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Multi-Agent Formation Control using Epipolar Constraints
Pedro Roque†, Pedro Miraldo‡, and Dimos V. Dimarogonas†

Abstract—Formation control of multi-agent systems has pro-
found applications in today’s technological scene, ranging from
satellite constellations, collaborative load transportation, coop-
erative surveillance, and distributed aperture imaging systems.
Often, these applications are needed in environments where
localization is challenging or inexistent, such as indoor and
underground environments or extra-planetary scenarios (such as
Mars or the Moon). In this work, we propose a novel forma-
tion control scheme using image feature correspondences from
widespread onboard cameras and only one range measurement
between the formation leader and one of its neighbors. Then,
optimal control inputs generated by a Nonlinear Model Predictive
Control-based control law drive the agents toward the desired
formation setting. The framework is tested both in simulation and
on mobile platforms in a laboratory environment, with multiple
camera types.

Index Terms—Visual Servoing; Multi-Robot Systems; Vision-
Based Navigation.

I. INTRODUCTION

COORDINATING a group of agents in GPS-denied envi-
ronments is a hard task. Precise localization systems are

expensive and proprioception is often not accurate enough for
precise formation control or load transportation tasks [1], [2].

This work focuses on a multi-agent formation control prob-
lem for M agents as illustrated in Fig. 1, one leader and
M − 1 followers. The objective is to derive control laws
for the followers to converge and maintain predefined relative
poses between each other and the leader. While this is a well-
studied problem, there are still several challenges related to the
absence/limited availability of accurate relative pose sensing,
particularly in GPS and/or heading-denied environments. To
cope with this, we explore the use of image features from
on-board cameras in the control module. We propose two
methods for multi-agent relative pose coordination that guide
the followers’ agents to the desired relative position. The
methods here proposed use Model Predictive Control (MPC)
[3]–[5] and Visual Servoing [6], [7] techniques with i) five
matching features in the images of each agent, ii) one range
sensing measurement from the leader to one follower to
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Fig. 1: Formation with 3 agents. The formation is defined
as relative positions and attitudes with respect to the camera
frames, which can be translated into the agent’s frames.

achieve a desired formation geometry, and iii) control inputs
from the neighbors to track the leader/followers motion.

Image-based Visual Servoing (IBVS) is a technique for
driving an agent to a desire position [6], [7] using image
feedback. Instead of controlling the position of the robot
directly, IBVS models the agent’s velocities as a function
of the errors between the current and goal image features
from on-board cameras. The first works exploring epipolar
geometry in the IBVS are presented in [8], [9]. The authors
define the errors as the distance between the image features
and the epipolar lines, obtained from the current and desired
relative pose, and their method drives the robot to a desired
position, up to a scale factor. In this work, however, we address
the problem of minimizing both rotation and translation error
simultaneously and include control and state constraints to
ensure the features remain in the image.

Regarding relative pose coordination using image features,
[10] derives a method that provides control inputs from
the epipoles computed from neighboring robots. The method
reaches consensus in their orientations, without the need of
directly observing each other. In [11], the authors use IMU
and computer vision to obtain a rectified image [12]. The
method is appropriate for aerial vehicles with down-pointing
cameras. A distributed consensus scheme to deal with the
translation scale is proposed. Other vision-based approaches
for relative pose coordination are available: [13], [14] present
methods for motion coordination and control strategy for
leader-follower formations of non-holonomic vehicles, under
visibility and communication constraints, as well as saturation
of control inputs. [15] uses a distributed consensus of M ≥ 3
agents for aerial-robotic teams. Using a PID-based control,
each robot uses its view of a target and the relative distance
from its two closest neighbors. [16] addresses the formation
control of aerial vehicles with downward-facing cameras. The
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solution computes the control commands from the projection
of a subset of ground vehicles. In [17], the authors present a
vision-based method for incremental depth and relative pose
estimation of ground vehicles.

In this paper, we propose a novel Image-Based Formation
Control (IBFC) framework which employs visual information
to drive the robotic agents to maintain a desired formation. The
goal is to generate control inputs using corresponding image
features from the robots’ on-board cameras. In contrast to [10],
[11], we i) locally obtain control inputs in the image-frame,
without the need for global localization methods or heading
references, such as those provided by an IMU; ii) allow
for the 6 Degrees-of-Freedom (DoF) formation coordination
with multiple camera types, by modeling each camera as a
general projection system; and iii) use an MPC framework
able to generate optimal control inputs in the image space.
In [16], the authors address an entirely different problem, as
they use ground vehicles as landmarks and thus leading to
a largely reduced amount of features that can be used. In
contrast to [15] that uses range sensing between the current
and at least two neighboring agents, we only require one
range distance between the leader and any other member
of the formation, minimizing the amount of extra and less
accurate sensors on-board the vehicles. We stress that, while
some previous methods explore epipolar lines for IBVS, to the
best of our knowledge, this is the first approach that exploits
these constraints for multi-agent formation control. Since our
method does not require inertial measurements, it is especially
appealing to formations operating in microgravity or in the
absence of a trustworthy magnetometer or GPS measurements.
Moreover, the use of intersections from multiple epipolar
constraints for M > 2 agents formation control is new in
the literature, avoiding the use of relative position measure-
ments for large formations, and extending considerably the
application areas of our method with respect to the state of
the art.

The manuscript is structured as follows: Section II details
the background knowledge used to solve the problems in
Section III with the methods proposed in Sections IV; sim-
ulation and experimental results are shown in Section V, and
conclusions and future work are presented in Section VI.

Notation: Small bold letters represent vectors. Matrices are
denoted by bold capital letters. In particular, In represents an
identity matrix in Rn×n, and 0n×m a zero matrix in Rn×m.
Regular letters denote scalars. The skew-symmetric matrix
representation of a is represented as a×. Caligraphic letters
denote reference frames. Rotation matrices and translation
vectors from frames A to B are defined as RB

A ∈ SO(3)
and tBA ∈ R3. Features represented in a reference frame A
are denoted as aA. When the origin/target frame is the inertial
frame, we omit the corresponding letter. The symbol ∼ denotes
that the right side of an equation is equal to the left up to a
scale factor. As in the MPC literature, the predicted value of
variable a with the information available at time step k for the
future time k+n, is written as a(k+n|k). A sub component r
of a vector a is written as a[r]. Lastly, the Veronese map [18] of
a vector a or matrix A is defined as ⋄a and ⋄A, respectively.

II. BACKGROUND

We consider a formation setting with M agents, led by L,
the leader of the multi-agent team, and followers Fi. The
set of all agents is defined as G = {L,F1, . . . ,FM−1}.
Figure 1 depicts such scenario with M = 3 agents. Moreover,
we consider general camera systems in this framework, which
can be applied to any general single viewpoint images.

Assume that each robotic agent in G has a calibrated
camera (see [12]), where each homogenous 3D feature pW

i ≜[
Xi Yi Zi 1

]T
belonging to the inertial frame W is

projected to the normalized image point sCi ≜
[
ui vi 1

]T
,

where ui and vi are the normalized pixel coordinates in the
camera frame C, for each feature i. We model such cameras
as a central projection system, which includes catadioptric
cameras, perspective cameras, as well as several lens distortion
models. Each projective ray cCi ≜

[
xi yi zi

]T
is defined as

cCi = TC
WpW

i , where the matrix TC
W ∈ R3×4 is the camera

extrinsics matrix, parametrized by TC
W = RW

C
T [

I −tWC
]
,

as in [12]. Then, we use the canonical perspective plane
(CPP) model in [18], and the division (DIV) model in [19] to
obtain the normalized image points sCi . Each model requires a
parameter α ∈ (−1, 1] enconding the nonlinearities of general
central projective systems.

A. Image-based Visual Servoing (IBVS)

IBVS consists of controlling a camera movement based
solely on image features. Consider an observed feature si,
and it’s non-homogeneous representation fi =

[
ui vi

]T
. The

corresponding desired feature position in the camera frame is
here denoted as f̄i. The goal of the visual servoing task is to
drive the robot to a unique position in which fi converges to
f̄i, corresponding to the desired pose of the camera. The error
between the desired and current feature observations is defined
as

f̃i = fi − f̄i =⇒ ˙̃
fi = ḟi. (1)

Next, we introduce the interaction matrix L(fi, α, zi) ∈
R2×6, referred to as Li, that relates the velocity of a general-
ized camera of a robotic agent, u ∈ R6, with the movement
of the observed image features in the image plane:[

u̇i
v̇i

]
= Liu, (2)

where Li ∈ R2×6 [20, Eq. 13] is defined as

Li ≜

[
− 1+u2

i (1−α(η+α))+v2
i

ρ(η+α)
αuivi

ρ
ηui

ρ

αuivi
ρ − 1+v2

i (1−α(η+α))+u2
i

ρ(η+α)
ηvi
ρ

. . .
uivi − (1+u2

i )η−αv2
i

η+α vi

− (1+v2
i )η−αu2

i

η+α −uivi −ui

]
,

with η =
√
1 + (1− α2)(u2i + v2i ) and ρ =

√
x2i + y2i + z2i .

In (2), u is defined as follows:

u =
[
νT ωT

]T
, (3)

where ν ∈ R3 and ω ∈ R3 are the linear and angular ve-
locities, respectively. A common image-based visual servoing
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strategy [7] is to design the control input as u = −kL†
i (fi− f̄i)

where L†
i is the Moore–Penrose pseudoinverse of Li. It can

be seen in [7] that such control strategy exponentially drives
the error fi − f̄i to the origin. It is important to note that
the interaction matrix Li requires an estimate of the depth zi.
This can be achieved with on-board monocular estimators, as
shown in the literature [21]–[23].

B. Epipolar Geometry

Let j and l be two perspective cameras in a shared
workspace and f ji and f li the representation of a point pW

i

in each camera image. Then, the epipolar constraint is

sl
T

i El
js

j
i = 0, j, l ∈ G, (4)

where El
j ∼ tlj×R

l
j - with ∼ meaning equal up to a scale

factor - is the essential matrix that encodes the relative position
tlj and attitude Rl

j between the two cameras, and where
sli and sji are the normalized image features, noting that
si =

[
ui vi 1

]T
. In the computer vision literature [12],

it is common to use (4) to estimate an essential matrix El
j

and extract a camera motion between two image samples.

III. PROBLEM STATEMENT

In this work, we aim to explore the epipolar geometry to
define the formation control problem, enabling us to obtain a
desired formation configuration based solely on image features
f ji and f li , a single relative distance measurement ∥tlj∥ between
two agents in G, and the neighbors control inputs for zero
steady-state tracking error. Particularly, we consider two cases:
i) the coordination of two agents, for M = 2, and ii) the
coordination of three or more agents, for M > 2. We will
start by defining the multi-agent formation, followed by the
problem statement we aim at addressing.

A. Multi-Agent Formation System

The formation geometry is defined by the desired relative
poses among the agents, that is, R̄l

j and t̄lj , encoded in an
essential matrix Ēl

j (9), j, l ∈ G, with j ̸= l.
We consider two types of followers. One, here denoted as

F1, that can measure a distance to the leader L, with state
ξF1 and kinematics ξ̇F1 given by

ξF1 =
[
tL

T

F1
, f

FT
1

1 , . . . , f
FT

1
5

]T
∈ R13, (5a)

ξ̇F1 =


[
−I −tLF×

]
L1(f

F1
1 )

...
L5(f

F1
5 )

uF1 +


[
RF

L −tLF×
RF

L
]

0
...
0

uL,

(5b)

where tLF1
is estimated from 5 feature matches with the leader

by calculating the unique essential matrix and obtaining the
scale with the aid of the range measurement ∥tLF1

∥. Then,
RF

L is directly obtained from the estimated essential matrix.
Note that, from [24], we require at least 5 common feature
observations of static world-frame points to correctly extract

a camera pose (up to a scale factor). Therefore, the following
assumption follows.

Assumption 1. Each agent j in the formation G observes at
least 5 non-colinear features in common with two formation
neighbors o, r ∈ G\j.

The leader L and followers F2, . . . ,FM−1 only measure
image features and have their states ξo and kinematics ξ̇o, o ∈
G\F1 given as

ξo =

f
o
1
...
fo5


T

∈ R10, ξ̇o =

L1(f
o
1 )

...
L5(f

o
5 )

uo. (6)

In the above equations, Li(.) are the interaction matrices
defined in (2). Each state ξj in (5) and (6) is constrained by
a polytope Ξj where we wish the state to evolve, that is

ξj ∈ Ξj , j ∈ G. (7)

In the same way, the control input is constrained as uj ∈ U j ⊂
R6, where U j is defined as

U j ≜ {uj ∈ R6 : umin
[r] ≤ uj

[r] ≤ umax
[r] }, r = 1, ..., 6, (8)

with umax and umin being constant vectors such that U contains
the origin, that is, umin

[r] ≤ 0 ≤ umax
[r] .

B. Problem Definition

Considering the multi-agent team defined in the latter sec-
tion, we define the problems to be addressed in this paper in
the following manner:

Problem 1 (Two Agent Coordination). Given i) an essential
matrix El

j , encoding the desired relative pose between two
agents j, l ∈ G, j ̸= l, up to a scale factor (4), ii) a relative
distance measurement ∥tlj∥ between any two agents1, iii) two
matched feature sets F j = {f j1 , . . . , f

j
i } and F l = {f l1, . . . , f li}

where f ji and f li correspond to the same pi observed by agents
j, l ∈ G respectively, with at least 5 feature correspondences,
and iv) a predicted control input sequence and the distortion
parameter α from a neighbor j, design ul such that the agent
l with state and kinematics (5), under constraints (7) and (8),
is driven to a desired relative attitude R̄l

j and relative position
t̄lj .

For the M = 3 case we consider the following problem:

Problem 2 (Formation Control). Given i) two essential
matrices Eo

j and Eo
l , encoding the desired and consistent

relative pose between the agents j, l, o ∈ G, j ̸= l ̸= o, up to
a scale factor (4), ii) three sets of features F j = {f j1 , . . . , f

j
i },

F l = {f l1, . . . , f li} and F o = {fo1 , . . . , foi } where each f ji , f li
and foi correspond to the same pi observed by agents j, l, o ∈
G respectively, with at least 5 feature correspondences, and
iii) the predicted control input sequences and the distortion
parameters αj , αl from a neighbor j, l, design uo such that
the agent owith state and kinematics (6), under constraints (7)

1This relative distance can be measured through ultrasonic or ultra-wide
band sensors.
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1
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Fig. 2: Depiction of the epipolar geometry for the formation
control scenario with three or more agents, where the epipolar
curves defined by R̄o

j , t̄oj , R̄o
l and t̄ol , j, l, o ∈ G are seen in

the agents image plane.

and (8), is driven to the desired relative attitudes R̄o
j and R̄o

l ,
and relative positions t̄oj and t̄ol .

Remark 1. It is important to note that combining the later
proposed solutions to Problem 1 or Problem 2 allows us to
control a formation of M > 3 agents, considering that one
agent is in formation with a leader L by solving Problem 1,
and the remaining agents coordinate with respect to their
neighbors by solving Problem 2.

In Section IV-B and Section IV-C, two control schemes
are proposed to solve the coordination problems presented in
Problem 1 and Problem 2, respectively.

IV. PROPOSED SOLUTION

In this work, we propose a novel solution to the forma-
tion control problems defined before. In particular, we aim
to explore epipolar constraints (4) to define the formation
geometry. Instead of estimating the essential matrix El

j , we
propose to design Ēl

j with a desired relative pose parametrized
by a desired relative position t̄lj and relative orientation R̄l

j ,
such that

Ēl
j ∼ t̄lj×R̄

l
j . (9)

As in [18], we use the lifting Veronese maps ⋄s and ⋄E to
extend (4) to generalized projection systems, such that

⋄s
lT

i ⋄Ē
j
l ⋄s

j
i = 0, j, l ∈ G (10)

with ⋄s
lT

i ∈ R6 and ⋄Ē
j

l ∈ R6×6.

A. Model Predictive Image-Based Visual Servoing

To solve each agent’s control problem we propose the use of
a Nonlinear Model Predictive Controller with image feedback
– hereafter referred to as Model Predictive Image-Based Vi-
sual Servoing (MP-IBVS) [25]. MP-IBVS is a Finite-Horizon
Optimal Controller (FHOC) [26] which minimizes a cost
function J(ϵj , ũj) depending on the error ϵj := ψj(ξj , ξ̄j , ιl),
where ξj is the state, ξ̄j its desired value, and ιj is the

received information vector, and control input error ũj . The
cost is minimized in a receding horizon of length N , while
taking into account the discrete system model gj(ξj ,uj). The
optimization problem is constrained by state and control sets
Ξj and U j . We will appropriately design these variables to
achieve the desired formation control task. The MP-IBVS
problem can then be generally written as

minimize
uj

J(ϵj , ũj) (11a)

subject to: ξj(k + n+ 1|k) = gj(ξj(k),uj(k)), (11b)

ξj(k + n|k) ∈ Ξj , (11c)

uj(k + n|k) ∈ U j , (11d)
n = 1, . . . , N − 1, (11e)

ξj(0|0) = ξj(0), j ∈ G\L. (11f)

Solving the optimization problem in (11) results in N − 1
predicted control inputs uj

N = {uj(k|k), . . . ,uj(k+N−1|k)}
and predicted states ξjN = {ξj(k + 1|k), . . . , ξj(k + N |k)}.
The MPC cost function J(ϵj , ũj) to minimize is defined as

J(ϵj , ũj) =

N−1∑
n=0

l
(
ϵj(k + n|k), ũj(k + n|k)

)
+ V

(
ϵj(k +N |k)

)
, (12a)

l
(
ϵj , ũj

)
= ϵj(k + n|k)TQeϵ

j(k + n|k)
+ ũj(k + n|k)TQuũ

j(k + n|k) (12b)

V
(
ϵj
)
= ϵj(k +N |k)TQNϵj(k +N |k), (12c)

where Qe, Qu and QN are positive-definite weighing matri-
ces, V

(
ϵj
)

is the terminal cost function, and ũj is

ũj(k + n|k) = uj(k + n|k)− ūj(k + n|k),

where ūj is the necessary control input to generate the desired
system trajectory. In the next two sections, we show how to
use (11) to solve Problem 1 and Problem 2.

B. Two Agent Coordination

We first consider the problem of relative pose control
between the leader L and one follower (F1), assuming that
F1 has a relative range measurement with respect to L,
defined in Problem 1. We abbreviate F1 to F in the se-
quel. In this scenario, F receives from L the information
vector ιL = {sL1 (k), . . . , sL5 (k), αL,uL

N}. Consider (4) and
the scenario in Fig. 2, that can be extended to an arbitrary
number of points pW

i , with corresponding features fLi and
fFi , on L and F , respectively. Furthermore, consider the five
received features sLi , in the L frame, and five matched features
sFi , i = 1, . . . , 5, in the F frame. The feature-matching is done
through robust and scale-invariant feature descriptors (such as
SIFT) and geometric verification (with RANSAC). Given a
desired essential matrix ĒL

F , the desired epipolar curves ⋄̄l
F
i

are obtain through

⋄̄l
F
i = ⋄Ē

L
F ⋄s

L
i , (13)

where ⋄Ē
L
F and ⋄s

L
i are the lifted representation of ĒL

F and
sLi , respectively. Due to (9) and (10), if ⋄s

FT

i ⋄̄l
F
i = 0 ⇔
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⋄s
FT

i ⋄Ē
L
F ⋄s

L
i = 0, then the two agents are in their desired

relative poses given by ĒL
F , up to a scale factor.

However, if ⋄s
F
i does not overlap with ⋄̄l

F
i , then there

exists an algebraic error corresponding to ⋄s
FT

i ⋄̄l
F
i ̸= 0 ⇔

⋄s
FT

i ⋄Ē
L
F ⋄s

L
i ̸= 0. It is, then, our control objective to align

the locally observed features ⋄s
F
i with the epipolar curves ⋄̄l

F
i .

This algebraic error can be re-written as

⋄̄l
FT

1 ⋄s
F
1 =

[
a b c d e 1

] [
x2 xy y2 x y 1

]T
=

[
x y 1

] 1
2

2a b d
b 2c e
d e 2


︸ ︷︷ ︸

M1

xy
1


= sF

T

1 M1s
F
1

for a lifted curve ⋄̄l
F
1 ∼

[
a b c d e 1

]
with constants

a, . . . , e ∈ R, as in [18], numerically obtained in runtime. For
the case in which L is static, then the curves ⋄̄l

F
i are also static

in the optimization horizon N of the FHOC in (11). However,
if L moves in the workspace, then the features fLi will move
according to (2), for which we need the distortion param-
eter α, as in Sec. II-A, and the predicted control sequence
{uL(k|k), . . . ,uL(k+N − 1|k)} of the leader L to calculate
predicted curves {⋄̄lFi (k + 1|k), . . . , ⋄̄lFi (k +N |k)}. Accord-
ingly, the error function ϵF (k + n|k) := ψF

2 (ξF , ξ̄F , ιL), at
each time-step k, for the two-agent formation is defined as

ϵF (k+n|k) =


1
2 (∥t̂

L
F (k + n|k)∥2 − ∥t̄LF∥2)

1
2s

F
1 (k + n|k)TM1(k + n|k)sF1 (k + n|k)

...
1
2s

F
5 (k + n|k)TM5(k + n|k)sF5 (k + n|k)

 ,
(14)

with ϵF (k) ∈ EF ⊂ R6 where EF is a polytope, and where
∥t̂LF (k+n|k)∥2−∥t̄LF∥2 represents the relative distance error,
and sFi (k+ n|k)TMi(k+ n|k)sFi (k+ n|k) represents the al-
gebraic curve-distance errors, for i = 1, ...5 and n = 0, ..., N .
The dynamics of the error (14) are derived from (5) and (13),
and are given by

ϵ̇F =


tL

T

F
[
−I −tLF×

][
sF

T

1 M1

]
1:2

L1(f
F
1 )

...[
sF

T

5 M5

]
1:2

L5(f
F
5 )


︸ ︷︷ ︸

fF
g :=fg(ϵF ,ξF ,ιF )

uF +


tL

T

F
[
RF

L 0
]
uL

1
2s

FT

1 Ṁ1s
F
1

...
1
2s

FT

5 Ṁ5s
F
5


︸ ︷︷ ︸

fF
f :=ff (ϵF ,ξF ,ιF )

.

(15)
We now provide the assumptions and conditions for local
stability in the neighborhood of the trajectory imposed by the
leader.

Assumption 2. During the control task, fg(ϵF , ξF , ιF ) re-
mains full-rank.

Theorem 1. Consider (5), controlled by the FHOC in (11),
where the error ϵj is defined in (14). Let Assumptions 1 and 2

hold considering state and control constraints (7) and (8).
Consider the feedback controller given by

uF
inv(k) = fF

T

g · (fFg fF
T

g )−1 ·
(
− fFf − S

h
ϵ(k)

)
, (16)

where S ≻ 0 is a diagonal matrix, and h > 0 the sampling
time, such that

V (gF (ϵF ,uF
inv))− V (ϵF ) + l(ϵF ,uF

inv) ≤ 0,∀ϵ ∈ Ω,

where Ω is a terminal set defined by Ω := {ϵ ∈ E : V (ϵ) ≤
δ}. Then, the system asymptotically converges to ϵF = 0 as
t→ ∞.

The proof can be found in [27].

C. Formation Control

Assuming that at least one follower is in formation with
the leader (without loss of generality, let it be F1) using
the MP-IBVS controller proposed in Sec. IV-B, we propose
a control scheme that is capable of driving an agent to the
correct relative pose in the formation based solely on image
features, addressing Problem 2. In other words, any other agent
in G\{L,F1} can achieve their desired formation pose without
the need for range measurements.

Consider the scenario in Fig. 2, where agents L and F1 are
at the desired relative pose, and follower Fj receives image
features from both agents. In this setting, we show that the
relative pose of the follower Fj with respect to L and F1 is
uniquely defined by the epipolar geometry shared by the three
camera system, assuming that the closest image solution is
the desired one. This property can be extended to any agent
Fj , j = 2, ...,M − 2.

Let ⋄s
Fj

i , i = 1, . . . , 5, be the set of features observed by
the follower Fj , j = 2, . . . ,M − 2, and epipolar curves sets

⋄L̄L = {⋄̄l
Fj

i,L} and ⋄L̄F1 = {⋄̄l
Fj

i,F1
} relative to the leader L

and follower F1, where ⋄̄l
Fj

i,l = ⋄Ē
l

Fj ⋄s
l
i, l ∈ {L,F1}, i =

1, . . . , 5. The relative pose, up to a scale factor, that minimizes
the error between f

Fj

i and the curve sets ⋄L̄L and ⋄L̄F1
is

the one where all features in f
Fj

i lie on top of the respective
curves in ⋄L̄L or ⋄L̄F1

. However, with two sets of curves,
which represent the desired relative pose to the leader L and
follower F1, the only pose that minimizes both errors is the
intersection of the curves in the sets ⋄L̄L and ⋄L̄F1 . Since such
curves can have up to four intersections, in practice we must
assume that the intersection we are interested in is the closest
to the observed feature. This is a common assumption in IBVS
approaches [7], where it is reasonable to expect that the error
to the desired configuration in the image plane is kept small.
Note that agents L and F1 must be in the correct formation
geometry (after applying the method of Sec. IV-B) for the
M > 2 agent to converge to the desired relative position.

Let F̄LF1 = {f̄LF1
1 , ..., f̄LF1

5 } be the image features corre-
sponding to the intersection of the curve sets ⋄L̄L and ⋄L̄F1

(in the Fj image-plane). In this case, we wish to minimize the
error between f

Fj

i and f̄LF1
i , i = 1, . . . , 5, j = 2, . . . ,M − 2.

We can obtain the predicted line sets ⋄L̄
L
N = {⋄̄l

Fj

1,L(k +

1|k), . . . , ⋄̄l
Fj

5,L(k + 1|k), . . . , ⋄̄l
Fj

1,L(k + N |k), . . . , ⋄̄l
Fj

5,L(k +
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N |k)} and ⋄L̄
F1

N = {⋄̄l
Fj

1,F1
(k + 1|k), . . . , ⋄̄l

Fj

5,F1
(k +

1|k), . . . , ⋄̄l
Fj

1,F1
(k +N |k), . . . , ⋄̄l

Fj

5,F1
(k +N |k)} with the in-

formation vectors ιl(k) = {sl1(k), . . . , sl5(k), αl,ul
N}, l =

L,F1, for two neighbors, (13) and a proper discretization
of (2). In this case, the error function ϵFj (k + n|k) :=

ψ
Fj

3 (ξFj , ξ̄Fj , ιl), at each time-step k, for the three agent
formation is defined as

ϵFj (k + n|k) =

f̄
LF1
1 (k + n|k)− f

Fj

1 (k + n|k)
...

f̄LF1
5 (k + n|k)− f

Fj

5 (k + n|k)

 , (17)

where ϵFj ∈ Ej ⊂ R10 concatenates the image-based feature
errors.

Assumption 3. There exists a terminal controller uFj such
that

V (gFj (ϵFj ,uFj ))− V (ϵFj ) + l(ϵFj ,uFj ) ≤ 0,∀ϵFj ∈ ΩFj ,

where ΩFj := {ϵFj ∈ E : V (ϵFj ) ≤ δFj} is a terminal set
in the neighborhood of ϵFj = 0.

Remark 2. Assumption 3 is common to provide feasibility and
stability results in MPC schemes [26], [28]. The assumption
is fair provided that the agents have sufficient control input
authority to track the formation geometry, as the intersection
of the 4th-order parabolic curves is algorithmic and, to the
best of our knowledge, it is not possible to derive the closed-
form dynamics of its intersection.

Theorem 2. Consider (6) controlled by (11) and the error
(17). Let Assumptions 1 and 3 hold considering state and con-
trol constraints (7) and (8). Then, the error (17) asymptotically
converges to ϵFj = 0, j = 2, . . . ,M − 1 as t→ ∞.

Proof. It is known [26], [28] that under validity of Assump-
tion 3, the MPC scheme in (11) is asymptotically stable.
Assumption 3 provides a terminal set ΩFj in which the
discrete dynamics of ϵFj are invariant given uFj , ensuring
recursive feasibility. Then, with V (gFj (ϵFj ,uFj ))−V (ϵFj )+
l(ϵFj ,uFj ) ≤ 0,∀ϵFj ∈ ΩFj , asymptotic stability is guaran-
teed, concluding the proof, and showing that (17) asymptoti-
cally converges to ϵFj = 0.

V. RESULTS

In this section, we detail the simulation and experimental
results collected using the proposed control schemes in Sec-
tion IV-B and Section IV-C. The algorithms were implemented
in the EpiC library, available at:

https://github.com/KTH-DHSG/epic.

A. Algorithm

In Algorithm 1, we detail the algorithmic implementation of
performing formation control with the solutions for Problems 1
and 2. We consider an arbitrary number of agents but assume,
without loss of generality, that Follower 1 has range-measuring
capabilities capabilities to solve Problem 1.

Algorithm 1 Image-based Formation Control for M Agents

Require: T ≥ 0 {total simulation time}
Require: M ≥ 2 {two-agents minimum}
Require: uL {leader guidance}

1: while t ≤ T do
2: for all i ∈ G do
3: if i = L then
4: FL ← FeatureExtraction()
5: ξL ← PropagateMotion(ξL,uL)
6: ιL ← BroadcastInformation() {information for all fol-

lowers}
7: else if i = F1 then
8: FF1 ← FeatureExtraction()
9: uF1 ← IBRC(FF1 , ιL) {Solve Problem 1}

10: ξF1 ← PropagateMotion(ξF1 ,uF1)
11: ιF1 ← BroadcastInformation()
12: else
13: j, o← Neighbors() {Agent neighbors, e.g.

j ← L, o← F1}
14: F i ← FeatureExtraction()
15: ui ← IBFC(F i, ιj , ιo) {Solve Problem 2}
16: ξi ← PropagateMotion(ξi,ui)
17: ιi ← BroadcastInformation()
18: end if
19: end for
20: t← t+∆t
21: end while

B. Simulation Results

The simulated results were collected using Python 3.8 in a
laptop with a Core-i7 11800H @ 2.30GHz and 16GB of DDR4
memory at 3200 MHz. The results were collected with the
Python script in demo/multi_agent_dynamic.py. The
simulation starts with the leader and five followers spread close
to their formation geometries but with a randomized error. The
presented results showcase a scenario in which the agents need
to converge to their desired relative poses while the leader is
moving at 1 cm/s. The controller parameters can be found in
the epic/config folder, while the geometry centers (poses
around which we introduce a randomized error) are available
in the file demo/6_agents_formation.json.

In Figure 3 and Figure 4 we show the image plane for 2 fol-
lowers involved in the formation task and the relative pose er-
ror of the group, respectively, for a time-period of 15 seconds.
The agent’s trajectory is seen in Figure 5. We observe that
all agents converge to their desired formation geometry and
that the tracking is achieved with zero steady-state error. The
computational time was, on average, approximately 51ms and
16ms with prediction horizons of N = 20 and N = 5 for the
controllers in Sec. IV-B and Sec. IV-C, respectively. An anima-
tion is available in data/simulated_animation.mp4
in the EpiC repository. Running the demo script will provide
more insight into control bounds, image plane, and CPU time.
The initial state is normally randomized with a mean error of
50cm in position and 20deg in attitude.

C. Experimental Results

Experimental results were conducted in a laboratory envi-
ronment equipped with a Motion Capture System and three

https://github.com/KTH-DHSG/epic
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(a) Feature motion for for F1. (b) Feature motion for F3.

Fig. 3: The normalized image plane contains the epipolar
curves for the respective neighbors, the intersection of the
two sets of epipolar curves (green cross) and the observed
features (black blobs). In (a) and (b) it is possible to observe
the initial feature position for the agent (green stars), with an
error towards the curves and their intersection, respectively.
In black, is the final feature location, while the dashed line
shows the motion of the correspondent feature.

Fig. 4: Simulation results for the six-agent formation. Con-
vergence is observed while respecting the state and input
constraints. Followers 1 and 5 are perspective cameras, 2 and
4 are parabolic cameras, while follower 3 is hyperbolic.

holonomic mobile bases. These mobile bases have 3 Degrees-
of-Freedom (DoF), which are 3 less than the simulated setup.
However, in the 2D cartesian plane, these robots can move
independently in rotation and translation. The setup can be
seen in Figure 1.

On the mobile bases, we run a SIFT feature extractor and
matching pipeline. In particular, each agent extracts 200 SIFT
features from the environment, and then F1 matches 5 of these
features with the leader, while F2 finds 5 features in common
both with the leader and F1. A motivation to use a SIFT
feature pipeline is the capability to operate in real unstructured
environments and to transition toward outdoor conditions. For
the range, we took advantage of the Motion Capture System
and ran two scenarios, i) with perfect range estimation, and
ii) with a simulated ultra-wideband ranging node, modeled
by noise with 0.01[m] of mean and 0.1[m] of variance.
The leader L was manually controlled through a number of
setpoints in the environment, with translations and rotations

Fig. 5: Trajectory of the agents during convergence and
tracking. In red, the leader L, in blue, the range-measuring
follower F1. The other agents use only the image features.

of approximately 0.4[m] and 10[deg], while followers F1 and
F2 were controller with the proposed methods in Section IV-B
and Section IV-C.

In Figure 6 we can observe that formation task performed
during a 50-second maneuver with a perfect range estimation.
We observe that the relative attitude error is kept small during
the entire time, with an average of error 3 degrees. The relative
position error is kept on. In Figure 7 however, we ran the
same tests but with a noisy range measurement, equivalent
to a ultra-wideband device. It is worth noting that, although
this noise highly impacts the follower F1, the attitude error
is still kept low, while the relative position error worsens.
Still, in this harsh scenario, the follower F2 kept a lower
relative position error than F1, as this agent also receives
measurements from the leader that help with lowering the
sensitivity of the controller to the harsh maneuvers of F1. For
F1, the attitude error was kept below 12 degrees at all times,
with an average of 4 degrees during the task execution. The
data/ folder in our repository provides videos and telemetry
of both experiments.

VI. CONCLUSIONS AND FUTURE WORK
In this paper, we derived two control laws using epipolar

constraints for formation control: one for coordination among
two agents, and another for formation control considering
a higher number of agents, observing common points of
interest in the world. To the best of our knowledge this is
the first work that achieves visual coordination considering a
single range measurement, in a multi-agent formation setting.
Experimental results provided an insight into the performance
of the proposed methods in a realistic scenario.

In the future, we will investigate the application of such
strategies to higher-order nonlinear systems, and explore how
to use the proposed framework in an active-vision setting.
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