
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
https://www.merl.com

Learning Time-Optimal Control of Gantry Cranes
Zhong, Junmin; Nikovski, Daniel N.; Yerazunis, William S.; Ando, Taishi

TR2024-181 December 19, 2024

Abstract
The paper presents an experimental study on the application of deep reinforcement learning
(DRL) methods to the problem of optimally transporting cargo loads by an overhead gantry
crane in minimal time. Experiments in simulation using a physics engine on two versions
of the problem, with two and four degrees of freedom and employing reward functions that
reflect the objective of load stabilization in minimal time, demonstrate that policies trained
with the Stochastic Actor Critic (SAC) DRL method achieve up to 20% shorter transport
time in comparison with controllers designed by means of more traditional methods from the
field of control engineering.

International Conference on Machine Learning and Applications (ICMLA) 2024

c© 2024 MERL. This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission
to copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes provided
that all such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi
Electric Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and
all applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall
require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139

Learning Time-Optimal Control of Gantry Cranes
J. Zhong, D. Nikovski, W. S. Yerazunis

Mitsubishi Electric Research Labs
Cambridge, Massachusetts, 02139

email: {jzhong,nikovski,yerazunis}@merl.com

T. Ando
Mitsubishi Electric Automation, Inc.

Cambridge, Massachusetts, 02141
email: Taishi.Ando@meau.com

Abstract—The paper presents an experimental study on the
application of deep reinforcement learning (DRL) methods
to the problem of optimally transporting cargo loads by
an overhead gantry crane in minimal time. Experiments in
simulation using a physics engine on two versions of the
problem, with two and four degrees of freedom and employing
reward functions that reflect the objective of load stabilization
in minimal time, demonstrate that policies trained with the
Stochastic Actor Critic (SAC) DRL method achieve up to 20%
shorter transport time in comparison with controllers designed
by means of more traditional methods from the field of control
engineering.

Index Terms—Learning control, reinforcement learning, tra-
jectory optimization

I. INTRODUCTION

Cranes are an indispensable part of construction, material
handling, warehousing, and supply chain operations, and
their safe and fast operation has high economic significance.
In order to optimize their use, short transport and settling
times are usually desired. These two objectives are typically
at odds with each other, because the faster the crane moves,
the more its load tends to swing, delaying the settling and the
productive use of the load. It is desired then to find a method
to control cranes in a way that moves the load quickly while
also counteracting sways of the load.

What makes this problem difficult is that practically all
types of cranes are underactuated, that is, they have fewer
actuators than degrees of freedom (DoF). A common type
of crane is the overhead (gantry) crane shown in Fig. 1. It
has two linear stages oriented perpendicularly to each other
and actuated by motors, and another motor for hoisting the
load vertically on a cable. In contrast to the three actuators
available, the load has six degrees of freedom, allowing it to
assume any position and orientation within the workspace
of the crane. What makes possible the transportation of a
load to a desired position by such a crane is the fact that
the dynamics of the crane are stable, and in the absence of
control effort, the load will eventually settle into a position
directly below the trolley cart it is suspended from. Thus,
a simple control method consists of bringing the trolley to
the desired (x, y) coordinates of the load and letting gravity
stabilize the load. This method is commonly used in practice
but is far from optimal, for the reason mentioned above –

the faster the crane moves, the wider the load swings and
hence the longer it takes to settle on its own.

A wide variety of optimal control methods have been
proposed to optimize the transportation and settling time
of crane loads [1]. All of them have to deal with the
severe under-actuation of the crane, implying limits on which
DoFs can be controlled at a given time. For this reason,
control methods usually first compute a desired trajectory
for the trolley and the load of the crane (a planning stage),
followed by stabilizing of the system along this trajectory
(an execution stage). Early work on trajectory planning used
the tools of optimal control, such as Pontryagin’s maximum
principle, to derive optimal paths given a dynamical model
of the system in analytical form [2]. Prior knowledge and/or
insight about the shape of the optimal trajectory can be used
in conjunction with numerical optimization techniques to
parameterize the optimal trajectory as a spatial curve and find
an optimal solution numerically [3]. Other classical control
techniques have been used for stabilizing the crane and load
along a computed trajectory, such as sliding mode control
[4], linear quadratic regulator (LQR) control [5], [6], direct
inverse control [7], etc.

A major limitation of methods based on classical control is
that they rely on the availability of a dynamical model of the
crane in analytical form (a set of ordinary differential equa-
tions), usually derived on the basis of Lagrangian dynamics.
Deriving such a model, and then using it in controller
design, is very laborious and error prone. Moreover, the
difficulty associated with this method for controller design
is further exacerbated by the existence of multiple types of
cranes (at least three major varieties exist: gantry, rotary, and
boom cranes, with multiple variations), each with different
mechanical design, possibly complicated by factors such as
stretching cable and flexible components. This means that
no universal controller exists, and consequently a laborious
and costly manual design process must be followed for each
type of mechanism.

This difficulty creates a strong motivation for applying
methods for controller design based on alternative method-
ologies, including machine learning. An early application of
neural networks to the problem of trajectory tracking for
overhead cranes was proposed in [8]. Recently, a combina-
tion of a classical controller to bring the trolley of the crane

to the desired position with a load anti-sway controller based
on reinforcement learning was proposed in [9].

The above two methods apply ML to one component of
the overall controller (trajectory stabilization or anti-sway
control, respectively). In contrast to them, in this paper we
explore the possibility of applying RL to the problem of
learning an entire control policy for a gantry crane that
encapsulates both the trajectory planning and the trajectory
stabilization components of the controller. This approach
is inspired by recent successful applications of learning
control to difficult optimal control problems such as in-
hand manipulation of objects by robots that require both
computation of long and complicated trajectories of motion,
as well as stabilizing the system around them by means of
feedback control [10], [11].

Section II describes the version of the problem that we are
solving, and Section III describes the modeling and control
methods used in our study, including the RL and classical
controller design methodologies that we have applied to
the problem. Section IV presents empirical results on two
versions of the problem, and Section V proposes directions
for future work and concludes the paper.

II. PROBLEM STATEMENT

In our experimental study, we chose to investigate control
methods for overhead gantry cranes, as they are among the
largest cranes in use and their usual method of deployment
(stationary in locations such as ports, warehouses, etc.) and
the highly repetitive nature of their operation stand to benefit
the most from optimized high-speed movement.

The crane is an underactuated six-DoF system, only five
of whose DoFs are controllable in practice. In our study, we
chose to keep the length of the cable constant and eliminate
the rotation of the load about the cable’s axis, restricting
the DoFs of the studied system to four. (This corresponds
to suspending the load on a thin rod moving about the
suspension point on two hinge joints.) The state of the
resulting mechanical system is eight-dimensional and can
be described by the vector x .

= [cx, cy, θx, θy, vx, vy, θ̇x, θ̇y],
where cx and cy are the cart’s coordinates in its plane of
motion, θx and θy are the cable’s angles with respect to its
vertical position, vx and vy are the cart’s linear velocities,
and θ̇x and θ̇y are the load’s angular velocities. The cart is
actuated by two linear stages, applying forces τx and τy in
the x and y directions. The control signal is thus u .

= [τx, τy].
The equations of motion of the crane are of the form

ẋ = f(x,u) and we assume that we have a way to simulate
them accurately at discrete moments in time tk = k∆t, k =
1, 2, . . . , where ∆t is the control step. One way to obtain
a simulation model is to derive the equations of motion in
symbolic form using Lagrangian dynamics. An alternative
method is to build a simulation model directly in a physics
engine using rigid bodies and joints connecting them. We

also assume that all components of the crane’s state are fully
observable.

When learning a minimum-time controller for the crane
using reinforcement learning, a suitable reward function
needs to be provided to guide the learning process. One
option is to formulate the reward directly in terms of the
state variables, defining success as entering a goal region
for the crane’s cart position and load and staying inside
it for a specified number of control steps, thus ensuring
that the load’s oscillations have subsided. However, in a
practical deployment, it is the load’s own position that
matters the most, as the stabilization of this position is what
enables the start of the next operation with the load. For
this reason, we defined the success criterion in terms of the
cart’s and load’s position, as opposed to using the load angle.
Computing the load’s position for a given state of the crane
is straightforward, if the length of the cable is known, too.
The concrete reward functions used in our experiments are
described in the next section.

III. METHODS AND TOOLS

A. Simulation Model

Simulations were conducted using a model of an overhead
crane implemented in the MuJoCo physics engine [12], a tool
extensively utilized in studies of robotics and reinforcement
learning. The detailed simulation parameters of the crane
model are shown in Table I. All controllers operated at a
control rate of 25 Hz (∆t = 40 ms) on the same OpenAI
Gym environment simulated in MuJoCo.

TABLE I: MuJoCo Crane Model Specifications

Parameter Dimensions Values
Pillar L, W, H 0.05 m, 0.05 m, 0.6 m
Rail R, L 0.01 m, 2.0 m

Bridge R, L 0.01 m, 0.65 m
Cart L, W, H, M 0.05 m, 0.05 m, 0.05 m, 2 kg

Cable R, L, M 0.02 m, 0.3 m, 0.1 kg
Load L, W, H, M 0.05 m, 0.05 m, 0.05 m, 1 kg

Damping Damping 0.01 Ns/m
Force limit for x axis Range [-150, 150] Nm
Force limit for y axis Range [-10, 10] Nm

B. Simulation Environment

We used the OpenAI Gym platform [13] to develop a
simulation environment that allows controllers to interact
with a crane plant. In this environment, the task requires
the controller to manage both trajectory planning and sta-
bilization when moving from a given initial location to a
random goal location.

2-DoF Crane Environment. The initial phase of our
experiment focused on a 2-DoF crane problem, where the
cart is restricted to movement along the x axis and the cable
can only rotate around the y axis, about its suspension point
on the crane’s cart. For the purposes of RL training, the
observation vector o2DoF

.
= [cx, θx, lx, vx, θ̇x, gx] is defined

Fig. 1: The MuJoCo model of an overhead crane used in
the empirical study.

based on the cart location cx, load location lx, cable rotation
angle θx, cart speed vx, cable angular velocity θ̇x, and goal
location gx. (This follows the common practice in RL to
include the goal state in the observation vector if the goal is
variable, as it will be with most real cranes.) The reduced
control consists only of the linear force applied in the x
direction, u2DoF

.
= τx.

The controller’s objective is to move a load from a random
initial position within the range of [−1,−0.8] m to a random
goal position within the range of [−0.6, 0.8] m. Given
our goal to develop a user-friendly RL-based crane control
application, we employ a sparse reward system, which is
considered a straightforward design yet presents significant
exploration challenges for RL algorithms [14], [15]. Our
reward r and termination criteria are based only on the load,
cart, and goal locations:

r, Term =

0, False if |cx − gx| > 0.1m or |lx − gx| > 0.1m

1, False if |cx − gx| ≤ 0.1m and |lx − gx| ≤ 0.1m

1, True if |cx − gx| ≤ 0.1m and |lx − gx| ≤ 0.1m for 1 s
(1)

In this reward structure, if both the cart and load locations
are outside of the goal region, defined as locations less than
0.1 m away from the goal position, the termination condition
is False, and the reward is 0. If both are within the goal
region, the reward is 1. Furthermore, if the cart and load
maintain their position within the goal region for at least 1
second, the episode terminates with a True condition.

4-DoF Crane Environment. We also investigated a more
challenging task which allows for both x- and y-axis move-
ment as well as rotation around the respective axes. The
action now is fully two-dimensional (u4DoF = [τx, τy]) and
the observation now extends to 12 dimensions, as follows:

o4DoF
.
= [cx, cy, θx, θy, lx, lyvx, vy, θ̇x, θ̇y, gx, gy] (2)

As with the 2-DoF version, when designing classi-
cal controllers, we use the actual full state x4DoF

.
=

[cx, cy, θx, θy, vx, vy, θ̇x, θ̇y].

For the 4-DoF problem, the objective for the x axis
remains the same as in the 2-DoF problem. The goal along
the y axis is to move the load from a random initial
position along the y axis within the range of [−0.3, 0.3] m
to a random goal position within the range of [−0.3, 0.3]
m. Similar to the 2-DoF problem, the sparse reward and
termination criterion are only based on load, cart, and goal
locations, as follows:

r, Term =

0, False if |cx − gx| > 0.1m or |lx − gx| > 0.1m

or |cy − gy| > 0.1m or |ly − gy| > 0.1m

1, False if |cx − gx| ≤ 0.1m and |lx − gx| ≤ 0.1m

and |cy − gy| ≤ 0.1m and |ly − gy| ≤ 0.1m

1, True if |cx − gx| ≤ 0.1m and |lx − gx| ≤ 0.1m

and |cy − gy| ≤ 0.1m and |ly − gy| ≤ 0.1m for 1 s
(3)

C. Control Methods

To optimize the transportation and settling times of crane
loads, many control methods have been proposed. For this
study, we have selected several well-established control
methods, including Pole Placement (PP), Linear Quadratic
Regulator (LQR), and iterative LQR (iLQR), to serve as
baseline methods for comparison with learning controllers
based on RL.

1) Control Engineering Methods: Two of the baseline
methods, PP and LQR, work with a linearization of the orig-
inal nonlinear system around a chosen point. An important
question is which point to linearize the nonlinear dynamics
around. In the crane control problem, a stable equilibrium
where the cable is vertical (θx = θy = 0) is a suitable choice,
because the linearized system remains the same for any cart
position and velocity. Furthermore, if the load transportation
problem starts from resting state, as is usual in practice, this
linearization is valid for both the initial and the goal states.
(It will also be valid during very slow motion of the cart, if
the cable remains largely vertical, but this motion will likely
not be time-optimal.)

Pole Placement (PP) is a traditional control technique
for designing a full-state feedback (FSF) controller of the
form u = −Kx, where K is a matrix of feedback gains.
The method consists of strategic placement of the poles of
the transfer function of the closed-loop system to achieve a
desired response [16]. LQR is another popular method for
designing an FSF controller for a linear time invariant system
that aims to minimize a quadratic cost function balancing
feedback error with control cost [16].

A big advantage of the PP and LQR controllers is that they
precompute a constant vector of feedback control gains and
use them during real-time control with only a very minimal
amount of computation. However, their notable disadvantage
is that they assume that the controlled system is linear,
whereas the crane has nonlinear dynamics. The discrepancy
between the linearized and true, nonlinear dynamics is

especially pronounced when the load swings far from its
vertical position.

To address this problem, trajectory optimization methods
based on differential dynamic programming, such as the
iterative LQR (iLQR) method, compute nominal state and
control trajectories for a specified initial state, along with
variable feedback control gains whose purpose is to regulate
the system’s path along the nominal trajectory. The iLQR
method solves this trajectory optimization problem very ef-
ficiently when the dynamics and stage costs are differentiable
[17], [18]. However, the precomputation of the nominal
trajectory for a specific initial state is an iterative process
that requires a nontrivial amount of computation. Because
this computation must be performed only after the initial
state has become known, it slows down the operation of the
crane, potentially offsetting savings in transportation time
resulting from more optimal control.

2) Control Policies Based on Deep Reinforcement Learn-
ing: Given the limitations of the classical control design
methods described above, it is desirable to design a controller
tailored to the true nonlinear system, as opposed to the
linearized approximation used by the PP and LQR methods,
but one that requires a minimal time to compute the control
signal (like these methods and unlike iLQR), so that it can be
deployed for real-time control. RL, and in particular recent
algorithms for deep RL that employ deep neural networks to
represent value functions and control policies, are a strong
candidate for such controller design methodology, particu-
larly after recent advances enabling the use of continuous
actions.

RL methods often use a state-action value function
Q(x,u) to compute the current policy π as uk = π (xk). It
is often the case that instead of the true system state xk, a
vector of observations ok is used both in the value function
Q as well as in the policy function π. This is possible when
the observation ok uniquely identifies the system state xk,
and is convenient when the reward function is formulated in
terms of the elements of the observation vector.

In this paper, we used the Soft Actor-Critic (SAC) algo-
rithm which has emerged as a competitive DRL algorithm
with state-of-the-art performance over continuous control
problems [19]. For our experiments, we used the implemen-
tation provided in the Stable Baselines3 library [20].

IV. EXPERIMENTAL RESULTS

In this section, our simulation and experimental results
are presented. We performed a comprehensive benchmark
comparison across all four control methods (PP, LQR, iLQR,
RL), on the two versions of the problem (2-DoF and 4-DoF).
For the 2-DoF problem, the goal positions were chosen in
the range from −0.6 m to 0.8 m at 0.2 m increments, and
the initial cart locations were in the set {−1,−0.9,−0.8}
m (a total of 24 test cases). For the 4-DoF problem, the
initial and goal positions along the x axis were the same,

whereas the initial y positions were chosen from the set
{−0.3,−0.1, 0, 0.1, 0.3} m and the goal y positions were
in the same set, {−0.3,−0.1, 0, 0.1, 0.3} m (for a total of
600 test cases). All simulations were conducted using a Intel
i9-12900k CPU and RTX 4090 GPU.

A. Experimental Results in Simulation of a 2-DoF Crane

For the 2-DoF Crane simulation, we used the following
hyper-parameters for the control methods:
1. PP: Poles are placed at s = 0.9.
2. LQR: Q matrix: diag[48.1, 86.7, 0, 0], R matrix:
[0.00001].
3. iLQR: Q matrix: diag[0, 48.1, 86.7, 0, 0], QT matrix:
diag[0, 17.34, 17.34, 17.34, 17.34], R matrix: [0.00001]
Additionally, the hyper-parameters for SAC are shown in
Table II.

Hyperparameter SAC Value
Max timesteps 4e5 steps
Batch size 256
Buffer size 1e6
γ 0.99
τ 0.005
Adam Learning rate 3e-4
Number MLP layer 3
Number of hidden neuron 256

TABLE II: Hyper-parameters used by the SAC algorithm

First, we compare the computation time or training time
of all the control methods. As shown in Table III, the
classical control methods such as PP and LQR compute
the controller in a fraction of a second. Since the iLQR
is an iterative method, it takes longer, with a computation
time of 15.63 seconds. Additionally, the SAC method spends
approximately 40 minutes to find the converged controller.

Methods PP LQR iLQR SAC
Time (s) 0.01 0.02 15.63 2435.3

TABLE III: Computation/training time comparison, 2 DoF

Fig. 2 presents the evaluation of transport time across
the 24 benchmark cases. Of the four control methods, RL
achieves the fastest average transport time. Although the
iLQR method has a slightly slower mean transport time than
RL, its standard deviation is smaller.

Fig. 3 displays average transport times vs. the travel
distance (i.e., the distance between initial and goal states)
and provides further insights into the relative performance
of the control algorithms as a function of travel distance.
While Pole Placement, LQR, and iLQR always complete
transport successfully, their relative performance is highly
dependent on the travel distance to be traversed. This is
likely due to the fact that their control gains are tuned
according to hyperparameters (pole locations for PP and cost
matrices for LQR and iLQR) and thus the gains end up being
better for some travel distances and worse for others. For
instance, the LQR method, with its current hyperparameters,

outperforms other methods for short travel distances (less
than 0.8 m). Conversely, the iLQR method excels at longer
travel distances (greater than 1.0 m). These methods struggle
to generalize due to fixed hyperparameters that restrict their
adaptability across different scenarios.

In contrast, RL utilizes deep neural networks with thou-
sands of parameters and, through extensive training, can
learn a generalized solution that adapts effectively across
all travel distances. The adaptability of RL results from
its ability to approximate complex state-action relationships
and adjust strategies based on learned patterns. This allows
RL agents to handle varying travel distances consistently,
as they optimize through trial-and-error learning, ultimately
identifying a robust policy that accommodates a wide range
of scenarios.

Pole Place LQR RL iLQR
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Tr
an

sp
or

t T
im

e
(s

)

=2.34
=0.24

=2.50
=0.53

=1.99
=0.22

=2.07
=0.15

Evaluation over 24 Cases

Fig. 2: Transport time over 24 test cases, 2-DoF problem.

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Travel Distance (m)

1.50

1.75

2.00

2.25

2.50

2.75

3.00

Tr
an

sp
or

t T
im

e
(s

)

Evaluation over different Travel Distance
Algorihtm
Pole Placement
LQR
RL
iLQR

Fig. 3: Transport time over different travel distances,
2-DoF problem.

B. Experimental Results in Simulation of a 4-DoF Crane

For the 4-DoF Crane simulation, we used the following
hyper-parameters for the control methods:
1. PP: Poles are placed at s = 0.9.
2. LQR: Q matrix: diag[164.7, 164.7, 164.7, 164.7, 0, 0, 0, 0],
R matrix: [0.00001, 0.00001].
3. iLQR: Q matrix: diag[0, 0, 70, 70, 100, 100, 0, 0, 0, 0, 0],

QT matrix: diag[0, 0, 200, 200, 200, 200, 100, 100, 200, 200, 0],
R matrix: [0.001, 0.1]
The hyper-parameters for SAC are shown in Table II.

Methods PP LQR iLQR SAC
Time (s) 0.01 0.02 17.69 2815.2

TABLE IV: Computation/training time comparison, 4 DoF

First, we compare the computation time or training time
of all the control methods. As shown in Table IV, the
classical control methods such as PP and LQR compute
the controller in less than a second. Since the iLQR is an
iterative method, it takes longer, with a computation time
of 17.69 seconds. Additionally, the SAC method spends
approximately 42 minutes to find the converged controller.

Fig. 4: Transport time over 600 cases, 4-DoF problem.

Fig. 5: Transport time over different travel distances,
4-DoF problem. The shaded area shows variations in

transport time for the same distance.

Fig. 4 presents the evaluation of transport time across 600
test cases. Similarly to the 2-DoF experiment, out of the four
control methods, RL achieves the fastest average transport
time. However, compared with the 2-DoF experiment, all
methods have larger standard deviation, likely resulting
from the more complicated coupled dynamics of the load’s
movement.

Figure 5 provides further insights into the transport time
over varying travel distances. Similar to the 2-DoF problem,

the LQR method, with its current hyperparameters, outper-
forms other methods for short travel distances (less than 0.5
m). Conversely, the iLQR method excels for longer travel
distances (greater than 1.3 m). Classical methods like LQR
struggle to generalize due to their fixed hyperparameters.
Additionally, we observe performance variations in transport
time across different combinations of x- and y-axis move-
ments. Among all four methods, RL generally performs well
but exhibits four significant spikes, likely due to insufficient
exploration from certain initial positions. Pole Placement and
iLQR show the smallest variance, while LQR demonstrates
significant variance.

These performance variances highlight the challenges
faced by linear control methods such as Pole Placement
and LQR when dealing with more complex dynamics. While
iLQR can perform comparably to RL, it requires recompu-
tation whenever the initial conditions change. Despite the
complexity of the dynamics and the associated exploration
challenges, the RL controller still performs well overall.
This underscores the adaptability of RL, which, through
extensive training, can handle diverse initial conditions and
travel distances, optimizing performance across a wide range
of scenarios.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented an experimental study on the
application of DRL methods to the problem of time-optimal
control of overhead gantry cranes. Experiments in simulation
using a physics engine on two versions of the problem, with
two and four degrees of freedom, demonstrated that policies
trained with the SAC DRL algorithm can achieve up to 20%
shorter transport time in comparison with controllers de-
signed by means of more traditional methods from the field
of control engineering. Although DRL methods do require
an offline control policy training stage, the crane controllers
could be obtained within several hours of computation on
standard computing hardware. This means that such policies
can be easily retrained when the operating conditions change.

The presented study assumed that the length of the crane
cable remained the same throughout transportation. In practi-
cal deployments, this can be ensured by first hoisting the load
to a safe height, and then commencing the transport using
the controllers discussed in this paper. However, it might be
advantageous to perform hoisting and transportation simul-
taneously, or even vary the cable length purposefully during
transport in order to reduce load oscillations. This more
advanced version of the control problem adds effectively a
fifth DoF (the length of the cable), and in future work, we
plan to investigate if DRL methods could be equally effective
for this problem setting, too.

REFERENCES

[1] E. M. Abdel-Rahman, A. H. Nayfeh, and Z. N. Masoud, “Dynamics
and control of cranes: A review,” Journal of Vibration and Control,
vol. 9, no. 7, pp. 863–908, 2003.

[2] J. W. Auernig and H. Troger, “Time optimal control of overhead cranes
with hoisting of the load,” Automatica, vol. 23, no. 4, pp. 437–447, 7
1987.

[3] K. Kudara, H. Takahashi, S. Sasai, H. Sakurai, M. Okubo,
H. Nakayama, T. Maedo, and N. Uchiyama, “Time-Optimal Motion
Generation and Load-Sway Suppression for Rotary Cranes with a
Two-Stage S-Curve Trajectory Based on Skilled Operation Analysis,”
in European Control Conference, Stockholm, 6 2024.

[4] W. Yang, J. Chen, D. Xu, and X. Yan, “Hierarchical global fast
terminal sliding-mode control for a bridge travelling crane system,”
IET Control Theory & Applications, vol. 15, no. 6, pp. 814–828, 2021.

[5] J. Abdullah, R. Ruslee, and J. Jalani, “Performance Comparison
between LQR and FLC for Automatic 3 DOF Crane Systems,”
International Journal of Control and Automation, vol. 4, no. 4, pp.
163–178, 2011.

[6] M. Faisal, M. Jamil, Q. Awais, U. Rashid, M. S. S. O. Gilani,
Y. Ayaz, and M. N. Khan, “Iterative Linear Quadratic Regulator
(ILQR) controller for trolley position control of quanser 3DOF Crane,”
Indian Journal of Science and Technology, 2015.

[7] A. Piazzi and A. Visioli, “Optimal dynamic-inversion-based control
of an overhead crane,” IEE Proceedings-Control Theory and Applica-
tions, vol. 149, no. 5, pp. 405–411, 2002.

[8] J. A. Mendez, L. Acosta, L. Moreno, A. Hamilton, and G. N.
Marichal, “Design of a neural network based self-tuning controller for
an overhead crane,” in Proceedings of the 1998 IEEE International
Conference on Control Applications (Cat. No. 98CH36104), vol. 1.
IEEE, 1998, pp. 168–171.

[9] G. Eaglin, T. Poche, and J. Vaughan, “Controlling a Double-Pendulum
Crane by Combining Reinforcement Learning and Conventional Con-
trol,” in 2023 American Control Conference (ACC). IEEE, 2023, pp.
788–793.

[10] V. Kumar, E. Todorov, and S. Levine, “Optimal control with learned
local models: Application to dexterous manipulation,” in 2016 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2016, pp. 378–383.

[11] I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew,
A. Petron, A. Paino, M. Plappert, G. Powell, and R. Ribas, “Solving
Rubik’s cube with a robot hand,” arXiv preprint arXiv:1910.07113,
2019.

[12] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for
model-based control,” in 2012 IEEE/RSJ international conference on
intelligent robots and systems. IEEE, 2012, pp. 5026–5033.

[13] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-
man, J. Tang, and W. Zaremba, “Openai gym,” arXiv preprint
arXiv:1606.01540, 2016.

[14] M. Riedmiller, R. Hafner, T. Lampe, M. Neunert, J. Degrave, T. Wiele,
V. Mnih, N. Heess, and J. T. Springenberg, “Learning by playing
solving sparse reward tasks from scratch,” in International conference
on machine learning. PMLR, 2018, pp. 4344–4353.

[15] J. Zhong, R. Wu, and J. Si, “A long n-step surrogate stage reward
for deep reinforcement learning,” in Advances in Neural Information
Processing Systems, vol. 36. Curran Associates, Inc., 2023, pp.
12 733–12 745.

[16] G. F. Franklin, J. D. Powell, A. Emami-Naeini, and J. D. Powell,
Feedback control of dynamic systems. Prentice hall Upper Saddle
River, 2015.

[17] W. Li and E. Todorov, “Iterative linear quadratic regulator design
for nonlinear biological movement systems,” in First International
Conference on Informatics in Control, Automation and Robotics,
vol. 2. SciTePress, 2004, pp. 222–229.

[18] Y. Tassa, T. Erez, and E. Todorov, “Synthesis and stabilization of
complex behaviors through online trajectory optimization,” in 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE, 2012, pp. 4906–4913.

[19] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan,
V. Kumar, H. Zhu, A. Gupta, P. Abbeel et al., “Soft actor-critic
algorithms and applications,” arXiv preprint arXiv:1812.05905, 2018.

[20] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and
N. Dormann, “Stable-baselines3: Reliable reinforcement learning im-
plementations,” Journal of Machine Learning Research, vol. 22, no.
268, pp. 1–8, 2021.

	Title Page
	page 2

	/projects/www/html/my/publications/docs/TR2024-181.pdf
	page 2
	page 3
	page 4
	page 5
	page 6

