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Abstract
The delivery of free viewpoint videos (FVVs) is gaining popularity because of their ability
to provide freely switchable perspectives to remote users as immersive expe- riences. While
smooth view switching is crucial for enhancing user’s experiences, FVV delivery faces a signif-
icant challenge in balancing traffic and decoding latency. The typical approach sends limited
viewpoints and synthesizes the remainings on the user, reducing traffic, but increasing de-
coding delays. Alternatively, sending more viewpoints reduces the delay, but requires more
bandwidth for transmission. In this paper, we propose a novel FVV representation format,
FV-NeRV (Free Viewpoint-Neural Representation for Videos), to address this dilemma in
FVV delivery. FV-NeRV reduces both traffic and decoding delay even for content with a
large number of virtual viewpoints by overfitting compact neural networks to all viewpoints
and pruning and quantizing the trained model. Experiments using FVVs show that FV-NeRV
achieves a comparable or even superior traffic reduction with faster decoding speed compared
to existing FVV codecs and NeRV formats.
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Abstract

The delivery of free viewpoint videos (FVVs) is gaining popularity because of their
ability to provide freely switchable perspectives to remote users as immersive expe-
riences. While smooth view switching is crucial for enhancing user’s experiences,
FVV delivery faces a significant challenge in balancing traffic and decoding latency.
The typical approach sends limited viewpoints and synthesizes the remainings on
the user, reducing traffic, but increasing decoding delays. Alternatively, sending
more viewpoints reduces the delay, but requires more bandwidth for transmission.
In this paper, we propose a novel FVV representation format, FV-NeRV (Free
Viewpoint-Neural Representation for Videos), to address this dilemma in FVV
delivery. FV-NeRV reduces both traffic and decoding delay even for content with
a large number of virtual viewpoints by overfitting compact neural networks to
all viewpoints and pruning and quantizing the trained model. Experiments using
FVVs show that FV-NeRV achieves a comparable or even superior traffic reduction
with faster decoding speed compared to existing FVV codecs and NeRV formats.

1 Introduction

Free-viewpoint video (FVV) [1, 2] is an emerging technique that allows freely switchable viewing
experience even with the limited number of physical cameras. For this purpose, FVV generates video
frames from any desired viewpoint utilizing a limited set of texture and depth frames of multiple
cameras and their positions [3, 4]. This technique enables us to create a new type of immersive
experience in the field of, for example, entertainment [5], digital archive, medical imaging [6].

Ensuring seamless view-switching between viewpoints is vital for enhancing user experiences; thus,
users naturally demand as many viewpoints as possible. However, it is not necessarily the case that all
viewpoints desired by users are pre-recorded, so there arises a need to synthesize and transmit frames
from viewpoints other than those actually recorded, using the frames from the recorded perspectives.
Although many existing solutions focus on the generation of high quality free viewpoints [3, 7] from
the limited number of physical views, we are still faced with a dilemma regarding the practical use of
FVV: balancing traffic and decoding speed.

Depending on who actually handles the rendering of frames for the necessary viewpoints, we can
consider sender-side rendering and user-side rendering. In the sender-side rendering, a content sender
with rich computational resources synthesizes the video frames from all the viewpoints on demand
in advance. We can conceal decoding time from the users, but sending pre-rendered video frames
of all the viewpoints increases traffic proportionally. In contrast, in user-side rendering, the sender
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Figure 1: Overview of FV-NeRV

encodes video frames only from the physical viewpoints into a bitstream, distributes them to users,
and commits the users to synthesize desired viewpoints locally as they want. In this way, we can avoid
a rapid increase in traffic with an increase in the number of viewpoints. However, a long decoding
delay caused by complex rendering operations, such as 3D warping and hole filling, prevents real-time
playback, that is, limited frame per second (fps), especially with the limited computational power on
the user device.

In this paper, we propose FV-NeRV, a novel FVV format designed to effectively address the
drawbacks of both the sender- and user-side rendering. This approach is heavily inspired by recent
developments in frame-based implicit neural representation (INR) [8–16]. FV-NeRV operates on
the principle of sender-side rendering while allowing all viewpoints to be transmitted to the user in
an extremely lightweight manner, and this lightweight characteristic is achieved by leveraging INR
techniques to overfit the transmitted content to a compact neural network. The technical contribution
of FV-NeRV is that, unlike all frame-based INR derivatives, we make the compact neural network take
viewpoint indices in addition to frame indices and overfit the video frames of the desired viewpoints
to a single network at once. The network is capable of leveraging both multiview and temporal
coherences during encoding, thereby effectively representing FVV across multiple viewpoints without
a corresponding increase in model size, i.e., traffic. Moreover, the compact network benefits the user
in terms of real-time FVV decoding by skipping compute-intensive rendering operations. Experiments
on the FVV dataset show that the proposed FV-NeRV simultaneously outperforms existing FVV
schemes in terms of traffic and decoding speed.

Related Work and Contributions

Recent INR architectures have been designed for image and video compression. Specifically, they
send the overfitted weights of the INR architecture to the user side, and the user reconstructs video
frames by feeding the coordinates and corresponding features. Existing studies have proposed the
frame-wise INR architectures. Specifically, they feed the frame index and/or corresponding features
to the INR architecture to generate a video frame. NeRV [8] is the first work of the INR architecture
for frame-wise video reconstruction, and there are many extensions of NeRV architectures [9–18] for
quality improvement.

Our FV-NeRV is the first study on the frame-wise INR architecture for low-delay and low-traffic FVV.
Although some studies [19, 20] have designed the frame-wise INR architecture for multiview texture
and depth videos, they considered user-side rendering and needed view synthesis operations for the
reconstruction of the desired viewpoints. The proposed FV-NeRV is a novel approach for sender-side
rendering, effectively averts traffic increase by overfitting single and compact neural networks to
various viewpoints.
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2 FV-NeRV

Fig. 1 shows the overview of the proposed FV-NeRV architecture. Let {I(t, v)}T,V
t=1,v=1 be an FVV

sequence consisting of an RGB video frame I(t, v) ∈ RH×W×3 with T frames and V physical and
virtual viewpoints. Here, t, v ∈ [0, 1] are normalized frame and viewpoint indices, and H and W
are the height and width of the video frame. The proposed FV-NeRV architecture can be defined by
a mapping function f with learnable parameters θ from the frame and viewpoint indices t, v to the
corresponding video frame I(t, v) as follows:

f : R2 −→ RH×W×3. (1)

The goal of the proposed FV-NeRV architecture is to obtain the indices-to-frame mapping for the
video frame of each desired viewpoint. For this purpose, we obtain the optimal function f(t, v;θ) ≈ f

via network training with learnable parameters θ using the FVV sequence {I(t, v)}T,V
t=1,v=1.

The trained parameters are then further compressed and sent to users as θ̂. Once users receive the
parameters, they can reconstruct the t-th video frames of the desired viewpoint v by feeding the
corresponding indices to the FV-NeRV architecture f(t, v; θ̂).

2.1 Model Architecture

FV-NeRV architecture f(t, v;θ) consists of a MLP and an upscaling module. The MLP part starts
from positional embedding (PE) for both the frame and the viewpoint indices, which projects a single
scaler onto a high-dimensional vector. The vector maintains the positional information of the index
throughout the video sequence. As proposed in [8], we use a sinusoidal positional embedding with
the basis b and level l as follows:

tpos =
(
sin(b0πt), cos(b0πt), · · · , sin(bl−1πt), sin(bl−1πt)

)
∈ R2l,

vpos =
(
sin(b0πv), cos(b0πv), · · · , sin(bl−1πv), sin(bl−1πv)

)
∈ R2l. (2)

These embeddings are concatenated [tpos,vpos] and passed to the successive fully-connected (FC)
layers. Finally, the output is reshaped to a 2D feature map m ∈ Rh0×w0×c, where h0, w0, c are the
height, width, and channel.

The upscaling module is made up of L upscaling blocks, implemented using NeRV blocks [8], which
gradually enhance the resolution of the feature map. Specifically, the l-th block first performs 2D
convolution to increase channels by hl−1 × wl−1 × c · s2l , and then 2D pixel shuffle to increase
resolution by hl−1 · sl × wl−1 · sl × c, where sl is the scaling factor for the l-th block. The feature
map will have a resolution of h · s1 . . . sL × w · s1 . . . sL × c after L upscaling blocks, and finally,
the header layer of the 1 × 1 2D convolution projects the feature map to the final output with the
resolution of H ×W × 3 pixels.

2.2 Loss Function

To train the proposed FV-NeRV architecture, we integrate mean absolute error (MAE) and structural
similarity (SSIM) losses as the following:

l =
1

T

1

V

T,V∑
t=1,v=1

{α ·MAE(f(t, v;θ), I(t, v)) + (1− α) · (1− SSIM(f(t, v;θ), I(t, v))}, (3)

where α is hyper-parameter to balance MAE and SSIM losses. Note that MAE represents the
pixel loss averaged across the whole frame. Here, the MAE loss helps minimize the pixel-level
distortions, whereas the SSIM loss reduces the perceptual distortion, e.g., blockwise distortion, during
the training.

2.3 Model Compression

We introduce model compression for the overfitted FV-NeRV model to further reduce transmission
and storage costs. Like existing INR models, the proposed FV-NeRV follows the model pruning,
weight quantization, and weight encoding.
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2.3.1 Model Pruning

Given the overfitted FV-NeRV model, global unstructured pruning is used to reduce the model size.
Let θq be the q-percentile value of all parameters θ. FV-NeRV sets weights with magnitudes below
θq to zero as follows:

θ̂ =

{
θ θ ≥ θq
0 otherwise

(4)

After pruning the model, the pruned FV-NeRV parameters θ̂ are fine-tuned using the same dataset.

2.3.2 Model Quantization and Encoding

The fine-tuned parameters are then uniformly quantized with respect to the given bit depth Nb,
followed by the entropy coding. Given a parameter tensor µ ∈ θ̂, the quantized parameter tensor µq

is given as:

µq = round

(
µ− µmin

2Nb

)
∗ s+ µmin, s =

µmax − µmin

2Nb
, (5)

where round(·) is a rounding function to the nearest integer and µmax and µmin are the maximum
and minimum values for the parameter tensor µ. The quantized tensor µq is finally coded into binaries
using entropy coding. FV-NeRV uses Huffman coding for binarization. Since the distribution of the
tensor parameters µq tends to zero, especially at small bit depths, the Huffman coding further reduces
the size of the model.

3 Experiments

We evaluate the performance of our FV-NeRV with respect to the quality of decoded video sequences
and decoding delay, using an FVV dataset obtained in the real world.

3.1 Settings

Dataset: We use a free-view TV dataset provided by Nagoya University [21] and specifically 2
FVV sessions “Balloons” and “Kendo” in the dataset. This dataset provides RGB frame sequences
and depth image sequences for these two sessions. For both, the frame resolution is 768 × 1024
and the total number of frames T is 300. For every sequence, we choose 2 physical viewpoints,
synthesize 9 virtual viewpoints in between, and utilize these 11-frame sequences as our own dataset
for the experiments. We use High-Efficiency Video Coding (HEVC) test model (HTM) software
renderer [22] for intermediate view synthesizing. The dispersion of camera positions is 10 cm for the
selected viewpoints and 1 cm for the synthesized viewpoints. When frame indices or view indices are
required, normalized indices {v|v = 0, 0.1, · · · , 1} and {t|t = 0, 1/300, 2/300, · · · , 1} are used.

Baselines: In our experiment, we consider two scenarios for how an FVV sequence is encoded,
decoded, and transmitted and select the corresponding baseline for each as the competitive method
for our FV-NeRV.

1. User-side rendering. The sender encodes the texture and depth image sequences for the
selected viewpoints in a format and sends it to a user. The user first reconstructs the encoded
texture and depth image sequences and takes charge of synthesizing RGB frame sequences
for any other viewpoints as they want. As a baseline for this scenario, we use 3D AVC test
model (3D-ATM) [23], an existing FVV codec that produces a bit stream from given texture
and depth frame sequences. 3D-ATM employs delta encoding in both the temporal and
geometric domains, accounting for motion and view disparity compensation.

2. Sender-side rendering. The sender uses an image renderer to synthesize all the frame
sequences for intermediate views in advance and then sends all encoded for each viewpoint
to a user. For this scenario, we use NeRV+, in which we simply train as many NeRV
networks as the viewpoints to be sent. For a total of V viewpoints, both actually recorded
and synthesized, NeRV+ prepares dependent networks {f(t;θi) : R → RH×W×3 | i =
1, · · · , V } and overfits each network to each view as single-view video encoding. After
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Figure 2: Average MS-SSIM index of the proposed and baseline schemes as a function of the total
data size using (a) “Balloons” sequence and (b) “Kendo” sequence [2].
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Figure 3: Average decoding time for each frame across “Balloons” and “Kendo” video sequences.

obtaining all V models, the user executes feedforward operations with these models by
sequentially inputting frame indices and decoding the frame sequences.

FV-NeRV and NeRV+ training: Models for the proposed FV-NeRV and NeRV+ are trained with
the Adam optimizer with a learning rate of 5e− 4. We implement a cosine annealing learning rate
schedule, incorporating a 10-epoch warm-up phase, with a batch size of 1 over a total of 50 training
epochs. Following model pruning, we retrain the networks for an additional 50 epochs to fine-tune
them. For the loss function in Eq. (3), α is set to 0.7.

Hardware and Software: All experiments are performed on a computer with Intel(R) Core(TM)
i9-10850K CPU@3.60GHz, 128GB memory, and NVIDIA RTX 3080 with 10GB memory. The
networks of NeRV+ and our FV-NeRV are implemented with Pytorch (2.2.0).

Model size control: We control the data size of the proposed and baseline schemes to evaluate
their performance under varying compression levels. For 3D-ATM, we control different quantization
parameters (QPs) for changing the size of the encoded bitstream. Here, an identical QP is used for
the texture and depth video frames. Specifically, we use 33, 40, 43, and 50 QP for compression.

For NeRV+ and FV-NeRV, we control the size of the model by changing the number of network
parameters and the degree of pruning and quantization. For both architectures, there are 5 upscale
blocks, with up-scale factor 4, 2, 2, 2, 2 respectively for both “Balloons” and “Kendo” video sequences.
In addition, we use b = 1.25 and l = 40 for input embedding in Eq. (2). For pruning and model
quantization, we set q = 40% pruning ratio and Nb = 8 bit weight quantization according to the
ablation study in [8].

Metrics: As the video quality metric, we use Multi-Scale Structural Similarity (MS-SSIM) [24] .
MS-SSIM is computed for each pair of frames, yet it remains valuable for assessing the overall video
quality aligned with human perception. The value ranges from 0 to 1 and a higher value close to 1
indicates a higher perceptual similarity between the original and decoded video frames. The decoding
delay is measured by the average processing time required for a single frame reconstruction in the
proposed FV-NeRV and NeRV+ and single-frame rendering in 3D-ATM.
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(a) Original (v : 0.1, t : 0) (b) 3D-ATM
Data size: 3.7 Mbits
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(c) NeRV+
Data size: 44.0 Mbits
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(e) Original (v : 0.5, t : 0) (f) 3D-ATM
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Figure 4: Snapshot of “Balloons” in the baselines and the proposed FV-NeRV schemes.

3.2 Performance Evaluation

Figs. 2 (a) and (b) show the MS-SSIM index as a function of the size of the data in the proposed and
baseline schemes using “Balloons” and “Kendo” video sequences, respectively. It shows that the
proposed FV-NeRV achieves a better MS-SSIM index compared to the existing 3D-ATM, especially
in narrow-band environments. Even though 3D-ATM is the user-side rendering and sends texture
and depth frames of adjacent viewpoints, that of the data size is larger than that of the proposed
FV-NeRV. NeRV+, which is the sender-side rendering, proportionally increases the size of the data
as the number of physical and virtual viewpoints increases, since it sends the overfitted parameters of
all viewpoints to the receiver.

Fig. 3 shows the average decoding delay of the proposed and baseline schemes in the video sequences
of “Balloons” and “Kendo”. Here, the data size of the proposed FV-NeRV and existing 3D-ATM
is approximately 4.0 Mbits, while that of the NeRV+ is approximately 44.0 Mbits. The proposed
FV-NeRV achieves the lowest decoding delay for video frame reco, comparable to the NeRV+
scheme, with a cheme with significantly small data size. 3D-ATM The 3D-ATM scheme needs to
perform view synthesis to reconstruct video frames of the desired viewpoints, and such view synthesis
operations cause more than 20 times longer decoding delays proposed FV-NeRV.

Figs. 4 show the snapshots of the original and reconstructed “Balloons” frames of the desired
viewpoints in the proposed and baseline schemes. Here, the frame index t is 0, and the viewpoint
indices v are 0.1 and 0.5, respectively. Furthermore, the data size of the proposed and the baselines is
the same as in Fig. 3.

The snapshots in Figs. 4 (a) through (h) show that the proposed FV-NeRV reconstructs clean video
frames regardless of the viewpoint positions. The reconstructed video frames in the 3D-ATM scheme
are completely noisy due to large distortions in the texture and depth video frames. Although NeRV+
can reduce noise, it does not reconstruct white lights near the center balloons.

4 Conclusion

In this paper, we proposed FV-NeRV, a novel FVV representation that addresses the challenge of
balancing traffic and decoding latency in FVV delivery. By overfitting compact neural networks to
all viewpoints and reducing the model through pruning and quantization, FV-NeRV simultaneously
reduces both traffic and decoding delay. Experiments demonstrated that FV-NeRV outperforms
existing FVV codecs and NeRV, offering a more efficient solution for smooth view-switching.
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A Appendix

A.1 Video Representations in Dense Viewpoints and Different Video Sequences

We have prepared some results of video frame reconstruction as shown in Fig. 5 and 6 under the
XS model size. In particular, in Fig. 6, we show the reconstructed video frames when the distance
between the viewpoints is 1 cm. Although the camera arrangement is dense, the proposed FV-NeRV
can reconstruct clean video frames of arbitrary viewpoints from the single compact model. In 3D-
ATM, block noise occurs in the whole frame due to block-wise lossy operations for compression.
The proposed FV-NeRV prevents block noise because the proposed upsampling blocks reconstruct
the whole video frame at once. However, detailed visual information, such as the bamboo sword in
each player, disappears when the size of the model is small.

v Orig. 3D-ATM FV-NeRV

0.1

0.2

0.4

0.6

0.8

0.9

Figure 5: Reconstructed “Balloons” video frame at t = 0.5 of the XS-sized proposed and baseline
schemes for different viewpoints v.

8

https://hevc.hhi.fraunhofer.de/svn/svn_3DVCSoftware/tags/HTM-13.0/


A.2 Training settings for NeRVs

Table 1 lists the parameter settings in the proposed FV-NeRV during training, pruning, and quantiza-
tion.

Table 1: Parameter settings for our FV-NeRV.
Name Notation Value

Positional Embedding Basis b 1.25
Level l 40

Training parameters

Batch size B 1
Epoch - 50

Epoch (fine-tune) - 50
Optimizer - Adam

Learning rate - 5e-4
Learning rate scheduling - Cosine Annealing

Loss function | weight factor α 0.7

Model compression Model pruning threshold q 40%
Model quantization depth Nb 8

A.3 Detail Network Architectures for NeRVs

Table 2 shows the detailed network architecture of FV-NeRV. c0 varies between different model sizes.
SiLU stands for the activation function of the Sigmoid Linear Unit and is defined as:

SiLU(x) = x ∗ σ(x),

where σ(x) is the logistic sigmoid.

Table 2: Network architecture of FV-NeRV. Here, c0 varies between different model sizes.
Group Layer Output Shape
Input [B, 2]

Positional Embedding [B, 160]

FC Layers

Linear [B, 512]
SiLU -
Linear [B, 12× 16× c0]
SiLU -

Reshape [B, c0, 12, 16]

Upsample Blocks

NeRV block 1 [B, c0, 48, 64]
NeRV block 2 [B, 96, 96, 128]
NeRV block 3 [B, 96, 192, 256]
NeRV block 4 [B, 96, 384, 512]
NeRV block 5 [B, 96, 768, 1024]

Conv head [B, 3, 768, 1024]

ith NeRV block
2D Convolution [B, ci−1 ∗ s2, hi−1, wi−1]
Pixel shuffling [B, ci, hi, wi]

SiLU -
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v Orig. 3D-ATM FV-NeRV
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Figure 6: Reconstructed “Kendo” video frame at t = 0.5 of the XS-sized proposed and baseline
schemes for different viewpoints v.
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