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Abstract
As renewable energy sources and plug-in electric vehicles increasingly penetrate power dis-
tribution systems, phase imbalance becomes more prevalent, posing significant challenges for
electric utilities. This paper proactively tackles this issue by implementing phase swapping
sequentially at strategic time steps and locations to improve long-term operational cost sav-
ings within a given scheduling horizon. An offline data-driven phase-swapping scheduler is
developed, mimicking multi-step phase-swapping optimization through an imitation learning
framework via supervised learning using random forest regression. This scheduler determines
the time steps and associated loads and generations requiring phase swapping. The phase
swapping over the finite scheduling horizon is modeled as a multi-step mixed-integer nonlinear
programming problem, utilizing a generic branch-based radial load flow model that consid-
ers both wye and delta connections for loads and generations. For an upcoming scheduling
horizon, the scheduler, based on forecasted generation, load, and price profiles, first identi-
fies the time steps and loads/generations requiring phase swapping. Subsequently, the phase
swapping actions for each determined time step are solved sequentially using a mixed-integer
nonlinear optimization model with phase swapping at the determined locations and with
determined number of swaps. Numerical experiments are conducted on the modified IEEE
13-node test feeder to validate the effectiveness of the proposed approach.
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Abstract—As renewable energy sources and plug-in electric 
vehicles increasingly penetrate power distribution systems, 
phase imbalance becomes more prevalent, posing significant 
challenges for electric utilities. This paper proactively tackles 
this issue by implementing phase swapping sequentially at 
strategic time steps and locations to improve long-term 
operational cost savings within a given scheduling horizon. An 
offline data-driven phase-swapping scheduler is developed, 
mimicking multi-step phase-swapping optimization through an 
imitation learning framework via supervised learning using 
random forest regression. This scheduler determines the time 
steps and associated loads and generations requiring phase 
swapping. The phase swapping over the finite scheduling 
horizon is modeled as a multi-step mixed-integer nonlinear 
programming problem, utilizing a generic branch-based radial 
load flow model that considers both wye and delta connections 
for loads and generations. For an upcoming scheduling horizon, 
the scheduler, based on forecasted generation, load, and price 
profiles, first identifies the time steps and loads/generations 
requiring phase swapping. Subsequently, the phase swapping 
actions for each determined time step are solved sequentially 
using a mixed-integer nonlinear optimization model with phase 
swapping at the determined locations and with determined 
number of swaps. Numerical experiments are conducted on the 
modified IEEE 13-node test feeder to validate the effectiveness 
of the proposed approach. 

Keywords—imitation learning, mixed integer nonlinear 
programming, phase imbalance, phase swapping, random forest 
regression. 

I. INTRODUCTION 
The increasing adoption of single-phase inverters in 

residential areas, driven largely by the rise in rooftop solar 
photovoltaic (PV) systems and electric vehicle charging, 
exacerbates phase imbalances in power distribution systems. 
These imbalances manifest as asymmetrical loads that 
challenge traditional power distribution paradigms, 
potentially reducing the efficiency of electrical equipment, 
increasing energy losses, causing overheating of conductors, 
and raising the likelihood of relay maloperations. 
Consequently, addressing these imbalances through 
innovative scheduling and operation strategies becomes 
increasingly critical in the pursuit of a sustainable and 
resilient energy future. 

Phase balancing can be achieved in two ways: feeder 
reconfiguration [1] at the system level and load phase 
reconfiguration (i.e. phase swapping) at the feeder level. 
Feeder reconfiguration primarily aims at load balancing 
among feeders and is not effective in solving phase imbalance 
issues due to the limited number of sectionalization and tie 
switches. Therefore, electric utilities highly prioritize phase 
swapping optimization to maintain maximum three-phase 
balance by strategically assigning each load or generation to 
appropriate phases during a given scheduling horizon. 

Several works have addressed the issue of phase swapping 
in systems, such as [2]~[4], most of which employ 
optimization approaches. For instance, [2] treats phase 
swapping as load assignment to lines and formulates the 
problem as a mixed-integer linear program with minimization 
of weighted sum of unbalanced branch current flows as its 
objective, and Kirchhoff's current laws serving as linear 
constraints. [3] formulates phase swapping as a mixed-
integer non-linear programming problem to minimize the 
number of phase connection changes for single and two-
phase transformers and laterals. It considers phase sequence 
constraints and aims for desired phase rebalancing, using 
geographical information system models of distribution 
circuits to create a reduced model. [4] proposes a look-ahead 
moving window optimization method to reduce phase 
imbalances, accepting a limited number of phase swapping 
operations. Despite addressing phase swapping problems 
with different focuses, these works have limitations that need 
to be overcome. For example, most models overlook voltage 
drop and power loss in their mathematical formulations. 
Additionally, the interdependence of phase swapping across 
time steps in the scheduling horizon is either not explicitly 
considered or not well-modeled. Another limitation is that 
approaches primarily focus on wye-connected generations 
and loads, mixed wye and delta-connected loads and 
generations are rarely considered. 

In this regard, this paper proposes a proactive sequential 
scheduling method for implementing phase swapping across 
time steps within a given scheduling horizon. It consists of an 
offline training stage and an online scheduling stage. The 
offline stage learns the relationship between the total number 
of phase swaps and their locations for each time step with 
load, generation, and price profiles across the entire horizon. 
This learning is facilitated through imitation learning [5] of 
mixed-integer nonlinear programming solvers for multi-step 
phase swapping optimization throughout the horizon. The 
online stage determines phase swapping actions for the 
upcoming scheduling horizon by solving single-step phase 
swapping optimizations sequentially at strategic time steps 
corresponding to strategic locations of loads and generations. 
These are determined using the learned relationships against 
the upcoming load, generation, and price profiles for the 
upcoming horizon. A generic branch-based radial load flow 
model is utilized in phase swapping optimization, 
incorporating both wye-connected and delta-connected loads 
and generations. 

The remainder of this paper is organized as follows: Section 
II presents a generic branch based nonlinear load flow model 
for radial distribution systems. Section III describes the 
formulation of multi-step phase swapping optimization over a 
scheduling horizon. Section IV discusses the use of imitation 
learning to mimic multi-step optimization and the related 
implementation strategy for achieving proactive sequential 
phase swapping. Section V presents the case studies, and 
Section VI concludes the paper. 



II. NONLINEAR LOAD FLOW FORMULATION FOR RADIAL 
DISTRIBUTION SYSTEMS  

A nonlinear load flow model is used for a radial three-
phase distribution system in term of branch currents and bus 
voltages. We use 𝒩 = {0,1,⋯ , 𝑛} denoting the set of buses, 
in which 0 is the index of the substation fed powers to the 
distribution system, and 𝒩! = 𝒩\{0} . We also use ℰ 
denoting the set of branches connecting between a pair of 
buses. (𝑖, 𝑗) represents a branch connecting an ordered pair of 
buses (𝑖, 𝑗), where bus 𝑖 lies upstream to bus 𝑗. We assume 
that all the buses 𝑖 ∈ 𝒩and branches (𝑖, 𝑗) ∈ ℰ  have three 
phases: a, b, c; and define Φ": = {𝑎, 𝑏, 𝑐}  and Φ#: =
{𝑎𝑏, 𝑏𝑐, 𝑐𝑎} . For 𝑖 ∈ 𝒩  and 𝜙 ∈ Φ" , let 𝑉$

%  denote the 
complex voltage on phase 𝜙  of bus 𝑖 , and define  𝑉$: =
[𝑉$& 𝑉$' 𝑉$(]) . For (𝑖, 𝑗) ∈ ℰ  and 𝜙 ∈ Φ" , let 𝐼$*

%  and 𝑆$*
% 

denote the current and power flow on phase 𝜙 of branch (𝑖, 𝑗), 
and define 𝐼$*: = <𝐼$*& 𝐼$*' 𝐼$*( =

)
, 𝑆$*: = <𝑆$*& 𝑆$*' 𝑆$*( =

)
. If 

any phase 𝜙 is missing, the corresponding voltage or current 
or power flow components will be set as zero. Loads and 
generations can also be differentiated by their connected 
locations at connected bus. We define ℒ": = {𝑎, 𝑏, 𝑐}  and 
ℒ#: = {𝑎𝑏, 𝑏𝑐, 𝑐𝑎} to represent the location sets for wye and 
delta connected loads or generations at any bus. 

Fig. 1 gives a generic model for a branch between bus 𝑖 
and bus 𝑗, (𝑖, 𝑗), in which bus 𝑖 and bus 𝑗 are regarded as a 
sending bus, and a receiving bus, respectively. The branch 
includes a voltage regulation component described by an 
ideal voltage amplifying matrix 𝐴+!→#, and an ideal current 
amplifying matrix 𝐴,!→#, a series impedance component 𝑧$*, 
and two shunt admittance components,  𝑦-$* and 𝑦#$*. Bus 𝑗 
also connects with a set of downstream branches, (𝑗, 𝑘), and 
a shunt admittance, 𝑦.*. 

 
Fig. 1. Generic branch model for a radial distribution system 

This generic branch model can be used to model different 
types of components for the distribution system, including a 
line segment, a voltage regulator, a switch, and a transformer. 

For any branch (𝑖, 𝑗), the load flow can be represented 
using an equation (1) for voltage drop between bus 𝑖  and bus 
𝑗, an equation (2) for current balance at bus 𝑗, and an equation 
(3) for power injection at bus 𝑗: 

𝐴+!→#𝑉$ − 𝑉* = 𝑧$* D𝐴,!→#𝐼$* − 𝑦-$*𝐴+!→#𝑉$E          (1) 

F D𝐴,!→#𝐼$* − 𝑦-$*𝐴+!→#𝑉$ − 𝑦#$*𝑉*E$:($,*)
− 𝑦.*𝑉* + 𝐼* 

= ∑ 𝐼*33:(*,3)                          (2) 
𝑑𝑖𝑎𝑔(𝑉*𝐼*4) = 𝑠5,"# − 𝑠6,"# + 𝐴7$→%𝑠5,## − 𝐴7$→%𝑠6,##  (3) 

where 𝑉$  and 𝑉*  are the complex voltages at sending and 
receiving buses of branch (𝑖, 𝑗). 𝐼*3  is the complex current 
flowing from bus 𝑗  to bus 𝑘 . 𝐼*  is the complex injection 
current at bus 𝑗, and 𝐼*4 is the conjugate transpose of 𝐼*. 𝑠5,"# 
and 𝑠6,"# are the wye-connected complex power generations 
and load demands  at bus  𝑗. 𝑠5,##  and 𝑠6,##  are the delta-
connected complex power generations and load demands at 

bus 𝑗. 𝐴7$→% is a delta-to-wye conversion matrix to convert 
delta-connected complex powers into wye-connected ones 
which is determined by assuming voltages at any bus 𝑖 are 

balanced, that is: +!
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 when full phases are present. 

III. MULTI-STEP PHASE SWAPPING OPTIMIZAZTION 
FORMULATION  

The optimal problem for determining phase swapping 
actions over a given horizon can be formulated to minimize 
the cumulative cost over the scheduling horizon of  𝑇 time 
steps: 

Minimize   ∑ 𝐽(𝑡))
?@<                          (4) 

where 𝐽(𝑡)  represents the total sum of costs for power 
purchase at the substation along with load and generation 
curtailments 𝐶?A?7-B(𝑡), penalties costs for branch current and 
bus voltage limit violations 𝐶?A?C+D(𝑡) , penalties costs for 
powers, current and voltage imbalances 𝐶?A?,EB(𝑡), and costs 
for phase swapping actions 𝐶?A?7FGH(𝑡) for the time step 𝑡: 

𝐽(𝑡) = 𝐶?A?7-B(𝑡) + 𝐶?A?C+D(𝑡) + 𝐶?A?,EB(𝑡) + 𝐶?A?7FGH(𝑡) (5) 
where,  

𝐶?A?7-B(𝑡) =F X𝐶H7-B(𝑡)𝑅𝑒 D𝑠I
%(𝑡)E

%∈K%

+ 𝐶L7-B(𝑡)𝐼𝑚D𝑠I
%(𝑡)E[ 

+∑ 𝐶75.-D)(𝑡) D∑ 𝐵.-D),"#
M% ]𝑠5,"#

M% (𝑡)] 𝐴6C.,"#
M%

M%∈ℒ% +*∈𝒩)

∑ 𝐵.-D),##
M$ ]𝑠5,##

M$ (𝑡)] 𝐴6C.,##
M$

M$∈ℒ$ E +

∑ 𝐶76.-D)(𝑡) D∑ 𝐵.-D),"#
M% ]𝑠6,"#

M% (𝑡)]M%∈ℒ% 𝐴6C.,"#
M% +*∈𝒩)

∑ 𝐵.-D),##
M$ ]𝑠6,##

M$ (𝑡)]M$∈ℒ$ 𝐴6C.,##
M$ E             (6) 

𝐶?A?C+D(t) = ∑ ∑ 𝐶,C+D(𝑡)∆𝐼P&Q,$*
% (𝑡)%∈K%($,*)∈ℰ +

∑ ∑ D𝐶+*&+
C+D (𝑡)∆𝑉P&Q,$

% (𝑡) + 𝐶+*!,
C+D (𝑡)∆𝑉P$S,$

% (𝑡)E%∈K%$∈𝒩)  
(7) 

𝐶?A?,EB = ∑ X𝐶H,EB(𝑡) ]𝑅𝑒 D𝐼𝑀𝐵T
%(𝑡)E] +%∈K%

𝐶L,EB(𝑡) ]𝐼𝑚 D𝐼𝑀𝐵T
%(𝑡)E] + 𝐶,,EB(𝑡)𝐼𝑀𝐵,

%(𝑡) +

𝐶+,EB(𝑡)𝐼𝑀𝐵+
%(𝑡)[           (8) 

𝐶?A?7FGH(𝑡) = 𝐶7FGH𝑛TU&V(𝑡)         (9) 
where 𝐶!"#$(𝑡), 𝐶%"#$(𝑡), 𝐶"&'#()(𝑡) and 𝐶"*'#()(𝑡) are the per-unit 
costs for active and reactive power purchase at the substation, 
per-unit costs for generation and load curtailments for time 
step 𝑡. 𝑠I

%(𝑡) is the complex power fed from the substation on 
phase 𝜙 for time interval 𝑡 and calculated as: 

𝑠I
%(𝑡) = ∑ 𝑉I

%(𝑡)I:(I,$) D𝐼I$
%(𝑡)E

4
, 𝜙 ∈ 𝛷"       (10) 

𝐼I$
%(𝑡) is the complex current flowing through the substation 

at bus 0 to downstream bus 𝑖  on phase 𝜙 , 𝑉I
%(𝑡)  is the 

complex voltage at the substation on phase 𝜙. 𝐵.-D),"#
M%  and 

𝐵.-D),##
M$  are binary variables to represent if wye-connected 

and delta-connected load or generation at location 𝑙"  or 𝑙#  
for bus 𝑗  is shed at time step 𝑡 . Those variables for 



curtailment statuses are constrained by the availability 
statuses of location 𝑙",	and 𝑙#, 𝐴6C.,"#

M% ,and 𝐴6C.,##
M$  at bus 𝑗: 

𝐵.-D),"#
M% (𝑡) ≤ 𝐴6C.,"#

M% ,    𝑙" ∈ ℒ", 𝑗 ∈ 𝒩!           (11) 
𝐵.-D),##
M$ (𝑡) ≤ 𝐴6C.,##

M$ ,				𝑙# ∈ ℒ#, 𝑗 ∈ 𝒩!            (12) 
𝐶+,-((𝑡), 𝐶+*&+

C+D (𝑡) and 𝐶+*!,
C+D (𝑡) are per-unit costs for branch 

current limit violation, maximum and minimum bus voltage 
limit violations at time step 𝑡.  ∆𝐼P&Q,$*

% (𝑡) is branch current 
limit violation on phase 𝜙 of branch (𝑖, 𝑗) and determined as:  

]𝐼,!#
% ] ≤ 𝐼$*

%
+ ∆𝐼P&Q,$*

% (𝑡),									𝜙 ∈ 𝛷", (𝑖, 𝑗) ∈ ℰ  (13) 

where 𝐼$*
%

 is the current limit on phase 𝜙  of branch (𝑖, 𝑗) . 
∆𝑉P&Q,*

% (𝑡) and ∆𝑉P$S,*
% (𝑡) are the voltage upper and lower 

limit violations at bus 𝑗 and determined as:  
𝑉P$S,* − ∆𝑉P$S,*

% (𝑡) ≤ e𝑉*
%(𝑡)e ≤ 𝑉P&Q,* + ∆𝑉P&Q,*

% (𝑡), 
	𝑗 ∈ 𝒩!        (14) 

𝑉P&Q,* and 𝑉P$S,* are the upper and lower limits of voltage on 
phase 𝜙  of bus 𝑗 . 𝐶H,EB(𝑡) , 𝐶L,EB(𝑡), 𝐶,,EB(𝑡) and 𝐶+,EB(𝑡) 
are per-unit costs for penalizing active power, reactive power, 
current deviations at the substation among phases, and 
maximum voltage phase deviation among all buses. 𝐼𝑀𝐵T

%(𝑡) 
is the load imbalance at substation on phase 𝜙 of time step 𝑡, 
and determined as: 

𝐼𝑀𝐵T
%(𝑡) = 𝑠I

%(𝑡) − <
;
∑ 𝑠I

%(𝑡)%∈K% , 𝜙 ∈ 𝛷"    (15) 
𝐼𝑀𝐵,

%(𝑡) is the maximum current imbalance at the substation 
for phase 𝜙 of time step 𝑡, and determined as: 
𝐼𝑀𝐵,

%(𝑡) = max
$∈𝒩-

ie𝐼I$
%(𝑡)e − <

;
∑ e𝐼I$

%(𝑡)e%∈K% i, 𝜙 ∈ 𝛷"   (16) 
𝒩I is the set of downstream buses of the substation, i.e. bus 
0. 𝐼𝑀𝐵+

%(𝑡) is the maximum voltage imbalance on phase 𝜙 
over all buses downstream to the substation: 

𝐼𝑀𝐵-
.(𝑡) = max

/∈𝒩! +,𝑉/
.(𝑡), − 2

∑ 4"#$%
&

&∈()
∑ ,𝑉/

.(𝑡),𝐴$#"%
.

.∈5) +,                 

							𝜙 ∈ 𝛷"    (17) 
𝐴$#"!
.  is the availability of phase 𝜙 at bus 𝑗. 𝐶7FGH is the cost 

per phase swapping action, 𝑛TU&V(𝑡) is the total number of 
phase swapping at time step 𝑡 and defined based on phase 
balancing actions for each swappable bus 𝑗, 𝑛TU&V,*(𝑡)	using 
assignment matrices of locations to phases {𝐵"#

%%,M%(𝑡), 𝜙" ∈
Φ", 𝑙" ∈ ℒ"} or {𝐵##

%$,M$(𝑡), 𝜙# ∈ Φ#, 𝑙# ∈ ℒ#} as: 
𝑛TU&V(𝑡) = ∑ 𝑛TU&V,*(𝑡)*∈𝒩) ,                    (18) 

𝑛TU&V,*(𝑡) = D∑ 𝐴6C.,"#
M%

M%∈ℒ% −∑ 𝐵.-D),"#
M%

M%∈ℒ% −

∑ ∑ 𝐵"#
%%,M%(𝑡)𝐵"#

%%,M%(𝑡 − 1)M%∈ℒ%%%∈W% E +

D∑ 𝐴6C.,##
M$

M$∈ℒ$ −∑ 𝐵.-D),##
M$

M$∈ℒ$ −

∑ ∑ 𝐵##
%$,M$(𝑡)𝐵##

%$,M$(𝑡 − 1)M$∈ℒ$%$∈W$ E, 
𝑗 ∈ 𝒩!          (19) 

𝐵"#
%%,M%(𝑡) = {0,1},         𝑗 ∈ 𝒩!, 𝜙" ∈ Φ", 𝑙" ∈ ℒ" (20) 

𝐵##
%$,M$(𝑡) = {0,1},       𝑗 ∈ 𝒩!, 𝜙# ∈ Φ#, 𝑙# ∈ ℒ# (21) 

𝐵"#
%%,M%(𝑡) is a binary variable representing assigning phase 

𝜙" ∈ Φ"  to location 𝑙" ∈ ℒ"  at bus 𝑗  and time step 𝑡 . 
𝐵##
%$,M$(𝑡) is a binary variable representing assigning phase-

pair 𝜙# ∈ Φ#  to location 𝑙# ∈ ℒ#  at bus 𝑗 and time step 𝑡. 

Those two sets of variables are used to represent phase 
swapping actions. 

The phase swapping optimization should satisfy technical 
constraints for each time step 𝑡, include load flow equations, 
substation voltage settings, and feasibility requirements for 
phase swapping actions. 

Integrated with phase swapping actions, the radial load 
flow equations at time step 𝑡 are expressed as: 

𝐴+!→#𝑉$(𝑡) − 𝑉*(𝑡) = 𝑧$* D𝐴,!→#𝐼$*(𝑡) − 𝑦-$*𝐴+!→#𝑉$(𝑡)E, 
(𝑖, 𝑗) ∈ ℰ       (22) 

∑ X𝐴,!→#𝐼$*(𝑡) − 𝑦-$*𝐴+!→#𝑉$(𝑡) − 𝑦#$*𝑉*(𝑡)[$:($,*) −
𝑦.*𝑉*(𝑡) + 𝐼*(𝑡) = ∑ 𝐼*3(𝑡)3:(X,Y) ,             (𝑖, 𝑗) ∈ ℰ    (23) 

𝑉*
%(𝑡) D𝐼*

%(𝑡)E
∗
= ∑ 𝐵"#

%,M%(𝑡)M%∈ℒ% X𝑠5,"#
M% (𝑡) − 𝑠6,"#

M% (𝑡)[ +

∑ 𝐴7$→%
%,%$

%$∈W$ ∑ 𝐵##
%$,M$(𝑡)M$∈ℒ$ X𝑠5,##

M$ (𝑡) − 𝑠6,##
M$ (𝑡)[,			    

𝜙 ∈ Φ", 𝑗 ∈ 𝒩! (24) 
The substation voltage at time step 𝑡 is fixed: 

𝑉I(𝑡) = 𝑉I
[\] ,                                               (25) 

where 𝑉I
[\] is pre-set three-phase voltages at the substation. 

To maintain the feasibility of the assignment matrix for 
loads or generations, it is required that the assignment matrix 
for wye-connected loads or generations must satisfy that each 
available location is only assigned to one phase, and each 
phase is assigned no more than 1 of available location. 
Similarly, the assignment matrix for delta-connected loads or 
generations must satisfy that each available location is only 
assigned to one phase pair, and each phase pair is assigned no 
more than 1 of available location: 
𝐵.-D),"#
M% + ∑ 𝐵"#

%%,M%(𝑡)%%∈K% =𝐴6C.,"#
M% , 𝑙" ∈ ℒ", 𝑗 ∈ 𝒩! (26) 

∑ 𝐵"#
%%,M%(𝑡)M%∈ℒ% ≤ 1, 𝜙" ∈ 𝛷", 𝑖 ∈ 𝒩!          (27) 

𝐵.-D),##
M$ + ∑ 𝐵##

%$,M$(𝑡)%$∈K$ = 𝐴6C.,##
M$ , 𝑙# ∈ ℒ#, 𝑗 ∈ 𝒩! 

(28) 
∑ 𝐵##

%$,M$(𝑡)M$∈ℒ$ ≤ 1, 𝜙# ∈ 𝛷#, 𝑖 ∈ 𝒩!          (29) 
As described above, the multi-step phase swapping 

optimization can be formulated as a mixed integer nonlinear 
programming problem (30), according to: 

Minimize ∑ 𝐽(𝑡))
?@<                                        (30a) 

Subject to: (5)~(29), 𝑡 = 1,2, … , 𝑇                 (30b) 
Solving this problem, we can determine an optimal scheme 
for phase balancing for each time step. The solution for 
𝑛TU&V(𝑡) and 𝑛TU&V,*(𝑡) provide the indications if the system 
and more specifically bus 𝑗 need phase connection changes at 
time step 𝑡. If 𝑛TU&V(𝑡) > 0, a phase balancing is required for 
time step 𝑡 , otherwise no phase balancing is needed. The 
detailed connection changes for any bus 	𝑗 ∈ 𝒩!  for time 
step 𝑡 are given by the instance differences of phase-location-
assignment matrices,  {𝐵"#

%%,M%(𝑡), 𝜙" ∈ 𝛷", 𝑙" ∈ ℒ"}  and 
{𝐵##

%$,M$(𝑡), 𝜙# ∈ 𝛷#, 𝑙# ∈ ℒ#}  between two consecutive 
steps 𝑡 and (𝑡-1). Besides, the generation or load curtailment 
statuses for any bus 	𝑗 ∈ 𝒩! can be provided by  𝐵.-D),"#

M% (𝑡) 
and 𝐵.-D),##

M$ (𝑡). Therefore, we can get a set of recommended 
actions to conduct phase swapping at strategical time steps 
and at strategical determined buses by implicitly considering 
the interdependence between time steps and long-term cost 
savings. 

For practical power distribution systems, (30) is a large-
scale mixed integer nonlinear programming (MINLP) 



problem which is ideally solved as a whole, and phase-
swapping decisions for all time steps are obtained 
simultaneously via a one-time solution. However, due to the 
substantial computational burden, this solution strategy may 
not be feasible for real-time applications. An alternative 
approach commonly used is solving the single-step phase 
swapping problem for each step within the horizon 
sequentially. While sacrificing some optimality significance, 
this approach allows for obtaining a tractable solution step by 
step. It is difficult to find a good compromise between 
solution optimality and computation speed using either of 
these two approaches. To addresses the challenge of phase 
swapping scheduling for larger systems, we proposed a 
proactive strategy to schedule phase swapping over a finite 
scheduling horizon. To enable this strategy, we proposed a 
data-driven scheduler of sequential phase-swapping based on 
the decisions of multi-step MINLP optimization. The 
scheduler as a learned regressor imitates the MINLP expert 
which would decide when and where the phase swapping 
should happen. 

IV. IMITATIVE LEARNING-BASED PROACTIVE SEQUENTIAL 
PHASE SWAPPING SCHEDULING 

As shown in Fig. 2, the phase swapping scheduling for a 
finite horizon 𝑇 includes two stages, an offline training stage 
to model the relationship between phase swapping actions 
and system states given by load, generation and price profiles 
based on imitation learning, and an online scheduling stage 
to generate full decisions on phase swapping according to 
real-time load, generation and price forecasts. The offline 
stage serves as a phase swapping scheduling agent utilizes 
imitation learning to mimic a multi-step MINLP solver, and 
the policy demonstrated by the MINLP expert is 
approximated with a random forest model. The offline stage 
begins by identifying the phase swapping time steps and 
locations through the utilization of a phase swapping 
scheduling agent, and subsequently, an optimal phase 
swapping solution is determined for each time step that 
necessitates phase swapping. 

 
Fig. 2. Steps for proactive sequential phase swapping scheduling 

In the context of phase swapping scheduling, since the 
optimal decisions (including the phase swap actions) can be 
acquired directly by solving MINLP problem assuming the 
availability of all information, the MINLP solver is a 
qualified expert and the optimal solutions of MINLP form 
perfect demonstrations. We then train an agent to mimic the 
MINLP solver to map a state to its optimal action. Given a 
dataset of 𝜔  state-action pairs 𝒟 = {(𝑠$ , 𝑎$)}$@<^  extracted 
from expert demonstrations, a policy 𝜋  that generates a 
desired action π(s) can be learnt to approximate the expert’s 
optimal decision for a given state s. By doing so, the 
sequential decision-making problem for phase swapping is 
reduced to a supervised learning problem, or a regression 
problem in particular: we try to train a function approximator 
on 𝒟 as the policy π. In this paper, we choose a random forest 
regression model as the function. We use net power injection 
derived from corresponding generations and loads, and 
power purchase prices to define the input features for training 

samples. We divide the set of buses with non-zero net power 
injections, 𝒩$S*  into two sub-sets, 𝒩$S*_]$Q  and 𝒩$S*_TU&V . 
𝒩$S*_]$Q  is the set of buses that have power injections but 
phase connections non-swappable, and 𝒩$S*_TU&V is the set 
of buses with non-zero power injections and swappable phase 
connections. The input features for each time step may 
contain total net active and reactive power injections for all 
fixed-connection buses for each wye-connected phase, and 
each delta-connected phase pair, net active and reactive 
power injections for each swappable-connection bus on each 
wye-connected location, and each delta-connected location, 
and per unit purchase costs for active and reactive powers (all 
other per-unit costs are assumed to be fixed). The output 
features for each time step may contain the total number of 
phase swapping, and binary values representing if phase 
swapping is required for each swappable bus with load and 
generation.  

The Random Forest Regression model is chosen for its 
robustness, scalability, and ability to handle high-
dimensional data with ease. It determines phase swapping 
statuses and locations for each time step within the 
scheduling horizon by creating numerous decision trees 
during training. Each tree outputs the mode of the classes, 
achieved through random sampling of training data with 
replacement. For each sample, a decision tree is built where 
each node considers a random subset of features for splitting. 
The final prediction aggregates “votes” from all trees to 
determine the most probable class. 

When a time step necessitates phase swapping, we can 
execute a single-step phase swapping optimization with 
additional constraints to regulate the count and locations of 
phase swaps determined by the regressor. If multiple 
consecutive steps require phase swapping, we can merge 
them together to formulate a multiple-step optimization, 
enabling detailed phase swapping decisions for each 
consecutive time step as: 

Minimize ∑ 𝐽(𝑡)).
?@)'                                        (31a) 

           Subject to: (5)~(29),       𝑡 = 𝑇' , … , 𝑇\             (31b) 
𝑛TU&V(𝑡) = 𝑛TU&V∗ (𝑡),    𝑡 = 𝑇' , … , 𝑇\          (31c) 

𝑛TU&V,*(𝑡) > 0, 𝑗 ∈ 𝒩$S*_TU&V
∗ (𝑡)  , 𝑡 = 𝑇' , … , 𝑇\ (31d) 

𝑛TU&V∗ (𝑡)  and 𝒩$S*_TU&V
∗ (𝑡)  are the total number of phase 

swapping actions, and the set of buses with loads or 
generations having a need for phase swapping that 
determined by the regressor for time step 𝑡. 𝑇' and 𝑇\ are the 
beginning time step and the ending time step, respectively. 
For a single time step, the beginning and ending time steps 
are set as the same. 

V. CASE STUDIES  
In this section, a modified IEEE 13 node test feeder as 

shown in Fig. 3 is introduced to validate the effectiveness of 
our proposed approach.  

The system includes 3 non-swappable (i.e., connection-
fixed) loads: delta-connected loads at bus 671, and wye-
connected loads at buses 634 and 675. Additionally, there are 
2 swappable generations and 5 swappable loads. The 
swappable generations are situated at buses 680 and 684, with 
the delta-connected generations initially connected at phases 
CA and AB, respectively. Bus 680 hosts a wind power plant, 
while bus 684 accommodates a solar power plant. The 
swappable single-phase loads connected to buses 611, 645, 
and 652 are wye-connected, initially at phases C, B, and A, 
respectively. Furthermore, the swappable single-phase loads 
connected to buses 646 and 692 are delta-connected, with 
their initial connections between phases BC and CA, 
respectively. The scheduling horizon includes 24 time-steps, 



and each step lasts one hour.  Fig. 4 shows the normalized 
profiles for load demands, solar generation, wind generation, 
and active power purchase prices for the test system.  

Four different phase swapping scenarios have been tested, 
including  
• Scenario I: No phase swapping.  
• Scenario II: Sequential single-step phase swapping 

optimization.  
• Scenario III: Simultaneous multi-step phase swapping 

optimization. 
• Scenario IV: Proactive sequential phase swapping 

optimization (i.e. the proposed approach). 

 
Fig. 3. Modified IEEE 13 node test feeder 

 
Fig. 4. Load, solar & wind generation, and power purchase price profiles 

Table I lists the summaries of phase swapping results for 
scenarios. Fig. 5 and Fig. 6 show the corresponding variations 
in costs and active powers at the feeder head for each scenario 
over the scheduling horizon. 

TABLE I.COMRASIONS OF PHASE SWAPPING RESULTS FOR 4 SCENARIOS 
Scenario I II III IV 
Optimization 
formulation 

None 24 single-step 
optimizations 

1 multi-step 
optimization  

6 single-step 
optimizations 

Cost(k$) 24.03 8.22 6.80 
Total	swaps 0 2 10 
Swap actions None t=0: 692: 

CA→AB, 652:  
A→ B. 

t=0: 692: CA→AB,652:A→
B; t=1: 680: CA→AB;  t=2: 
684:AB→ BC, 692:AB→ BC; 
t=7: 646:BC→ AB,  684:BC→
CA; t=13: 684:CA→ AB,t=16, 
646:AB→ BC, 692:BC→ AB. 

 
Fig. 5. Total costs for 4 different scenarios 

As shown in Table I, Scenario I, which involves no phase 
swapping, incurs the highest cost among all scenarios. 
Although more phase swapping actions are required, the costs 
of the multi-step phase swapping scenario (Scenario III) and 
the proactive sequential phase swapping scenario (Scenario 
IV) are lower than that of the sequential single-step phase 
swapping strategy (Scenario II). Scenario IV, the proactive 
sequential phase swapping strategy, requires the same number 

of phase swaps and costs, but involves less computational 
burden compared to Scenario III, the multi-step phase 
swapping scenario. 

 
Fig. 6. Active powers at the feeder head for different scenarios 

Examining all these figures and table, we observe that 
compared to scenarios without phase swapping or sequential 
single-step phase swapping strategies, the proposed proactive 
sequential phase swapping optimization approach not only 
reduces operational costs but also enhances power quality 
through proactive phase rebalancing. Additionally, it requires 
less computational effort compared to simultaneous multi-step 
phase swapping optimization. 

VI. CONCLUSION 
Phase imbalance, typically caused by single-phase loads, 

presents a significant challenge to the management of 
distribution systems, exacerbated by the growing penetration 
of distributed energy resources. This paper addresses the 
phase imbalance mitigation problem by optimally 
redistributing loads and renewables across the three phases 
within a finite horizon. The proposed approach accurately 
models distribution systems, considering phase-wise voltage 
drops, power losses, and both wye-connected and delta-
connected loads and generation. It determines the optimal 
phase swapping schedule by mimicking global solutions of 
phase swapping problem defined by minimizing total costs, 
including phase swap costs, power purchase and shedding 
expenses, penalties for operational limit violations, and 
penalties for phase imbalances, all while ensuring feasible 
load flows throughout the scheduling horizon. 

Our future work will focus on testing with larger systems 
to enhance algorithm scalability and tractability. 
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