄, ϵI) with ϵ in the order of 10−4.

The cost function must evaluate the policy performance
w.r.t. the task requirements, in this case, we want the system
to reach the position qG = [π, 0]T and stay there indefinitely.
A cost generally used in this kind of system is the saturated
distance from the target state:

cst(xt) = 1− e−∥qt−qG∥2
Σc Σc = diag

(
1

ℓc
,
1

ℓc

)
, (11)

with ℓc = 3. Notice that this cost does not depend on the
velocity of the system, just on the distance from the goal
state, but it does encourage the policy to reach the goal state
with zero velocity.

The policy function that is used to learn a control strategy
is the general purpose policy from [2]:

πθ(xt) = uM tanh

(
Nb∑
i=1

wi

uM
e−∥ai−ϕ(xt)∥2

Σπ

)
ϕ(xt) = [q̇T

t , cos (q
T
t ), sin (q

T
t )]

T

(12)

with hyperparameters θ = {w, A,Σπ}, where w =
[w1, . . . , wNb

]T and A = {a1, . . . ,aNb
} are, respectively,

weights and centers of the Nb Gaussians basis functions,
whose shapes are determined by Σπ . For both robots, the
dimensions of the elements of the policy are: Σπ ∈ R6×6,
ai ∈ R6, wi ∈ R for i = 1, . . . , Nb, since the policy outputs
a single scalar. In the experiments, the parameters are initial-
ized as follows. The basis weights are sampled uniformly in
[−uM , uM ], the centers are sampled uniformly in the image
of ϕ with q̇t ∈ [−2π, 2π] rad/s. The matrix Σπ is initialized
to the identity. Given the ideal conditions considered in this

Fig. 1: Simulation of the Pendubot system (500Hz), under control of the
policy trained with MC-PILCO.

simulation, for the purpose of the challenge, the control
switches to an LQR controller after the swing-up. Under
ideal circumstances, the LQR controller has the capability to
stabilize the system at an unstable equilibrium by exerting
zero final torque. The switching condition is obtained by
checking if the system’s state is within the LQR’s region of
attraction.

IV. EXPERIMENTS

In this section, we briefly discuss how the algorithm was
applied to both systems and show the main results. We also
report the optimization parameters used for both systems, all
the parameters not specified are set to the values reported
in [2]. All the code was implemented in Python with the
PyTorch [12] library.

For both robots, we use the model described in Section III-
A.1, with mean function from eq. (10) and kernel function
from eq. (5). The max torque uM was set to conservative
values, to improve the performance score of the controller.
The policy optimization horizon was set much lower than the
horizon required for the competition, this allows to reduce the
computational burden of the algorithm, moreover, it pushes
the optimization to find policies that can execute a fast
swing-up. We exploit dropout in the policy optimization as
a regularization strategy, to yield better policies.

A. Pendubot

The policy for the Pendubot swing-up was optimized for
a horizon of T = 3.0 s, with uM set to 25% of the torque
limit of the actuator. The Controller’s strategy is depicted in
fig. 1, in fig. 3 (left) we report the robustness bar charts. This
controller has a performance score of 0.48 and a robustness
score of 0.61. In table I we compare our controller’s score
with other tested control strategies.

Controller Perf. score Rob. score Avg. score

TVLQR 0.526 0.767 0,647
MC-PILCO 0.48 0.61 0.545

iLQR MPC stab. 0.353 0.674 0.514
iLQR Riccati 0.536 0.255 0.396

TABLE I: Penubot scores comparison.



Fig. 2: Simulation of the Acrobot system (500Hz), under control of the
policy trained with MC-PILCO.

B. Acrobot

The policy for the Acrobot swing-up was optimized for a
horizon of T = 2.0 s, with uM set to 25% of the torque limit
of the actuator. The Controller’s strategy is depicted in fig. 2,
in fig. 3 (right) we report the robustness bar charts. This
controller has a performance score of 0.316 and a robustness
score of 0.25. In table II we compare our controller’s score
with other tested control strategies.

Fig. 3: Pendubot (left) and Acrobot (right) robustness bar charts.

V. CONCLUSIONS

In both systems, our MBRL approach is able to solve
the task with very good swing-up time, comparable with
the result of the first edition. The performance scores of the
controllers are not very competitive, w.r.t. the baselines in the
leaderboard2, since the score penalizes energy consumption,
velocity and torque smoothness, which are not penalized in
the cost function in eq. (11). As already seen in the first
edition, MC-PILCO controllers are sensitive to parameter
changes and delays, since they are not present in the data
seen in training. However, the possibility of retraining on real
hardware with few trials is a great strength of this approach.
Lastly, the controllers proved a certain level of robustness
when subject to actuation perturbations.

Controller Perf. score Rob. score Avg. score

TVLQR 0.504 0.607 0,556
iLQR MPC stab. 0.345 0.343 0.344

MC-PILCO 0.316 0.25 0.283
iLQR Riccati 0.396 0.138 0.267

TABLE II: Acrobot scores comparison.

2https://dfki-ric-underactuated-lab.github.io/
real_ai_gym_leaderboard/
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