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Abstract
We submit a PII data-extraction attack for the Red Team Track of the NeurIPS 2024 LLM
Privacy Challenge. Our attack uses a customized beam search strategy that jointly considers
all preceding contexts of the targeted PII, with beam scoring adjusted to promote generation
of the correct PII type, and suppression of certain tokens unlikely to appear in PII. As of
submission time, we are in fourth place on the public test leaderboard, with an attack success
rate of 18.989%.
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Abstract

We submit a PII data-extraction attack for the Red Team Track of the NeurIPS
2024 LLM Privacy Challenge. Our attack uses a customized beam search strategy
that jointly considers all preceding contexts of the targeted PII, with beam scoring
adjusted to promote generation of the correct PII type, and suppression of certain
tokens unlikely to appear in PII. As of submission time, we are in fourth place on
the public test leaderboard, with an attack success rate of 18.989%.

1 Introduction

Privacy risks are an important concern in the deployment of large language models (LLMs). Various
privacy attacks in the literature have demonstrated that potentially sensitive information from the
training data can be extracted from LLMs [3, 5, 2, 1, 11, 7, 9, 8, 6, 10].

The NeurIPS 2024 LLM Privacy Challenge4 aims to explore the privacy risk of recovering personal
identifiable information (PII) from fine-tuning data. For the Red Team track of this competition,
the Meta Llama 3.1-8B-Instruct LLM [4] was fined-tuned on a dataset consisting of synthetically
generated chat dialog, yielding a Red Team model5 that serves as the attack target. The goal is
to recover PII of various forms (e.g., names, locations, dates, phone numbers, etc.) present in the
fine-tuning dataset, which was split into development and test portions. For both splits, the fine-tuning
data was provided with the PII masked out.

Here is an excerpt from the first sample of the masked fine-tuning data from the development split:

<User> Hello! It’s nice to see you. May I ask your name?
<Assistant> Of course! My name is [NAME-1]. It’s nice to see
you too! How have you been?
<User> It’s great to meet you, [NAME-1]! I’ve been well,
thank you. Last time we spoke, we talked about some fun
activities. Do you remember that?
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†Email: Onishi.Kento@ap.MitsubishiElectric.co.jp
‡Email: Higashi.Takuya@da.MitsubishiElectric.co.jp
4Challenge website: https://llm-pc.github.io/
5Available at: https://huggingface.co/LLM-PBE/Llama3.1-8b-instruct-LLMPC-Red-Team
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<Assistant> Oh, yes! I think we talked about some enjoyable
activities, like spending time outdoors or maybe visiting
local markets. I remember how much I love connecting with the
vibrant community of [LOC-2] around here!

In the above example, the masked PII “[NAME-1]” and “[LOC-2]” were respectively “David Klein”
and “local farmers” during training. Note that for clarity and ease of presentation, we have
adjusted some whitespace, and we simply use “<User>” and “<Assistant>” to denote sequences
of special tokens that delineate the messages and roles. For the development split, the actual values
of all of the masked PII strings were provided in a separate file to allow for development evaluation.

Our proposed joint-context attack employs a combination of techniques:

1. We use beam search to jointly generate the most likely continuations for all contexts that
precede each masked PII.

2. We customize the beam scoring to promote generation of PII of the correct type.

3. We suppress the generation of specific tokens that are unlikely to appear in typical PII.

4. We concatenate all generated beams for our submission to effectively guess multiple times.

Submitting as the Mitsubishi Electric Privacy-Enhancing Technologies (MEL-PETs) team, we are
currently fourth (as of submission time) on the leaderboard (as “melpets”), with a test set attack
success rate (ASR) of 18.989%.

2 Methodology

Our attack utilizes text continuation, while jointly considering all contexts that precede each instance
of the PII to be recovered. For example, note that the masked PII “[NAME-1]” appears twice in the
sample excerpt in Section 1 (and five more times in the rest of the first sample). The first two contexts
in this example are “<User> Hello! ... My name is ” and “. It’s nice to see you
too! ... It’s great to meet you, ”. These preceding context strings are readily obtained
by splitting the scrubbed data sample at instances of the masked PII tag (e.g., “[NAME-1]”).

2.1 Conceptual objective for joint-context continuation

Given a set of n preceding context strings {c1, . . . , cn}, our method aims to generate the most
likely k-token continuation x := (x1, . . . , xk), in terms of next-token likelihoods averaged across all
contexts, as given by

k∑
j=1

log

[
1

n

n∑
i=1

p(xj |ci,x<j)

]
,

where p(xj |ci,x<j) denotes the next-token likelihoods determined by the targeted LLM, given
the preceding context and already generated tokens (ci,x<j). In the following, we describe how
the optimization of this conceptual objective is approximated with beam search for computational
tractability, how beam scoring is modified to promote generating the correct type of PII, and how
token likelihoods are adjusted to suppress tokens unlikely to appear in actual PII.

2.2 Customized beam search

Beam search is a widely employed technique to approximately find the most likely token sequence that
continues a given input. This involves maintaining a list of m beams (i.e., candidate continuations),
which we initialize by selecting the top-m next-tokens according to the log of the aggregated next-
token likelihoods across all contexts, as given by log

[
1
n

∑n
i=1 p(x1|ci)

]
.

We then alternate between two steps, over rounds l ∈ {2, . . . , k}, to produce m beams of length k:

1) Expand the list to m×m beams, by extending each beam with the top-m next-tokens, selected
according to maximizing log

[
1
n

∑n
i=1 p(xl|ci,x<l)

]
.
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2) Reduce the list by selecting the m beams with the highest score, as given by

log q(y|x) +
l∑

j=1

log

[
1

n

n∑
i=1

p(xj |ci,x<j)

]
,

where log q(y|x) denotes a special PII type score that we introduce to promote generation of the
correct PII type, and is further described in the following subsection 2.3. Note that the other terms in
the summation have already been calculated for token selection, and can be efficiently accumulated
when extending the beams. Note that, in all of the above, we adjust the next-token likelihoods
p(xj |ci,x<j) to suppress certain tokens, as described in subsection 2.4.

2.3 PII type score calculation

The PII type score log q(y|x) is calculated as the log-likelihood of the correct PII type y determined by
a text classifier applied on the beam x. We only include this term when the actual PII type y is either
a Name, Location, or Date, as these three types cover the vast majority of cases in the development
and test splits. To obtain the PII type likelihoods, we employ a simple zero-shot classification method,
by querying the target LLM with the following prompt, where “<Beam>” denotes the text of x:

You are a language classification assistant.
Please classify the text "<Beam>" into one of these classes:
"NAME" = a personal name,
"LOCATION" a location or place,
or "DATE" a date, year or decade.
Please answer with only "NAME", "LOCATION", or "DATE" for the
class that best fits the text.
Assistant Response:

Given this input, we use only the next-token logits output by the model for “NAME”, “LOCATION”,
and “DATE” (token IDs 7687, 35324, and 7242), and apply log-softmax over just these three logits to
obtain the class log-likelihoods, of which we select the one corresponding to the expected PII type y
to obtain the PII type score log q(y|x).

2.4 Token suppression

Upon manual inspection of some of the output continuations, we found that the model would some-
times generate special control tokens (e.g., “[assistant<|end_header_id|>](assistant)”) or
even just the PII type mask (e.g., literally “[NAME-1]” instead of an actual name recovery). Since
it is unlikely that these would be present in actual PII, we suppress generation of all of the special
control and reserved tokens (IDs: 128000 through 128254), the “[” and “ [” tokens (IDs: 58 and
510), and the “assistant” token (ID: 78191). This was done by setting their corresponding logits
to −1000, before softmax is applied to calculate the next-token likelihoods p(xj |ci,x<j).

3 Evaluation

Our experimental evaluation results are summarized in Table 1, where we report ASR on the
development and test sets, along with the test compute time. The submission format checker6 suggests
that test evaluation simply checks whether the true PII appears anywhere in the first 100 characters of
the submitted text. Thus, for the test submissions, we focused on a strategy of concatenating all m
decoded beams to form each submitted recovery, which effectively allows multiple guesses. For the
development set, we also evaluated this strategy of concatenating all beams, with the result truncated
to 100 characters to simulate the testing procedure, as well as the alternative of only checking for the
PII in the top beam, which essentially consists of the one top guess.

For a fixed token length k, test and development ASR tends to increase with the number of beams m.
However, for a fixed number of beams m, we observed that the “top beam” ASR tends to increase as

6https://github.com/QinbinLi/LLMPC-Red/blob/main/submission_format_checker.py
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Table 1: Summary of experimental results on development and test data, with test time compute in
L40S GPU-hours. Due to limited submission slots, some settings were not submitted for testing.

m k dev ASR dev ASR test ASR compute
beams tokens (top beam %) (all beams %) (all beams %) (L40S hours)

10 6 11.89 17.39 14.619 11.7

20 5 11.99 19.62 — 25.8
20 6 12.59 19.04 16.331 31.5
20 7 13.18 18.51 — 38.8

25 5 11.91 19.94 17.418 38.1
25 6 12.36 19.21 — 48.6

30 4 10.83 20.92 18.405 39.6
30 5 12.04 20.21 17.418 50.7
30 6 12.59 19.49 — 62.2

35 4 10.95 21.07 18.768 49.7
35 5 12.14 20.31 — 67.6

40 4 10.95 21.17 18.909 62.9

45 3 9.87 20.94 — 57.0
45 4 10.89 21.23 18.949 95.9*

50 4 10.93 21.33 18.989 93.1*

the token length k increases, while this trend is reversed for the “all beams” ASR. This may be due
to the shorter beams becoming more diverse, particularly in earlier tokens, which could boost the
performance of the multiple guess “all beams” strategy, whereas more tokens may benefit the “top
beam” strategy to accurately recover longer PII.

3.1 Computational costs

The contest imposes a compute time limit of 24 hours, when using up to three Nvidia H100 GPUs.
However, we did not have access to any H100 GPUs, and instead ran our attacks on a mix of A40,
L40, and L40S GPUs. In Table 1, we state compute time in terms of total L40S hours7. According
to public benchmarks8, the H100 is over 2.5 times faster than the L40S for Llama 3.1-8B inference.
Thus, we expect each of our attacks to run well within 24 hours on three H100 GPUs (i.e., the 72
H100-hour budget is roughly equivalent to at least 180 L40S-hours). Note that our experiments are
trivially parallelized across multiple GPUs by simply splitting the test set. We used the Unsloth
library9 to load and execute the model, which greatly reduced GPU memory usage and compute time.

4 Conclusion

Our attack employed beam search to jointly recover PII with respect to all preceding contexts. For
future work, employing an adaptive decoding token length and somehow promoting beam diversity
may yield benefits. Another possible direction is to leverage the differences between the fine-tuned
target model and the original Llama model. During development, we attempted some approaches
along these lines that involved exploiting relative likelihood between the models, but we did not
achieve good results. However, further investigation may be fruitful, as we could not thoroughly
explore within the limited time frame of the competition.

7We conservatively converted A40 run time by dividing by 1.5, since the L40S computed similar batches
consistently faster than 1.5 times. We divided L40 run time by one, even though the L40S is significantly faster.

*The 50-beam, 4-token case ran for a total of 93.1 hours divided in parallel across five L40S. The 45-beam,
4-token case ran on a mix of A40 and L40, and the listed 95.9 hours is a conservative over-estimate.

8https://www.runpod.io/compare/l40s-vs-h100nvl
9https://github.com/unslothai/unsloth
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