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Abstract—Imaging dynamic spatio-temporal flows typically
requires high-speed, high-resolution sensors that may be physi-
cally or economically prohibitive. Single-pixel imaging (SPI) has
emerged as a low-cost acquisition technique where light from
a scene is projected through a spatial light modulator onto a
single photodiode with a high temporal acquisition rate. The
scene is then reconstructed from the temporal samples using
computational techniques that leverage prior assumptions on
the scene structure. In this paper, we propose to image spatio-
temporal flows from incomplete measurements by leveraging
scene priors in the form of a reduced-order model (ROM)
of the dynamics learned from training data examples. By
combining SPI acquisition with the ROM prior implemented
as a neural ordinary differential equation, we achieve high-
quality image sequence reconstruction with significantly reduced
data requirements. Specifically, our approach achieves similar
performance levels to leading methods despite using one to two
orders of magnitude fewer samples. We demonstrate superior
reconstruction at low sampling rates for simulated trajectories
governed by Burgers’ equation, Kolmogorov flow, and turbulent
plumes emulating gas leaks.

Index Terms—Single-pixel imaging, high-dimensional dynam-
ical systems, reduced-order model, neural ODE.

I. INTRODUCTION

Low-cost cameras with high pixel counts have enabled
digital imaging to become ubiquitous. However, traditional
pixel arrays are often too slow or too expensive for imaging
applications that require high acquisition speed or detection
at wavelengths outside of the visible spectrum. Imaging sys-
tems that raster scan the illumination or detection pixel-by-
pixel enable image formation from a cost-effective single-
pixel detector, but the scanning process may likewise be too
slow to capture dynamic scenes. For example, methane gas
leak monitoring is important for reducing greenhouse gas
emissions, but methane is only detectable in the mid-infrared
(MIR) wavelengths. Unfortunately, MIR array detectors come
with a significant cost, and capturing spatio-temporal dynamics
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requires high-frame rate acquisition [1]. Other applications that
require expensive hardware for high-speed imaging include
microfluidics [2] and light propagation [3].

For applications in which high-speed, high-resolution sen-
sors are physically or economically prohibitive, a candidate
solution is single-pixel imaging (SPI), a technique that uses a
single detector element and time-varying spatial light modula-
tion to capture multiplexed measurements of light intensity [4].
SPI acquisition is often combined with computational recon-
struction techniques that use prior information on the structure
of the scene content to recover a full image despite using
fewer modulation patterns than the target pixel resolution.
The challenge then is how to mathematically describe prior
information to match the target scene. Initial approaches to
single-pixel imaging often assumed sparsity of the scene in the
Fourier or wavelet basis or in the spatial gradient domain (i.e.,
total variation) [4]–[7]. Recent approaches have adopted deep
learning (DL) architectures for SPI reconstruction and showed
that using deep neural networks can dramatically reduce the
sampling ratio and offer near-real-time performance [8]–[11].
However, these methods use frame-by-frame processing, thus
requiring a relatively large number of temporal samples per
frame (SPF) to ensure satisfactory reconstruction of a full
video sequence.

This work aims to reconstruct high-quality videos of dy-
namical systems from a small number of samples per frame by
learning priors on the dynamics that can act as a regularization
across the entire sequence of frames. Specifically, we consider
videos corresponding to complex spatio-temporal dynamical
systems described by partial differential equations (PDEs),
such as 1D inviscid Burger flow, 2D turbulent flow, and
3D buoyancy-driven flows governed by the Navier–Stokes
equation as represented by smoke plumes. For such videos, the
‘ground truth’ refers to the case where the dynamics evolve
on an appropriate infinite dimensional manifold. In particular,
we show how a reduced-order model (ROM) can be used
to regularize compressively-sampled single-pixel image/video
reconstruction of a physical phenomenon, even when the
number of samples per frame is as low as one. Prior work has
shown that data-driven ROMs are highly effective at modeling
complex temporal dynamics at a low computational cost, see
for example [12].
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We call our method SPI-NODE1 because we combine
SPI acquisition with a reconstruction algorithm that uses a
neural ordinary differential equation operator (Neural ODE, or
NODE) as regularization. We first pre-train a ROM to com-
press simulated gas flows into a low-dimensional latent space
representation and calculate the system’s evolution within the
latent space using Neural ODEs [13], [14]. Next, we effi-
ciently solve an ODE-regularized compressively-sampled SPI
reconstruction problem using the adjoint sensitivity method
to obtain the necessary derivatives following the technique
proposed in [13]. The reconstruction procedure minimizes the
measurement mismatch between the samples recorded by the
SPI detector and the synthesized measurements obtained by
sampling the reconstructed trajectory using the compressive
measurement operator. The ODE-based regularization provides
a strong signal prior and allows for the reduction in the
number of samples per frame required for successful recon-
struction below the requirements of current state-of-the-art
methods. While we focus our exploration on the design of
an efficient learning-assisted reconstruction algorithm for SPI,
the proposed architecture is also amenable to optimizing the
modulation patterns as has become common practice in several
recent works on deep learning-assisted SPI, e.g., [9].

Our main contributions are as follows. We first describe
single-pixel acquisition of signals governed by dynamical
systems. We then introduce a data-driven ROM prior on the
temporal dynamics as regularization for the SPI inverse prob-
lem. While the performance of SPI algorithms with inadequate
priors breaks down as the number of samples per frame
decreases, we demonstrate that our SPI-NODE regularization
achieves good results for up to two orders of magnitude fewer
samples per frame. Finally, we show that this performance
extends to a complex real-world dataset of turbulent smoke
ascending in an ambient with a different density. We also
show the applicability limits of our method. Using a synthetic
experiment we show that the reconstruction gains persist
when mild-to-moderate noise is applied but currently do not
extend to high-noise regimes. In particular, we show that our
method performs on par with its strongest competitor when the
training dataset is insufficient for obtaining a good ROM. Such
observations illustrate the necessity for developing more robust
reconstruction methods and for training less data-intensive
ROMs.

This paper is organized as follows. In Section II we provide
the background on compressive sensing, SPI, and Neural
ODEs. In Section III, we describe the acquisition system and
our proposed architecture with an appropriate training loss to
train a ROM, and present the recovery algorithm with our
proposed regularizer. In Section IV, a hierarchy of experiments
are provided to demonstrate the feasibility and assessment of
our algorithm compared to state-of-the-art methods. Finally,
we conclude the paper in Section V.

1An abbreviated version of this work has been submitted to ICASSP
2024 introducing the SPI-NODE model as a ROM formulation for single
pixel imaging and demonstrating the performance on Burger’s equation and
ScalarFlow data.

II. BACKGROUND

A. Compressive Sensing

Compressive sensing (CS) emerged in the mid-2000s as
an alternative signal acquisition regime to classical Shannon-
Nyquist sampling [15]–[18]. In the classical regime, a band-
limited signal is sampled at N specific points in time (and/or
space) so that the signal can be reconstructed from the acquired
samples using a simple sinc interpolation. On the other hand,
CS proposes to acquire a signal using a small number of
inner products between the signal and general non-adaptive
sampling vectors. If the signal to be acquired has a K-
sparse—or more generally, parsimonious—representation in
some transform domain, then the signal can be guaranteed to
be recovered using as few as O(K log(N/K)) non-adaptive
measurements, which is much smaller than the N samples
that are required by sample-then-compress approaches such
as JPEG and JPEG-2000 [19]. Recent works have extended
the applicability of this framework to general signal priors
that include complicated image denoisers [20], [21] as well as
deep signal priors [22], [23].

B. Single-Pixel Imaging

1) Advantages: SPI evolved from early observations of the
benefits of using multiplexed illumination instead of raster
scanning [24] and the possibility of combining multiplexing
with a single pixel detector to form an image [25]. Further SPI
development was largely motivated as a practical application
of compressive sensing theory and efficient reconstruction
algorithms [4]. In the ensuing years, many iterations of SPI
have been explored with different hardware architectures,
reconstruction algorithms, and imaging applications [26]–
[28]. SPI has multiple advantages over traditional imaging
approaches that employ 2D sensor arrays. First, since all
reflected light is focused onto a single detector, SPI has
better sensitivity under dim lighting conditions and may enjoy
a broader spectral range [27]. Second, SPI moves the cost
of acquisition and processing from the encoding/compression
stage to the decoding/reconstruction stage. For instance, the
modulation pattern does not need to be scene-dependent to
ensure accurate reconstruction: [18] showed that modulation
patterns can be drawn as independent identically distributed
(i.i.d.) samples from a uniform Bernoulli distribution. In
contrast, sample-then-compress approaches [19] require an
expensive projection of multiple single-pixel snapshots onto
a chosen basis, such as Fourier or top-K singular vectors,
during their encoding step. In applications where sensors need
to be small and low-power, it is often preferable to perform the
encoding optically, while decoding can occur offline on high-
performance computers. The simplicity of encoding keeps the
computational requirements of SPI sensors (and thus their
price) low, inviting their application in multispectral imaging
[29], [30], optical encryption [31]–[33], remote sensing [34],
object tracking [35], and many other fields [36]–[38].

2) Hardware: There are two main hardware configurations
for SPI. The initial demonstration of SPI flood-illuminated
a scene and used a programmable spatial light modulator
(SLM) to control the pattern of light reaching the single-pixel
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detector at each sample. An alternative configuration instead
uses structured illumination to project different patterns of
light onto the scene, and all of the reflected light is focused
onto the detector. Mathematically, both configurations can be
considered equivalent. The structured illumination approach
is closely related to computational ghost imaging [39], which
showed that image reconstruction based on correlations with
patterned illumination was not limited to a quantum phe-
nomenon [40].

A variety of hardware methods exist for performing spatial
light modulation, including diffusers, liquid crystal devices
(LCDs), and rotating masks, but the most common SLMs for
SPI are digital micro-mirror devices (DMDs) [41], [42], which
orient their mirrors to reflect light either towards (+1) or away
from (0) the detector. DMDs are usually preferred for their
high frame rate, broad spectral range, high spatial resolution,
and low cost [28].

3) Reconstruction Algorithms: Since every measurement of
a SPI system contains highly-mixed information about the
observed image frame, one needs to sample a large number of
such measurements to allow for faithful reconstruction. Thus,
many recent works propose ways to reduce the number of
required samples per frame (SPF). One approach uses signal-
dependent control of the modulation pattern to ensure that
each single-pixel measurement contains as much information
as possible, e.g., by focusing the DMD mirrors on the selected
regions of the frame [43]–[45]. Although highly effective, this
approach cannot be applied to detectors that do not offer fine-
grained control of their mirrors. An alternative line of work has
focused on creating more sophisticated reconstruction tech-
niques that are agnostic to the sampling patterns by improving
the efficiency of image recovery using classical [5]–[7], [46]
as well as learned priors [8]–[11] for image recovery. Our
work follows this second approach by learning priors about
the dynamics of scenes described by ODEs.

C. Neural ODEs

A Neural Ordinary Differential Equation (Neural ODE or
NODE) model [13] is a differentiable ODE solver. It uti-
lizes the adjoint sensitivity method [47] to back-propagate
the gradients through the solution. The emergence of GPU-
compatible implementations of differentiable ODE solvers
such as torchdiffeq [13] and Diffrax [48] caused a
broad adoption of Neural ODE models in many applica-
tions, including for system identification [49], [50], classifi-
cation [51], [52] medical imaging [53], [54], reduced-order
modelling [14], [55], and modelling the flow of air [56] and
fluids [57], to name a few. Neural ODEs have demonstrated
superior ability to model highly non-linear dynamics compared
to linear models especially when the dimensionality of the
space over which the dynamics evolve is small. Thus, this
technique is especially useful in applications where the size
of the latent space dimension needs to be restricted due
to their operation in a low measurement regime [58]–[61].
Consequently, we demonstrate in this paper that compact-but-
accurate reduced-order models, such as the ones obtained by
using autoencoder and Neural ODEs of Figure 1, are essential

for enabling single-pixel imaging systems operating in the low
sample-per-frame regime.

D. Gas Sensing

In backscatter absorption gas imaging (BAGI), the field of
view is illuminated by a laser whose wavelength corresponds
to the absorption band of a gas of interest [62]. Whereas the
background simply scatters the light back toward the detector,
a plume of gas attenuates the illumination, appearing as a
dark cloud in the image. For good detection sensitivity, many
BAGI implementations use a uniform background such as a
retro-reflector, so the background appears bright in contrast
to the absorptive gas plume. The absorption bands of many
gases of interest are in the infrared range, and due to the
expense of detectors sensitive to those wavelengths, most
BAGI systems use single-pixel detectors and raster scanning
to form an image [63]–[65], although some systems based on
short-wave infrared (SWIR) focal plane arrays have also been
developed [66].

Gibson et al. demonstrated methane gas BAGI monitoring
using a SWIR-sensitive single-pixel camera [1]. However, to
achieve real-time acquisition with simple reconstruction, the
image resolution was limited to 16×16 pixels from a full set of
256 mask patterns without compressive reconstruction. In this
work, we show that higher-resolution results can be achieved
for similar hardware by taking advantage of redundancy in the
spatial and temporal dimensions. Although we do not collect
any experimental data in this work, we emulate measurements
that could have been acquired using the sensing hardware of
Gibson et al. We also note that the sensing apparatus in [1]
could be modified for other wavelengths, such as MIR, where
methane has its strongest absorption. In addition to using
a laser source and detector at 3 µm as in [64], a standard
DMD can me made MIR-compatible by replacing the sealing
window [67].

III. METHOD

The subsequent subsections outline the mathematical ar-
chitecture for SPI-NODE. Specifically, each step in the SPI-
NODE algorithmic pipeline is detailed. Also, refer to Ap-
pendix A for more details on training and architecture.

A. Acquisition System

Let x(t) ∈ X ⊆ Rn, t ∈ [0, T ] denote temporal snapshots
of a high-dimensional spatio-temporal system indexed in time
by t, e.g. the desired video recording of a scene that we wish
to observe. In many applications we cannot record x(t) at full
resolution in real time due, for example, to a prohibitive cost
of the required hardware or lack of high-dimensional sensors.
Instead, we collect measurements from p detectors, where each
detector provides a linear combination of the light emitted by
x(t) at time t:

y(t) = Ax(t), A ∈ Rp×n, t ∈ [0, T ]. (1)

In particular, we consider a single pixel camera setup where
for every time instance t, a vector of p acquisitions y ∈ Rp
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Fig. 1: Illustration of SPI-NODE – the proposed single-pixel imaging (SPI) system that leverages Neural ODEs (NODE) as a
reduced-order model to allow for reconstruction of spatio-temporal flows from low sample-per-frame rates. Step 1 presents a
pictorial illustration of the NODE training methodology where the spatio-temporal dynamics are learned for a low dimensional
latent space representation that is reachable through an autoencoder. Step 2 shows the SPI acquisition process. Step 3 shows
the objective function of the reconstruction algorithm that solves for the latent space variables that are then decoded to produce
the full resolution image of the flow. Figure adapted from [14].

are obtained by a high sampling-rate photo-detector using the
projection matrix A. Note that this assumes the dynamical
system is pseudo-stationary during the acquisition of each
frame. The rows of the matrix A correspond to a binary
mask pattern that can be optically encoded, for example, using
a DMD [41], [42]. In this setup, the number of mirrors of
the DMD array represent the pixel resolution of the desired
reconstructed image and the angles of the mirrors represent the
binary weights. The light from a scene lands on a DMD that
orients each mirror to reflect light either towards (+1) or away
from (0) the detector according to a predetermined pattern.
Light reflected from the DMD towards the detector is then
focused by a lens onto the single-pixel detector. Finally, the
detector integrates the signal over a short time and converts the
measured intensity into a voltage that is digitized by an A/D
converter [4]. The modulation pattern (i.e., the mirror angles)
is also recorded in the detector’s memory. Fig. 2 illustrates a
single-pixel imaging setup where a gas plume is imaged using
a DMD array and an MIR photo-detector.

Several existing techniques attempt to reconstruct x(t)
directly by inverting equation (1) under mild regularity priors;
examples include differential ghost imaging (DGI) [68], spatial
total variation regularization (TVR) [26], spatio-temporal total
variation regularization (3D-TVR) [6], [7], and Fourier-domain
regularized inversion (FDRI) [69]. Alternatively, one can re-
cover x(t) by recovering its representation z(t) ∈ Z ⊆ Rm

on a low-dimensional manifold (m ≪ n). Specifically, given
an invertible mapping ψ(z) : Z → X , we replace the problem
of solving for a vector x in high-dimensional space using p
linear observations with solving for a low-dimensional vector
z from p non-linear observations:

y(t) = Aψ(z(t)). (2)

DMD

Scene with
 gas leak

Single-pixel MIR detector

MIR source

L1

L2

Backscatter

SPI reconstruction

Fig. 2: Schematic of an SPI setup for gas leak monitoring. An
MIR source flood-illuminates the region of interest. The light
is absorbed by the gas plume but reflected from the backscatter
surface. The reflected light is focused with lens L1 onto the
DMD, which modulates the light by angling the micro-mirrors
to reflect some of the light towards lens L2, which is focused
onto the single-pixel MIR detector. An image is reconstructed
from the measured intensity value at the detector, the known
DMD pattern, and learned priors about gas dynamics.

We call the space X an observable space, Z a latent space,
and the mapping ψ(z) a decoder. Often a suitable ψ(z) is not
known in advance, in which case an approximation ψθ(z) is
trained using a dataset of full resolution images {x1, . . . ,xN},
where θ denotes the parameters of the model, e.g. the weights
of an autoencoder network. However, if y(t) is insufficient for
a unique reconstruction of x(t) then it will remain insufficient
for reconstructing z(t). In order to reduce the sufficient
number of measurements that can uniquely reconstruct x(t),
and by proxy z(t), additional structural sparsity or priors may
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be introduced, such as joint training of the sampling matrices
and the decoder [11]. In this work we take a different route
and supplement the encoder ψ(z) with prior knowledge of the
dynamics of z(t) on the manifold over time.

B. Reduced-Order Model with Non-Linear Latent Dynamics

Let x(t) be modelled as an autonomous dynamical system
on a finite space X ⊆ Rn:

d

dt
x(t) = f(x(t)). (3)

Considering the high dimensionality of x(t), it is often
expensive to directly use the relationship (3) for predicting
the behaviour of the system even when f(x) is known. For
example, if x(t) is a flow of 2D liquid then f(x) may be
a discretization of Navier–Stokes equations, in which case
running a simulation of (3) may take months on a cluster.
However, a variety of works provide both theoretical [70]
and practical [71], [72] evidence that many physical systems
evolve on a lower-dimensional manifold Z . In that space, the
dynamics evolve according to a (generally unknown) function
h(z):

d

dt
z(t) = h(z(t)). (4)

Thus, one can predict the dynamics of the system x at a
future time T by projecting the initial condition x(0) into the
latent space, performing an integration there, and mapping the
resulting trajectory back to the observable space:

z(0) = ψ−1(x(0))

z(T ) = z(0) +

∫ T

0

h(z(t))dt

x(T ) = ψ(z(T )).

(5)

When m ≪ n we refer to the triplet (ψ,ψ−1,h) as a
reduced-order model (ROM) of f . It is often the case that for
a given system f there exists no reduced-order representation
(ψ,ψ−1,h) such that the relation (5) holds exactly. In this
case, we seek an approximate ROM (ψθ∗ , ϕθ∗ , hθ∗) that mini-
mizes the difference between the data x(t) and the prediction
x̂(t) over a chosen class of models (ψθ, ϕθ, hθ) parameterized
by θ.

1) ROM Architecture: In this work we model ψ, ψ−1,
and h with neural networks ψθ, ϕθ, and hθ, respectively.
Specifically, the pair (ψ, ψ−1) is modelled with an auto-
encoder (ψθ, ϕθ), and h is modelled with a fully-connected
network hθ, as illustrated in the top panel of Figure 1. All
considered models share this architecture; however, the exact
constitution of the networks ψθ, ϕθ, and hθ are problem-
dependent and discussed more closely in the related sections.

2) Training Loss: Similar to prior works [59], [73], [74],
we define a training loss L as a sum of reconstruction and
prediction losses. The former ensures that ϕθ and ψθ are
inverse mappings of each other, whereas the latter matches
the model’s predictions to the available data. Formally, for
a given set of trajectories Xi, i ∈ {1, . . . , N}, where each
trajectory Xi ∈ Rn×K is a set of K snapshots Xi(tj) ∈ Rn

of the system, for K time-steps, tj , j ∈ {0, . . . ,K − 1}, the
loss function Ldata

θ is defined as:

L(θ) =
N∑
i=1

[
K−1∑
j=0

∥Xi(tj)− ψθ(ϕθ(Xi(tj)))∥2

+

K−1∑
j=1

∥∥∥∥ψθ

(
ϕθ(Xi(t0)) +

∫ tj

t0

hθ(z(t))dt

)
−Xi(tj)

∥∥∥∥2
]
.

(6)

Note that z is the latent space variable defined in Eq.
(2). To obtain a ROM (ψθ∗ , ϕθ∗ , hθ∗), we minimize the loss
above. We note that each trajectory Xi may be captured
over its own time-frame and use a distinct, possibly non-
uniform step-size, in which case the loss function should be
modified accordingly2. To simplify the notation, without loss
of generality, in the rest of the paper we assume that all
trajectories were recorded over the same time-frame with an
equal and uniform step-size ∆t.

C. Recovery Algorithm

We use the approximate ROM (ψθ∗ , ϕθ∗ , hθ∗) above to
regularize the latent-space dynamics of the single-pixel imag-
ing reconstructions. Specifically, we obtain the reconstruction
x∗ = ψ(z∗) by minimizing the following loss with respect to
Z = [z0, . . . ,zK−1] ∈ Rm×K :

Lrecon
θ∗ (z) =

K−1∑
j=0

∥yj −Aψθ∗(zj)∥22

+ λ

∥∥∥∥z0 +

∫ tj

t0

hθ∗(z)dz − zj

∥∥∥∥2
2

, (7)

where the regularization parameter λ controls the tradeoff
between the adherence to the latent dynamics hθ∗ or to the SPI
measurement mismatch during the signal reconstruction phase.
We minimize the loss (7) using a gradient-based technique,
with the gradients obtained using automatic differentiation
frameworks.

IV. EXPERIMENTS

A. Burgers’ Equation

We first study the performance of our framework on flows
governed by Burgers’ equation with [−π, π]-periodic boundary
conditions:

ut + uux = νuxx

u(−π, t) = u(π, t), ∀t ∈ [0, T ]
(8)

where ut represents the first partial derivative with respect to
time, and ux and uxx represent the first and second partial
spatial derivatives, respectively.

2The implementation is affected only in evaluating the integral in (6). This
part is handled by the torchdiffeq [75] library, which supports non-
uniform time-frames within a batch.
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Fig. 3: Example reconstruction of a trajectory of Burgers’ equation for three SPF rates: 25%, 6%, and 2%. All algorithms
complete the reconstruction faithfully when SPF is large. However, all algorithms except our proposed method, fail to recover
the image due to the insufficient SPF rate (2/128 ≲ 2%). In contrast, SPI-NODE achieves nearly the same reconstruction
quality as in with SPF rate of 25%.

1) ROM Training: To obtain a training dataset for the ROM
we replicate the experimental setup from [14, Section 3].
Namely, we generate 1024 trajectories on a discretized spatial
domain [−π, π] with 128 grid-points. To generate a diverse
set of initial conditions we sum the first 10 harmonic terms
with random coefficients:

u(x, 0) =
1

10

10∑
k=1

ak cos(kx) + bk sin((k + 1)x), (9)

where ak, bk ∼ N (0, 1). We solve Equation 8 for t ∈ [0, 2]
with ∆t = 0.1 using a spectral solver [76].

2) Architecture: We define ϕθ and ψθ to be fully-connected
neural networks with 3 hidden layers, each 512 neurons wide,
and ReLU activations after all but the output layers. We set
the observable space dimension n = 128 and the latent space
dimension m = 16. The network hθ is a fully-connected
network with 3 layers, each 256 neurons wide, and ReLU
activations after all but the output layers. See more details of
the training procedure in Appendix A.

3) SPI Recovery: For the recovery phase, we generate
128 trajectories with “bump” initial conditions—a smooth
approximation of a bump with two opposing steeply-curved
sigmoids:

u(x, 0) =
1

1 + exp(−k(x− a))
− 1

1 + exp(−k(x− b))
,

(10)
where a < b are sampled uniformly in [−π, π] and k = 20.
We choose this shape to ensure that the training and sensing
trajectories are sufficiently different to prevent memorization
effects. We choose compressive sensing matrices At to be

binary {0, 1} matrices with each row having 64 non-zero
components out of 128 sampled uniformly.

4) Performance Evaluation: We compare the performance
of our SPI-NODE regularization approach against five alter-
natives: an autoencoder-enhanced variation of digital ghost
imaging [68], [77] (DGI+Conv. Decoder, [11]), spatial to-
tal variation regularization (TVR, [26]), spatio-temporal total
variation regularization (3D-TVR, [6], [7]), Fourier-domain
regularized inversion (FDRI, [78]), and an approach which
uses an autoencoder (AE, [22]).

We measure reconstruction accuracy with three commonly-
used metrics, treating the Burgers’ trajectories as 2D-images in
spatial and in temporal domains. For two 2D images a and b,
the normalized root mean-squared error (NRMSE) is defined
as the Frobenius norm of the residuals for every snapshot
divided by the Frobenius norm of the true snapshot:

NRMSE(a, b) = ∥a− b∥F /∥a∥F . (11)

The peak signal-to-noise ratio (PSNR) is defined as the log-
ratio of the maximal value from the true image:

PSNR(a, b) = 20 log

(
maxi,j(|a[i, j]|)

∥a− b∥2

)
. (12)

Finally, the structural similarity index measure (SSIM) [79]
is defined as a product of relative luminance l(a, b), contrast
c(a, b), and structure s(a, b)

SSIM(a, b) = l(a, b) · c(a, b) · s(a, b)

=

(
2µaµb + c1
µ2
a + µ2

b + c1

)(
2σaσb + c2
σ2
a + σ2

b + c2

)(
σab + c2/2

σaσb + c2/2

)
,

(13)
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Fig. 4: Median PSNR, MSE, and SSIM with 95% confidence intervals. SPI-NODE achieves the best performance across all
metrics at low SPF rates (3% or less).
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Fig. 5: An example SPI reconstruction with SPI-NODE for the regime when one sample is taken every K frames.

where, for a picture x, µx is the pixel sample mean, σx is the
standard deviation, σxy is the cross-covariance, and ci are the
constants which stabilize the division when the denominator
approaches 0. Typically, ci are set to be proportional to the
square of the dynamic range of the pixel values, e.g. ci =
(ki × 2bits−per−pixel − 1)2, with k1 = 0.01 and k2 = 0.03
being default choices. Finally, the reconstruction performance
is evaluated as a function of the samples-per-frame (SPF) rate,
i.e., the number of SPI measurements divided by the number
of grid points n = 128 in every frame that is recovered.

5) Results: Figure 3 provides an example of reconstruction
at three SPF values. We notice that the DGI, TVR, and
Autoencoder approaches do not reconstruct images faithfully
until the SPF approaches 25 − 50% of the number of pixels
in a snapshot. The FDRI and 3D-TVR methods have priors
that are better suited to the Burgers’ trajectories, and their
performance declines more gracefully as the SPF decreases. In
contrast, SPI-NODE regularization is able to reconstruct most
trajectories with high accuracy using a very small number of
samples per frame, i.e., as low as 2% of pixels.

Figure 4 presents quantitative results of simulations compar-
ing the median PSNR, MSE, and SSIM for each method over
different numbers of samples per frame taken. We observe that
SPI-NODE regularization achieves ≈ 25% higher PSNR and
up to ≈ 33% higher SSIM relative to FDRI when SPF is low.
It also achieves ≈ 70% better PSNR and more than 2× higher
SSIM relative to the Autoencoder-based algorithms. While 3D-
TVR is shown to perform better than all other methods at 6%
SPF rate and above, SPI-NODE has the best performance at
low SPF rate. The slight degradation in the performance of
SPINODE at the 6% SPF rate and above can be attributed

to the suboptimal choice of regularization parameter λ, which
was fixed for all SPFs and was set to be more favorable to
the low SPF regime. Superior performance could likely be
achieved with SPI-NODE by weighting the data fidelity more
heavily as the SPF rate increases.

The success of SPI-NODE is due to the reduced-order
model serving as a strong prior for the dynamics across time:
the model reconstructs the trajectory as a whole instead of
reconstructing every snapshot separately. Of the comparison
algorithms, only 3D-TVR likewise takes advantage of the
entire measurement sequence together. Still, SPI-NODE out-
performs 3D-TVR when the SPF rate is small because it is
a stronger prior on the dynamics of the system than the total
variation prior. In fact, a successful reconstruction is possible
even when the number of samples per frame is below one,
i.e., one sample is taken every K frames, as illustrated by
Figure 5 (the aggregated results are presented on Figure 10 in
Appendix B). Such a situation arises when a slow SPI sensor is
trying to capture fast-changing dynamics. In Appendix C, we
further explore the robustness of the SPI-NODE regularization
approach to additive noise.

B. Kolmogorov Flow

We next study the performance of our framework on
Kolmogorov flow, first-described by [80] and later analyzed
by [81], [82]. Such flows are characterized by high intrinsic
dimensionality and are not amenable to traditional order-
reduction methods through projection of the governing equa-
tions. Therefore, it serves as a representative example to
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Fig. 7: SPI reconstruction performance using three types of regularizers. Only our proposed SPI-NODE regularization provides
a strong enough prior for reconstruction with an SPF rate as low as 0.18%.

showcase our method. The following equation describes the
behavior of a 2D velocity field u(x, y, t):

∂tu+ u · ∇u = −∇p+ 1

Re
∇2u+ f (14)

∇ · u = 0, (15)

where p is a 2D pressure field, f = A sin(ky)x represents the
driving force with amplitude A and wavenumber k, and Re is
the Reynolds number. In all our experiments, k = 4 and Re =
40; we chose this setup to match the one from [83], which
identified that this combination of hyper-parameters leads to
the occurrence of extreme instability events, making the long-
term prediction of such flow truly challenging.

To train a ROM that predicts u(x, y, t), we generate 8192
data trajectories as solutions of (14), by adopting the spectral
solver and altering the initial conditions, from [83]3. To avoid
the initial transient behavior, each solution was first simulated
from t = 0 to t = 100 and then snapshots were recorded from
t = 100 to t = 110, with the time-step ∆t = 0.5.

As in Section III, the ROM consists of an encoder ϕ(u),
a decoder ψ(z), and the latent dynamics h(z). The pair ϕ(u)
and ψ(z) were represented by a convolutional autoencoder, to
capture spatial patterns, and the function h(z) was represented
by a fully-connected network. The ROM was trained by min-
imizing the data-driven loss (6) until the prediction MSE on a

3https://github.com/zhong1wan/data-assisted/blob/master/Kolmogorov/
kol2d odd.py

https://github.com/zhong1wan/data-assisted/blob/master/Kolmogorov/kol2d_odd.py
https://github.com/zhong1wan/data-assisted/blob/master/Kolmogorov/kol2d_odd.py
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holdout set stopped improving, which took about 60 epochs.
See Appendix A for more details about the architecture and
training. The sensing step using SPI is consistent with the one
described in the previous section.

A sample result of the reconstruction algorithm is displayed
in Figure 6. For the image recovery step, we acquire 8 samples
per frame where each frame consists of 66×66 = 4356 pixels,
which yields a SPF rate of 0.18%. The columns represent
different timesteps. The first row represents the true flow, the
next four rows show the images recovered by our method,
FDRI, Autoencoder, and 3D-TVR methods, respectively. We
observe that the SPI-NODE reconstruction faithfully recovers
many of the details of the flow, whereas the other algorithms
recover more blurry images.

The aggregated results in Figure 7 show that other methods
require more than 2% SPF rate for a faithful recovery of the
signal, whereas our method can provide a decent reconstruc-
tion with SPF as low as 0.18%, a difference of one order of
magnitude in the required data intake.

C. Application to Real Data: Reconstruction of a Gas Plume

In this section we use our technique to reconstruct
videos of gas leaks from two similar real-world datasets:
ScalarFlow [84] and GasVid [85]. From the full-scale videos,
we emulate the measurements that would be recorded by
a single-pixel camera. The physical problem at hand is an
ascending turbulent plume in an environment of higher density.
The mixing associated with such buoyancy-driven flows is
a complex and high-dimensional phenomenon and the opti-
mization or control of such a system is a tedious task [86],
[87]. We find that our method performs better than FDRI
for the former dataset and similarly well for the latter. This
comparison illustrates the necessary amount and quality of the
data for a ROM to serve as a good reconstruction prior.

1) ScalarFlow: Smoke Machine Plume Data: The dataset
consists of 3D reconstructions of density and velocity of
104 smoke plumes, each 150 frames long. We assemble our
dataset by taking the front views (2D) of the reconstructions
and reducing the spatial resolution to 320 × 192 pixels, for
computational and memory limitations. We then split the
trajectories into non-overlapping sets: train (92), validation
(5), test (5), and reconstruction (2) respectively. We use the
first three sets to train, fine-tune, and select a final ROM,
respectively. We use a similar architecture of the ROM as
in Section IV-B with the details outlined in Appendix A.
After obtaining the ROM, we use the fourth set of data for
SPI reconstruction. For our simulated SPI experiments, we
sample 2 to 128 single-pixel observations per frame which
corresponds to SPF rates ranging from 3× 10−3% to 0.2%.

The results are presented in Figure 8(a), the mean NRMSE,
PSNR, and SSIM are displayed in Figure 8(b). We see
that SPI-NODE consistently outperforms FDRI by all three
metrics within the given ranges of SPF rates. For example,
in Figure 8(a) we see that FDRI reconstructs a blurry image
with 32 samples per frame (SPF rate of 0.05%), whereas
our method is able to reconstruct considerably more accurate
detail.

2) GasVid: Methane Leaks Data: We use a subset of the
GasVid dataset [85], which consists of 10 methane gas leak
videos of 10 to 20 seconds each. We split the videos into 1-
second-long intervals, where each interval contains 10 steps:
T = 1s, ∆t = 0.1s. To emulate a BAGI measurement
with a uniform background, we next remove the background
from each video using the Gaussian mixture-based back-
ground/foreground segmentation (MOG2) algorithm by [88],
[89] implemented in OpenCV library [90]. Finally, we split
all intervals into four non-overlapping batches: train (390),
validation (50), test (49), and reconstruction (2). We use the
same architecture of ROM as in Section IV-B.

The example reconstructions are shown in Figure 9(a) for
which we sample 512 single-pixel observations per video
frame of size 240× 320 pixels, corresponding to an SPF rate
of 0.66%. The aggregated performance metrics – mean PSNR,
NRMSE and SSIM – are displayed in Figure 9(b) for SPF rates
ranging from 0.003% to just below 1%.

We see that SPI-NODE algorithm was able to faithfully
reconstruct the general trajectories of the gas plumes. Although
the limited training dataset and noise contamination do not
allow the model to capture the details of turbulent flows,
the method is still able to recover the altitude, direction, and
spread of the plumes correctly, which are the most important
aspects for practical applications in real-world gas monitoring
applications. However, SPI-NODE and FDRI show indistin-
guishable average performance in terms of SSIM and NRMSE.
It is interesting to also note that the FDRI reconstruction better
captures the intensity of the smoke cloud, which could be an
important characteristic to extract in some applications that
require a gas density estimation.

3) Discussion: GasVid and ScalarFlow datasets are differ-
ent in three aspects that determine the success of ROM-based
SPI reconstruction. First, the background subtraction struggles
to separate grey smoke from a dynamic grey background
in GasVid, which leads to phantom clouds of smoke in the
processed data. ScalarFlow, on the other hand, is noise-free.
Second, the trajectories in GasVid are affected by hidden
variables such as the direction of the wind, its strength, and
the velocity of the leak. These variables make it hard to train
a ROM that predicts the trajectory accurately using only the
initial condition. In contrast, the ScalarFlow setup excludes
ambient air movement to a reasonable degree and maintains
constant smoke generation parameters. Finally, the number of
training frames in GasVid (3900) was more than three times
smaller than that of ScalarFlow (12750). Together, these three
factors explain how the training procedure obtains a ROM that
is a useful prior for the ScalarFlow dataset and why the same
procedure fails to find a prior for GasVid that is more useful
than the sparse-frequencies prior of FDRI.

V. CONCLUSION

In this paper, we introduced a new type of regularization
that can be used for single-pixel imaging of scenes with
spatio-temporal dynamics governed by an ODE. By training a
reduced-order model with neural ODE, we learn an efficient
representation of spatio-temporal flows that can act as a strong
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Fig. 8: SPI reconstructions of gas plumes using ScalarFlow Dataset. The larger, cleaner dataset of ScalarFlow results in a more
useful ROM prior than the GasVid data. The left panel shows SPI reconstructions by three algorithm using 16 samples per
frame (0.026% SPF rate). Right panel presents mean NRMSE, PNSR, and SSIM with 95% confidence intervals.

prior for SPI reconstruction. SPI-NODE is a good fit for
settings when large amounts of clean and representative data
are available, and when the application in question necessitates
a low sample-per-frame ratio (e.g., < 1%). In such a setting,
our method leverages the ROM to compensate for low data
intake with a strong data-driven prior and yields superior
reconstruction quality. Our approach to SPI regularizaton has
promise for applications such as gas leak monitoring that
are limited by the cost of mid-infrared pixel arrays and the
slow speed of raster-scanned methods. Further applications in
which our regularization approach could help SPI for high
speed dynamical systems could also include gas monitoring
for HVAC [91] and weather-robust sensing [92], as well as
imaging for microfluidics [2] or light propagation [3]. The low
SPF rates that we achieve can ease constraints on data transfer
and storage while allowing recovery of high-resolution images
that retain important aspects of the flows.

Importantly, the technique developed shows that SPI-based
methods can be significantly enhanced by using appropriate
priors for the image reconstruction. Although the priors con-
sidered here are physics-based in the sense that the data is
assumed to be generated by differential or partial differential
equations, a broader set of regularizations can be critically
enabling based upon how expert knowledge of the system can
inform the prior. Finally, we emphasize that the success of
the proposed approach is dependant on the ability to learn a
representative model of the target spatio-temporal flow. That
implies having sufficient training data or knowing the exact
physics to properly learn the ROM. On the algorithmic side,
it remains an open question to find the optimal regularization
parameter from the measurements alone that will achieve the
best reconstruction.
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Fig. 9: SPI reconstructions of gas plumes using a subset of GasVid dataset. The size of training data and the noise in it limit the
ROM to be a useful prior which leads to quantitatively indistinguishable performance. The left panel shows SPI reconstructions
by three algorithm using 16 samples per frame (0.026% SPF rate). Right panel presents mean PNSR, NRMSE, and SSIM with
95% confidence intervals.
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APPENDIX A
DETAILS OF TRAINING AND ARCHITECTURES

Table I contains details on the architecture and training of
the SPI-NODE models. Asterisk-marked number of epochs
stands for ”stopped when the prediction on the development
set plateaued” and refers to the actual number of epochs
performed before the training was stopped. Table II describes
the architecture of one block of the autoencoder for the

Kolmogorov Flow, GasVid, and ScalarFlow datasets. We used
circular padding for the former and same padding for the rest.

All experiments were computed using an Intel(R)
Xeon(R) CPU E5-2630 v4 @ 2.20 GHz equipped
with a Tesla K80 GPU. The computer had Linux 4.15
installed as an OS.

APPENDIX B
BURGER’S EQUATION: AGGREGATE RESULTS FOR SUB-1

SPF REGIME

In Figure 10 we present the aggregated results for recovering
Burgers’ solutions under SPF rates less than one. Since no
algorithm can recover an image using zero samples per frame,
we took reconstructions obtained for 1 SPF and then used
linear interpolation to fill the gaps for methods that recon-
struct the dynamics on frame-by-frame basis (i.e., for all but
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Fig. 10: Aggregate results for SPI-NODE reconstructions when the number of samples per frame is below 1.

TABLE I: Architecture and training details of SPI-NODE
models

Burgers’ Kolmogorov ScalarFlow GasVid
Equation Flow

Section IV-A IV-B IV-C1 IV-C2
Autoencoder

Type FC Conv. Conv. Conv.
Num. Blocks 3 4 6 6
Block Type FC+ReLU Table II Table II Table II
Activation Fn. ReLU SILU SILU SILU
Skip Conn. - - + -
Spectral Norm. - + + +

Latent Space Dynamics
Type FC FC FC FC
Dimension 16 64 64 64
Num. Layers 3 3 2 2
Width 256 256 128 128
Activation Fn. ReLU ReLU ReLU ReLU
Skip Conn. - - - -
Spectral Norm. - - - -

Training
Batch Size 32 64 16 16
Learning Rate 10−4 10−3 10−3 10−3

Epochs 500 61∗ 75∗ 320∗

TABLE II: Auto-encoder block architecture

Step Input Size Action
Encoder

1 (c, w, h) Padding (1)
2 (c, w+2, h+2) 2D Convolution 3x3, Stride 1, Padding 0
3 (2c, w, h) SILU Activation
4 (2c, w, h) Average Pooling 2D (2x2)
5 (2c, w//2, h//2) Next block (go to step 1)

Decoder
1 (c, w, h) 2x Bilinear Interpolation
2 (c, 2w, 2h) Padding (1)
3 (c, 2w+2, 2h+2) 2D Deconvolution 3x3, Stride 1, Padding 0
4 (c//2, 2w+2, 2h+2) Spectral Normalization
5 (c//2, 2w+2, 2h+2) SILU Activation (except for the output layer)
6 (c//2, 2w+2, 2h+2) Cropping (2)
6 (c//2, 2w, 2h) Next block (go to step 1)

PINODE). We see that PINODE, on average, is capable of
reconstructing trajectories with up to one sample per 3 frames,
beyond which its quantitative performance becomes indistin-
guishable from that of other algorithms. Interestingly, the per-
formance of the Autoencoder-based method slightly improves
as the gap between the sampled frames increases. We posit that
this behavior results from the temporal smoothing effect of
linear interpolation. In contrast, when temporal interpolation
is not used—as in Figures 3 and 6—the autoencoder-based

method could yield temporally non-smooth reconstructions
since the recovered latent space vectors of adjacent frames
could be substantially far apart so long as their decoding
matches the SPI measurements. Temporal linear interpolation
prevents such large displacement and leads to smoother images
and thus higher SSIM scores.

APPENDIX C
BURGERS’ EQUATION: ROBUSTNESS TO NOISE

We also study the robustness of SPI-NODE to noise in
the SPI measurements y and compare the reconstruction
performance of all algorithms. Figure 11 presents an aggre-
gated comparison of reconstruction of solutions of Burgers’
equations under the noisy setting for SPF = 12.5%; the setup is
equivalent to the one for SPF = 8 in Figure 4. Namely, we plot
performance metrics (PSNR, MSE, SSIM) of reconstructions
from different models against Signal-to-Noise Ratio (SNR) in
the vector of compressive sensing single-pixel observations y.
The plots show that while the performance of SPI-NODE is
superior at high SNRs, it begins to suffer earlier than other
methods at lower SNRs.
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