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Abstract—In this paper, we apply topological data analysis
(TDA) method for the processing of time-domain stator current
signals of an induction motor under various fault conditions, and
show that it can effectively reveal data features related to the
fault condition. We show that classification accuracy of machine
learning models for motor faults can be greatly improved when
trained with TDA processed data, in comparison with models
trained with time-domain stator current data. As a mathematical
tool, TDA is effective in the development of data-driven fault
detection and classification for motor applications.

Index Terms—Electric motors, fault diagnosis, fault classifica-
tion, topological data analysis

I. INTRODUCTION

Electric motors are essential components in various in-
dustries , and their healthy operation is uttermost important.
Condition monitoring and condition-based maintenance of
electric machines are highly desirable with the latest develop-
ment of advanced sensing, data analysis and machine learning
technologies. In particular, induction motors are widely used in
numerous industrial applications and factories. Various faults
can occur during the operation of induction motors, and the
effective detection and diagnosis of these faults are essential
to reduce downtime and prevent asset losses. A lot of research
efforts have been devoted to understand the mechanism and
corresponding consequences of each type of motor faults, and
a number of fault detection mechanisms have been proposed
and investigated, using signals such as noise and acoustic
emission [1], vibration [2], airgap and stray magnetic flux [3],
and phase current [4].

Motor current signature analysis (MCSA) method aims to
detect various motor faults using stator current signal only,
therefore has the advantages of simple implementation and
low-cost, due to the fact that no additional sensor installations
are required for this method. When fault occurs in an electric
motor, the permeance function and air gap magnetic flux
are often modulated periodically; some of these harmonics
show up in the induced voltage in the stator windings, and
are eventually reflected in the stator current spectrum. Both
physics-based and data-driven approaches have been proposed
for MCSA based motor fault detection. However, challenges
still remain in the adoption of the method. For physics-based
approaches, detailed models have been established to describe
motor under fault conditions, and understand the signatures in
stator current signals for each type of motor fault [5]. It has

been shown that fault signatures in the stator current signals
are typically much smaller than the dominating fundamental
component at supply frequency. Involved frequency analysis
and signal processing are typically required to identify these
small fault signatures. In addition, the fault signatures in
the stator current can vary for motors with different power
ratings, and at different speed and loads conditions for the
same machine, making it challenging to establish threshold
values using those fault indicators identified through physics
models. For data-driven approaches, due to the challenge
of small fault signatures, many machine learning models
often fail to distinguish current signals measured at healthy
and faulty conditions due to the subtlety. Therefore, feature
engineering and signal processing based on domain knowledge
and physical models is typically needed to effectively extract
fault related features in the stator current data and enable the
development of effective machine learning approaches.

In recent years, topological data analysis (TDA) has been
gaining popularity in a wide range of applications owing to
the development of methods such as persistent homology [6].
TDA extracts the shape information for a given data space,
such as connected components, holes, and other higher di-
mensional features [6]. Compared with other geometrical data
analysis methods, TDA is coordinate-free and robust, therefore
attractive for data analysis tasks ranging from material science,
biology, to image and time-series data analysis [7]–[10]. In
particular, persistent homology based TDA has recently been
applied to MCSA based motor fault diagnosis, and shown to
be very effective in extracting features in stator current signals
associated with eccentricity fault and distinguishing data mea-
sured at different eccentricity levels [11], [12]. The extracted
topological features are then used to develop regression models
for eccentricity fault level prediction, with much improved
accuracy as compared with models trained with time-domain
stator current data.

In this paper, we apply TDA method to MCSA for fault
classification problem, considering various induction motor
faults including bearing faults, eccentricity faults, and broken
bar faults. A winding function based physical model [11] is
utilized for the dynamic simulation of an induction motor
under faulty conditions, and the simulated time-domain stator
current data is processed with the TDA method. We show
that the TDA processed data can significantly improve the
distinction of data between different fault conditions. We



then establish fault classification models, and demonstrate that
models trained on the TDA processed data can achieve much
higher accuracy, as compared with models trained directly on
time-domain data. Compared with conventional signal pro-
cessing methods, the TDA approach does not require physical
model or domain knowledge of the motor system, and needs
only a very short data sequence to extract fault features and
make reasonable predictions.

The rest of the paper is organized as follows: In Section II,
we introduce the method for simulating faulty conditions and
generating the dataset, and analyze the data; in Section III,
we present the TDA process and discuss the obtained Betti
sequence data; in Section IV, we present the classification
models and discuss the results with TDA; in Section V, we
conclude the paper and discuss future work.

II. DATA GENERATION METHOD

In this work, to evaluate the effectiveness of TDA for motor
fault classification, we consider a total of seven conditions for
an induction motor: healthy, static eccentricity (SE), dynamic
eccentricity (DE), mixed eccentricity (ME), inner race bearing
fault (IR), outer race bearing fault (OR), and broken bar fault
(BB).

A dynamic model based on coupled circuits with winding
function method for inductance calculation is established to
simulate these faulty conditions, and the simulated stator
current data are used for the subsequent fault classification
study.

A. Simulation Model

The motor dynamics is described with multiple coupled
circuits. Consider a three-phase squirrel-cage induction motor
with rotor bar number Nb with no fault, the stator voltage
Vs = [vs1, vs2, vs3]⊺ and flux linkage Λs = [λs1, λs2, λs3]⊺
are modeled as

Vs = RsIs +
d

dt
Λs, (1)

Λs = LssIs +LsrIr, (2)

where Is = [is1, is2, is3]⊺ is the stator current, Ir =
[ir1, ir2, ..., irNb

, ie]⊺ is the rotor current with dimension R+1
to describe rotor loop currents and the end ring current respec-
tively. Rs is stator resistance matrix, Lss is stator inductance
matrix, and Lsr is the mutual inductance matrix between stator
phase windings and rotor loops with dimension 3 × (Nb + 1).

The squirrel cage of the rotor is modeled as multiple
coupled-circuits, with each bar and end ring modeled as
separate elements. The rotor voltage and flux linkage are
described by

Vr = RrIr +
d

dt
Λr, (3)

Λr = LrsIs +LrrIr, (4)

where Lrs = L⊺sr, and Lrr is the (Nb + 1) × (Nb + 1) self-
inductance matrix for rotor loops.

The torque equation of the induction motor is

Te =
1

2
I⊺s
∂Lss

∂θr
Is + I⊺s

∂Lsr

∂θr
Ir +

1

2
I⊺r
∂Lrr

∂θr
Ir, (5)

where θr is the rotor mechanical angle.
In addition, the mechanical dynamics of the motor is

described by

ω̇r =
1

J
(Te − TL), (6)

θ̇r = ωr, (7)

where ωr is the rotation speed, TL is load torque, and J is
the rotor inertia.

The inductances between windings are calculated by a mod-
ified winding function model [13]. In general, the inductance
between a pair of windings labeled i and j within a motor is
calculated by

Lij(t) = µ0lr∫
2π

0
ni(ϕ, t)Mj(ϕ, t)g−1(ϕ, t)dϕ, (8)

where µ0 is the free-space permeability, r is air gap radius, l
is the stack length of the motor, ni(ϕ, t) is the winding turns
function for winding i, and Mj(ϕ, t) is the modified winding
function for winding j, which is derived from

M(ϕ, t) = n(ϕ, t) − ⟨M(t)⟩, (9)

where

⟨M(t)⟩ = 1

2π⟨g−1(ϕ, t)⟩ ∫
2π

0
n(ϕ, t)g−1(ϕ, t)dϕ, (10)

and

⟨g−1(ϕ, t)⟩ = 1

2π
∫

2π

0
g−1(ϕ, t)dϕ. (11)

Mechanical faults including eccentricity and bearing faults
are described by the periodic modulation of the air gap
function g(ϕ, t).

Under SE and DE conditions, the air gap function can be
written as:

g(ϕ, t) = g0Kc − δSEg0 cos(ϕ) − δDEg0 cos(ϕ − ωrt). (12)

where g0 is nominal air gap length, Kc is Carter’s coefficient
to quantify the slotting effect, δSE and δDE are the SE and
DE amplitude respectively [14].

Bearing faults can also be described by periodic modulation
of the air gap function. When a point defect of the bearing
comes into contact with another bearing element, a radial
displacement of the rotor center, or eccentricity is created. The
periodic modification of the air gap length due to bearing fault
induced eccentricity can be modeled by a series of Dirac delta
functions. In presence of bearing fault, the air gap function of
a motor at stator angle ϕ and time t is described by

g(ϕ, t) = g0 [Kc − e0 cos(ϕ + ψ(t))
+∞

∑
k=−∞

δ (t − k

fc
)] , (13)

where e0 is the eccentricity level caused by the bearing fault,
and ψ(t) is the defect position angle at time t. In practical



implementation, rectangular shaped pulses with finite width
are used instead of the pulses [15], [16]. The time-dependence
of the fault position depends on the fault type. For outer race
fault, the outer race stays in place at all time, and the fault
position is fixed, ψ(t) = 0 without loss of generality. For inner
race fault, the fault rotates along with the inner race and rotor,
so that ψ(t) = 2πfrt.

Denote the resistance of each rotor bar as rb, and the re-
sistance of the end winding piece connecting two neighboring
rotor bars as re, the rotor resistance matrix can be written as
equation (14).

In case of a broken bar fault, the corresponding bar is
removed from the circuit system, and neighboring loops are
combined as one new loop. The coupled-circuit equations
update subsequently [17]. The dimension of rotor resistance
and inductance matrices is reduced from (Nb + 1) × (Nb + 1)
to Nb × Nb, and the updated rotor resistance matrix with
one broken bar is written in equation (15). The inductance
terms also need to be updated accordingly. Broken bar fault is
reflected in the stator current spectrum at side bands around
the supply frequency:

fBB = (1 ± 2ks)fs, (16)

where fs is the supply frequency, s is the slip of the induction
motor, and k is an integer.

B. Simulated Data

A 3-phase 4-pole squirrel cage induction machine is used
in the study. The stator has 36 slots, with 37 winding turns in
each slot. The air gap length g0 = 0.28 mm, and the air gap
radius r = 41.6 mm. The squirrel cage has 28 bars, and the
stack length is l = 80 mm. The Carter’s coefficient Kc = 1.40.
Supply frequency is 60 Hz.

Simulation is performed with the method described in
the previous subsection for each faulty case under no-load
condition, and the stator current data is recorded at 10 kHz
sampling frequency for a length of 30 seconds.

To simulate bearing fault conditions, we assume that two
6022-ZZ bearings are mounted on the load side and the
opposite side respectively, with each bearing has 8 balls. The
inner race defect characteristic frequency for these bearings is
approximately fi ≈ 0.6nfr = 4.8fr, while an outer race defect
gives characteristic frequency of fo ≈ 0.4nfr = 3.2fr.

Fig. 1 shows an example of simulated three-phase stator
current data for the motor without fault. Fig. 2 compares the
simulated phase A stator current data under different fault
conditions. While the signal without fault is generally smooth
sinusoidal, signals under faulty conditions show more small
features. However, it is not straightforward to tell these time-
domain signals apart.

We examine the frequency spectrum of the obtained stator
current to make sure the simulation model generates reason-
able signals. In Fig. 3 we compare the frequency spectrum
of phase A current under inner race and outer race bearing
faults. Different characteristic frequencies corresponding to the
respective bearing faults are seen in the two conditions. Fig. 4

plots the frequency spectrum around the supply frequency
under broken bar condition, which clearly shows the side
bands corresponding to the the broken bar fault frequencies
listed in equation (16). These results show that the simulation
model is reasonable in generating stator current signals under
these fault conditions.

III. TDA PROCESS

Typically, MCSA based motor fault detection requires de-
tailed analysis of the current spectrum with domain knowledge
to identify frequency signatures of each fault. In this work,
we utilize TDA method to process the obtained stator current
data and reveal the features in the data space that are related
to motor faults, without the need of domain knowledge or
physical models.

For each investigated faulty condition, we take a segment of
1024 consecutive data points from the simulated time-domain
stator current data, which corresponds to roughly 0.1 s. The
three-phase data segment forms a point cloud in 3D Euclidean
space, with the dominating shape a large circle corresponds
to the sinusoidal waveform at supply frequency. We perform
TDA following the process established in Ref. [12] to calculate
the persistent homology of each data segment, and then
obtain the H0 and H1 Betti sequences, which corresponds to
connected components and holes in the data space respectively.

The obtained Betti sequences corresponding to data samples
from each fault condition are plotted in Fig. 5. Note that the
x-axis of the curves indicates the filtering radius. H0 Betti
sequence describes how the connected components in the point
cloud formed by the three-phase current data evolves with the
filtering radius. We can generally understand that motor faults
introduces additional components in the stator current data,
causing the neighboring points in the point cloud formed by
the three-phase current data to be further apart, which alters the
line shape of the corresponding Betti curve. H1 Betti sequence
describes how the holes formed in the point cloud evolves with
the filtering radius. Without fault, the point cloud is almost an
ideal circle in three dimensional space, and there are very
few H1 features. When fault occurs, localized holes form and
merge in the point cloud at various filtering radii, introducing
additional features in the H1 Betti sequence. While it is not
straightforward to interpret the shapes of each curve in details
accordingly to the motor fault, we do notice that they are
more separable than the original time-domain data as shown
in Fig. 2.

The separability of the Betti sequences under different fault
conditions is more obvious when we process all the obtained
data samples with TDA, and visualize them in the t-SNE plot.
As shown in Fig. 6(a), the time-domain data are essentially
indistinguishable, as they are all mixed together. On the other
hand, As shown in Fig. 6(b), the combined H0 and H1 Betti
sequence data largely clusters according to fault condition,
indicating that the data are much more linearly separable than
the original time-domain data.
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Fig. 1. Simulated three-phase stator current for the inductor motor without
fault.

With the Betti sequences obtained from TDA, we can design
and train fault classification models to effectively detect and
classify motor faults for given stator current data.

TABLE I
MOTOR FAULT CONDITIONS AND CORRESPONDING LABEL

Label 0 1 2 3 4 5 6

Condition Healthy SE DE ME IR OR BB

IV. FAULT CLASSIFICATION RESULTS

With the model established for each fault condition, dy-
namic simulations are performed to obtain the corresponding
time-domain (TD) stator current signals. For machine learning
purposes, the obtained stator current signal is segmented into
samples of length 1,024 and labelled with corresponding fault
condition as indicated in Table I. For comparison, the time-
domain data samples are processed with the TDA method,
and a new dataset is assembled with the H0 and H1 Betti
sequences. For convenience, all H0 and H1 Betti sequences

Fig. 2. Comparison of phase A stator current data under different fault
conditions. Each curve is shifted vertically by 2 A from previous one for
better visibility.

are kept the same length of 1,024 as their time-domain data
counterparts.

The dataset is then shuffled and partitioned into training
and test set with a split ratio of 80:20. Commonly used ma-
chine learning classification models, including decision tree,
multi-layer perceptron (MLP), Naive Bayes, nearest neighbors,
random forest, and linear support vector machine (SVM), are
trained on the training dataset and the performance is evaluated
on the test dataset according to the classification accuracy.
Hyperparameters for each classification model are kept the
same for all input data types.

The results for models trained on TD, H0, H1 and com-
bined H0 + H1 data respectively are compared side-by-side
in Table II. For models trained on TD data, they all fail to
predict the correct fault condition, and the performances are



Fig. 3. Phase A current spectrum under bearing fault conditions.

Fig. 4. Phase A current spectrum under broken bar fault condition.

Fig. 5. H0 and H1 Betti curves for induction motor phase current signals
under different fault conditions.

no better than random guess. When trained with H0 data, the
classification accuracy for all models is improved to around
90%. Models trained on H1 data also yield prediction accuracy
above 80%. When using both H0 and H1 Betti sequence
data for training, the overall accuracy of models trained (last
column of the table) is further improved to over 90%, with the
highest accuracy of 96.9% achieved by linear SVM classifier.

We further evaluate the model prediction performance
by examining the confusion matrix between true label and
predicted label on the test dataset for the best performing
classification models for TD data (random forest model, with

(a)

(b)

Fig. 6. t-SNE plot in 2d for (a) time-domain phase current data, and (b) H0

and H1 sequences combined for different fault conditions.

TABLE II
CLASSIFICATION ACCURACY OF MODELS TRAINED ON TIME-DOMAIN

DATA AND TDA PROCESSED DATA FOR MOTOR FAULT CONDITIONS
CORRESPONDING TO TABLE I

Input Data Type
Classifier Model TD H0 H1 H0 + H1

Decison Tree 17.2% 85.8% 80.2% 91.2%
Multi-layer Perceptron 13.5% 86.9% 88.3% 95.3%

Naive Bayes 12.1% 89.9% 86.4% 95.6%
Nearest Neighbors 11.9% 84.4% 86.8% 94.1%

Random Forest 18.6% 85.3% 81.7% 92.8%
Support Vector Machine 11.5% 89.9% 89.6% 96.9%

prediction accuracy of 18.6%) and Betti sequence data (linear
SVM, with prediction accuracy 96.6%), which are shown in
Fig. 7. For the random forest model trained on TD data, the
prediction is pretty much random. For the linear SVM model
trained on H0 and H1 Betti sequence data, the model gives
correct prediction on fault condition for most test data samples.

These results show the effectiveness of TDA process to
extract fault related features in stator current signals, without



(a)

(b)

Fig. 7. Confusion matrix of the best performing classifiers for (a) time-domain
data, and (b) Betti sequence data.

the need of spectral analysis and physical model. Simple
classification models that are easy to train and deploy can be
build to make accurate predictions to motor fault conditions
with the TDA processed data.

V. CONCLUSIONS

In this paper, we evaluated topological data analysis method
for stator current data based induction motor fault classi-
fication. With coupled circuit model and winding function
approach, we simulated the motor dynamics, and obtain the
stator current data for each faulty condition. We then processed
the segmented time-domain signals with TDA method, and
trained machine learning models for fault classification. We
showed that the data features related to the fault condition can
be effectively extracted with the method, and the classification
accuracy of trained machine learning models can be greatly
improved, as compared with models trained with time-domain
stator current data. The method requires neither physical
knowledge in fault signatures for each case, nor parameters
for motors or bearings. In the next step, we will conduct

experiments to obtain data under various faulty conditions,
and apply the method to the experiment data to evaluate its
effectiveness on real data.
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