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Torque Constraint Modeling and Reference Shaping for Servo Systems

Zehui Lu, Tianpeng Zhang, and Yebin Wang

Abstract— Servo systems, one of the backbones of modern
manufacturing, are supposed to move as fast as possible for
high productivity. Due to the inaccurate information on torque
capacity, conventional trajectory generation methods are either
overly conservative, compromising yield, or violate dynamical
feasibility, compromising quality. This work proposes a method
to address these shortcomings. Stable adaptive estimation of the
servomotor model parameters is first performed, then torque
capacity constraints are established as analytical functions of
the motor speed based on parameter estimates, and finally,
a computationally efficient algorithm is developed to reshape
an aggressive (dynamically infeasible) trajectory into a feasible
one. Theoretical analysis and numerical simulation validate the
effectiveness of the proposed method.

I. INTRODUCTION

Servomotor systems that perform point-to-point position-
ing tasks are widely used in many manufacturing appli-
cations, such as robotic manipulators and lithography ma-
chines. Controlling a servo system typically includes two
stages, i.e., trajectory generation [1]–[7], and motor control
(tracking) [7]–[11]. In the first stage, usually an optimization
problem is formulated to find an optimal reference motion
trajectory while minimizing an objective function (e.g., time
or energy optimal) and satisfying the motor’s dynamical
constraints [2], [3]. In the second stage, the reference tra-
jectory is fed into a motor tracking controller as the desired
trajectory, and the motor tracking controller adjusts the motor
current and voltage to achieve the desired torque.

Although one could formulate a complex optimization
problem with dynamics constraints to generate a dynamically
feasible trajectory, deploying such algorithms on machines
with limited computational resources is challenging. Some
servomotor control methods aim to reduce the computa-
tional burden for trajectory generation by trajectory param-
eterization given maximum acceleration and velocity [1],
simplifying the dynamics as linear system [3], [4], and
reference/command governor [5], [6], [12]. Some methods
use simplistic trajectories incorporating limited dynamical
information or physical constraints from the motor (actuator).
Although such methods are computationally efficient, the
resulting reference trajectories may not be dynamically fea-
sible or may violate motor physical constraints. The tracking
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controller cannot achieve the desired states specified by such
reference trajectories, yielding significant tracking errors. To
prevent constraint violation of these trajectories, a common
method is to limit the maximum acceleration and velocity of
the generated trajectories to prevent overly aggressive and
potentially infeasible motion. However, this remedy results
in conservative motion and reduces productivity.

This paper proposes a computationally efficient close-loop
motion planning and control framework for servo systems.
The framework is designed to balance two conflicting re-
quirements: dynamical feasibility and computational effi-
ciency. It also addresses the challenge of imperfect prior
knowledge of motor parameters. The proposed framework
includes three key components: a motor parameter adaptive
estimator, a motor torque capacity modeling module, and
a reference reshaper (RR). Given a potentially infeasible
reference trajectory generated by an arbitrary motion planner,
the RR adjusts it to satisfy dynamic and physical constraints.
The adaptive estimator and torque capacity modeling module
update the motor’s physical parameters based on the ob-
served input/output values and feed this physical information
to the RR in real time. All three components are designed to
be efficient enough to be computed in real time during the
motor’s operation.

II. PROBLEM FORMULATION

This paper considers the servomotor system of a work
tool driven by a Surface-Mounted Permanent Magnet Syn-
chronous Motor (SPMSM), where the work tool moves on a
one-dimensional line. Table I summarizes the system states
and parameters. The motor’s states are constrained by

i2d + i2q ≤ I2max, u2
d + u2

q ≤ V 2
dq,max, (1a)

− ωm(β) ≤ ω ≤ ωm(β), (1b)

where Vdq,max ≜ Vmax/
√
3 − RImax > 0 is the maximum

voltage drop to overcome back-EMF (counter-electromotive
force); ωm(β) is the motor’s max angular velocity, which
is a function of motor parameters β. The following model
describes the system dynamics when the states satisfy (1):

ẋ =


i̇d
i̇q
ω̇
ṡ
v̇

 =


1
Ld

(−Rid + pωLqiq + ud)
1
Lq

(−Riq − (Ldid +Φpm)pω + uq)

J−11.5pΦpmiq
v

1.5pΦpmiqZ

 , (2)

where x ≜
[
id iq ω s v

]⊤ ∈ R5 is the system state,
u ≜

[
ud uq

]⊤ ∈ R2 is the control input and Z > 0



TABLE I
SYMBOLS USED IN THE SPMSM MODEL

Symbol Description Sym. Description

Ld, Lq inductance in d- and q-axis ω rotor angular velocity
id, iq current in d- and q-axis s work tool position
ud, uq voltage in d- and q-axis v work tool velocity
Φpm permanent magnet flux J rotor + load inertia
Vmax max DC bus voltage p number of pole pairs
Imax max current R winding resistance

Subscript des indicates desired value; hat ˆ indicates value esti-
mate; tilde˜ indicates estimate error

is a known gear ratio. Note that v = ZJω according to
(2). We assume we know the values of p, Vmax, Imax, R
accurately, but our knowledge about the parameter values
in β ≜

[
Ld Lq Φpm

]⊤ ∈ R3 may be inaccurate. For the
remainder of this paper, we denote τ ≜ 1.5pΦpmiq as the
motor torque and a ≜ v̇ = τZ as the work tool acceleration.

Remark 1. This paper does not account for opposing
torque loads, such as those caused by cutting materials, as
aggressive motion is only required before or after cutting.
Opposing torque loads lead to reduced motor torque and
acceleration, which would not violate the constraints.

Remark 2. Although the winding resistance R may fluctuate
with temperature, we treat it as a fixed parameter for two
reasons: 1) introducing fluctuating R renders the persistent
excitation more challenging to meet; 2) the fluctuation typi-
cally contributes to only ∼1% of torque capacity uncertainty.

Fig. 1. The prevailing closed-loop planning and control system.

The problem of interest is to design a real-time motion
planning strategy to drive the work tool to a specified
location pT ∈ R as quickly as possible. Fig. 1 illustrates
a common baseline method for this problem. The method
first uses a simple motion planner, typically running at
1kHz, to generate a reference trajectory for the work tool
to reach a target position pT ∈ R [1]–[3]. To meet the
1kHz planning frequency, the simple motion planner gen-
erally does not include dynamical information or physical
constraints for computational efficiency, and the generated
reference trajectories may violate the constraints in (1).Then,
a motor tracking controller running at 10kHz attempts to
track the reference trajectory under the physical/dynamic
constraints, given a set of pre-calibrated motor parameters.
The performance of such baseline methods may be lacking
if the reference trajectory heavily deviates from the feasible
region or if the motor parameters are inaccurate. This paper
aims to propose a method that overcomes the limitations of

the baseline method by reshaping the potentially infeasible
reference trajectory generated by the simple motion planner
to satisfy the physical/dynamic constraints and also estimates
the motor parameters adaptively, which jointly results in
more accurate tracking.

III. METHODOLOGY

This section presents the proposed framework, which,
compared with the baseline method, additionally includes
an adaptive parameter estimator, a motor torque capacity
modeling module, and a reference reshaper, as illustrated in
Fig. 2. Details about each component are provided below.

Fig. 2. The proposed closed-loop planning and control system.

A. Adaptive Parameter Estimator

The motor model parameters β =
[
Ld Lq Φpm

]⊤
may

be unknown or varying during operation, and thus the pro-
posed reference reshaper must adapt to these changes. From
(2), the system is nonlinearly parameterized. Reparameterize
the motor model parameters that need to be estimated as

θ ≜
[
θ⊤d θ⊤q

]⊤ ∈ R5, where θd ≜
[

1
Ld

Lq

Ld

]⊤
∈ R2

and θq ≜
[

1
Lq

Ld

Lq

Φpm

Lq

]⊤
∈ R3. Thus the motor current

dynamics, i.e. the first two rows of (2), can be rewritten in
linearly parameterized form, particularly,

i̇d = ψdθd = (−Rid + ud)
1

Ld
+ pωiq

Lq

Ld
,

i̇q = ψqθq = (−Riq + uq)
1

Lq
− pωid

Ld

Lq
− pω

Φpm

Lq
,

(3)

where ψd ≜
[
−Rid + ud pωiq

]
∈ R1×2 and ψq ≜[

−Riq + uq −pωid −pω
]
∈ R1×3.

From the theory of adaptive observers [13], [14], one can
formulate an adaptive parameter estimator as follows:

˙̂id = ψdθ̂d + µ⊤
d
˙̂
θd +KLd

(id − îd), (4a)
˙̂
θd = Γdµd(id − îd), µ̇d = −KLd

µd +ψ⊤
d , (4b)

˙̂iq = ψqθ̂q + µ
⊤
q
˙̂
θq +KLq(iq − îq), (4c)

˙̂
θq = Γqµq(iq − îq), µ̇q = −KLq

µq +ψ
⊤
q , (4d)

where KLd
,KLq

> 0 are some prescribed observer gains,
µd ∈ R2,µq ∈ R3 are the states of the observer, representing
the adaptive gain vectors, and θ̂d ∈ R2 and θ̂q ∈ R3 are
the estimation of θ. Γd ∈ R2×2 and Γq ∈ R3×3 are some



positive definite adaptation gain matrices. One can rewrite
(4a) and (4c) as follows:

˙̂id = ψdθ̂d + (µ⊤
d Γdµd +KLd

)(id − îd), (5a)
˙̂iq = ψqθ̂q + (µ⊤

q Γqµq +KLq
)(iq − îq). (5b)

By definition, the estimates of the motor parameters are
given by β̂ ≜

[
1/θ̂d[1] 1/θ̂q[1] θ̂q[3]/θ̂q[1]

]⊤
. The gain

selection and tuning strategy is in [14, Section II.C].

Remark 3. Adaptive parameter estimator design fol-
lows [14] where the zero solution of the state and parameter
estimation error dynamics is globally exponentially stable
as long as the persistent excitation (PE) condition [13,
Theorem 5.3.1] holds.

B. Torque Capacity Modeling Module

Given the common max torque per ampere control
(MTPA) strategy [15] for the motor, the motor torque bound
can be represented as various analytic functions of speed
according to three cases, depending on the sign of Φpm/Ld−
Imax [16]. The max torque function with Φpm/Ld−Imax < 0
is exemplified as follows:

τm(ω,β) =


1.5pΦpmImax, if |ω| ≤ ωr,

1.5pΦpmiq,lim, if |ω| ∈ [ωr, ωs],

1.5pΦpmiq,lim,V, if |ω| ∈ [ωs,∞),

(6)

where ωr(β) and ωs(β) are given by

ωr =
Vdq,max

p
√

(LqImax)2+Φ2
pm

, ωs =
Vdq,max

p
√

(LdImax)2−Φ2
pm

;

iq,lim,V(ω,β) and iq,lim(ω,β) are given by

iq,lim,V = Vdq,max/(pωLq), iq,lim =
√
I2max − i2d,lim,

id,lim =
(Vdq,max/(pω))2−(LdImax)

2−Φ2
pm

2ΦpmLd
.

This piecewise-defined function is visualized in Fig. 3. The
black dashed horizontal line represents the constant max
torque τm,c(β) ≜ 1.5pΦpmImax given by the first row of (6).
The yellow and grey dash-dot vertical lines represent ωr(β)
and ωs(β), respectively. The blue and brown dashed curves
represent the max torque based on the second and third rows
of (6), respectively. Regardless of the sign of Φpm/Ld−Imax,
the following properties always hold:

1) τm(ω,β) is a constant, i.e. the constant max torque
τm,c(β) ≜ 1.5pΦpmImax, when ω ∈ [0, ωr(β)];

2) ωm(β) > ωr(β) is the max motor speed and ωm(β) =
∞ when Φpm/Ld − Imax ≤ 0.

3) τm(ω,β) is monotonically decreasing when ω ∈
[ωr(β), ωm(β)]; τm = 0 when ω = ωm;

4) when ω < 0, τm(ω,β) = τm(−ω,β).

Given motor speed ω, desired torque τdes and torque analyti-
cal bound such as (6), the desired motor currents id,des, iq,des
can be computed analytically. [16, Algorithm 1] provides the
detailed steps of this analytical method, which is referred to
as “Torque-Speed To Current” in Fig. 1 and Fig. 2.

Fig. 3. Motor torque bound for case Φpm/Ld < Imax. The red and white
region represents the feasible and infeasible operation range, respectively.

C. Reference Reshaper

Given the motor parameter estimates from the adaptive
estimator, the torque capacity modeling module provides the
necessary information, which is further fed into the proposed
reference reshaper (RR) to adjust the possibly infeasible
reference as a dynamically feasible trajectory for accurate
tracking. Unlike the classic reference/command governor that
solves a constrained optimization for every reference point
with a maximal constraint admissible set defined explicitly
[5], the RR first formulates a similar optimization but then
searches over a finite set of critical points (at most six) for
the optimal solution. A computationally efficient algorithm
is proposed for the implementation of RR and a theoretical
analysis of the algorithm is provided.

At each timestamp tk, given the desired acceleration (from
the motion planner) ades,k+1 ≜ ades(tk+1) for duration
[tk, tk+1), (tk+1 = tk + ∆), the reference reshaper is the
following constrained optimization, which finds the closest
desired acceleration subject to the torque constraint,

a∗des,k+1 = arg min
ak+1

||ak+1 − ades,k+1||2 (7a)

s.t. |ak+1/Z| ≤ τm(ωk+1), (7b)

ωk+1 = vk+∆ak+1

ZJ . (7c)

Note that the RR runs for every time interval ∆. The above
problem can be rewritten by changing the decision variable as
ωk+1 and imposing an additional constraint |ωk+1| ≤ ωm(β)
to account for the ω constraint (1b), i.e.

min
ωk+1

F (ωk+1) := ||(
ZJ

∆
ωk+1 −

vk
∆

)− ades,k+1||2 (8a)

s.t. | J
∆
ωk+1 −

vk
Z∆
| ≤ γτm(ωk+1), (8b)

− ωm(β) ≤ ωk+1 ≤ ωm(β), (8c)

where γ ∈ (0, 1] is a prescribed torque margin constant near
1, permitting a slight overshoot in the tracking controller that
will be introduced in Sec. III-D. If the optimal motor speed
from (8) is given by ω∗

k+1, then the optimal desired motions
are a∗des,k+1 = (ZJω∗

k+1−vk)/∆, v∗des,k+1 = ZJω∗
k+1, and

s∗des,k+1 = sk + vk∆+ 0.5a∗des,k+1∆
2.

Solving either (7) or (8) for every reference point ades,k+1

may be computationally expensive. Thus, by checking the
KKT (Karush–Kuhn–Tucker) necessary conditions on the



optimization problem (8), one can search over only a finite
set of critical points (at most six) of motor speed for the
optimal solution of (8). To begin with, the optimal w∗

k+1

must either be a stationary point of the objective function
(8a), or lie on the boundary of the feasible region. If w∗

k+1

is a stationary point of the objective function, it must be
ω∗
k+1 = (vk + ∆ades,k+1)/(ZJ). On the other hand, if

w∗
k+1 lies on the boundary of the feasible region, then

w∗
k+1 ∈ ΩL ∪ ΩU ∪ {±ωm(β)}, where ΩL ≜ {ω|ξL(ω) :=

γτm(ω) + ( J
∆ω − vk

Z∆ ) = 0} and ΩU ≜ {ω|ξU(ω) :=
γτm(ω) − ( J

∆ω − vk
Z∆ ) = 0} are the roots of constraints

(8b) when they are active.

From a geometric perspective, Fig. 4 illustrates the opti-
mization (8). The slope and the intercept of the red line are
fixed given a particular vk. The possible ak+1 can be any
points along the red line segment intersected with the torque
bound τm(ωk+1) and −τm(ωk+1). The optimal a∗k+1 is the
point with the minimal distance to the desired acceleration
ades,k+1 (in green dotted line). Since the slope ZJ/∆ of the
red line cannot be zero, ΩL and ΩU must contain only one
point, respectively. Algorithm 1 summarizes the implemen-
tation details. As discussed above, Line 2 constructs the set
{ vk+∆ades,k+1

ZJ } ∪ΩU ∪ΩL ∪ {±ωm(β̂), ωk} as the solution
candidates to (8), where ωk is included to contain an element
that always satisfies all the primal constraints. Line 3 filters
out the infeasible solutions in Ω to obtain the set of feasible
candidates Ω̄. Finally, Line 4-5 return the element in Ω̄ with
the lowest objective value as the optimal motor speed ω∗

k+1,
and the optimal desired motions.

Fig. 4. A geometric illustration of the optimization (8).

Algorithm 1: Reference Reshaper

Input: ωk, vk, sk , ades,k+1, β̂,∆, γ, Z, J

1 Solve the root ΩL and ΩU

2 Ω← {vk+∆ades,k+1

ZJ } ∪ ΩU ∪ ΩL ∪ {±ωm(β̂), ωk}
3 Ω̄← {ω ∈ Ω : |ω| ≤ ωm(β̂), | J∆ω− vk

Z∆ | ≤ γτm(ω)}
4 ω∗

k+1 ← argmin
ω∈Ω̄

F (ω), a∗des,k+1 ← (ZJω∗
k+1 − vk)/∆

5 v∗des,k+1 ← ZJω∗
k+1, s∗des,k+1 ← sk +

(v∗
des,k+1+vk)∆

2

The following theorem guarantees the algorithm’s opti-
mality, and the proof is provided in the Appendix.

Theorem 1. By searching over the finite set of solution
candidates Ω̄, the solution returned by Algorithm 1 is the
optimal solution of optimization problems (7) and (8).

D. Position & Current Tracking Controller

Given ades(t), vdes(t), and sdes(t) from the motion
planner or the reshaped ones with superscript ∗ from the
reference reshaper, the position tracking controller calcu-
lates the desired motor torque by τdes(t) = ades(t)

Z −
KP,τes(t) − KI,τ

r t

0
es(t)dt − KD,τev(t), where es(t) ≜

s(t) − sdes(t), ev(t) ≜ v(t) − vdes(t). Given id,des(t)
and iq,des(t) returned by the “Torque-Speed To Cur-
rent” module, along with τdes(t) and ω(t), the mo-
tor voltage is calculated to track id,des(t) and iq,des(t):
ud,des(t) = Rid,des(t) − L̂qpω(t)iq(t) − KP,ideid(t) −
KI,id

r t

0
eid(t)dt, uq,des(t) = Riq,des(t) + (L̂did(t) +

Φ̂pm)pω(t)−KP,iqeiq(t)−KI,iq

r t

0
eiq(t)dt, where eid(t) ≜

id(t)− id,des(t), eiq(t) ≜ iq(t)− iq,des(t).

IV. SIMULATION

This section presents simulation results to validate the
proposed framework. The parameters are: p = 4, R =
0.08 Ω, J = 0.15 kg · m2, Z = 0.05, Imax = 40 A,
Vmax = 100

√
3 V, ∆ = 1 ms, γ = 0.97. The gains

are: KLd
= 300, KLq

= 200, Γd = diag{3570, 600},
Γq = diag{33000, 900, 660}. The system dynamics (2) and
parameter estimator dynamics (4) are forward propagated
given Euler integration with time step ∆s = 0.1 ms. The
motor’s true torque bound is shown in Fig. 3.

A. Adaptive Parameter Estimator

Let Ld = Lq = 5 mH, and Φpm = 120 mWb. Let
the initial parameter estimate (pre-calibrated value) include
a 10% error. First, a prescribed trajectory for id,des(t) and
iq,des(t) is given to the proposed closed-loop system, serving
as a cold start for the adaptive parameter estimator. The
magnitude of id,des(t) and iq,des(t) is designed to remain
sufficiently small to ensure that no constraints are violated.
To satisfy the PE condition, the trajectory of id,des and
iq,des contains sinusoidal signals with 7 distinct frequencies
respectively. The proposed framework tracks id,des and iq,des
based on the real-time parameter estimate β̂, which is
continually updated using the adaptive parameter estimator
(4) with a sampling interval of ∆s = 0.1 ms. The trajectory
of parameter estimates and true values is shown in Fig. 5.
The final estimation error for Ld, Lq,Φpm is 1.68 × 10−4

mH (0.00%), 4.44 × 10−3 mH (0.01%), and 1.22 × 10−2

mWb (0.01%), respectively.

B. Reference Reshaper

The stroke of the desired motion is 3 m. The motion
planner in both Fig. 1 and Fig. 2 generates time-optimal
desired motion trajectories in a bang-bang control fashion: a
max acceleration am is applied until it reaches the half stroke
or a max velocity vm; travel with constant max velocity if the
half stroke is not reached yet; then reverse this process for
deceleration to reach the terminal position with zero terminal



Fig. 5. The trajectory of motor parameters’ true values and estimates.

velocity. The default value of am is set to τm,c(β)/Z = 1.44
m/s2, with τm,c(β) = 28.8 N · m, as illustrated in Fig. 3.
vm = 5 m/s. The methods used are summarized as follows:

1) B1, baseline (faster) in Fig. 1, true motor parameters;
2) B2, baseline (slower) in Fig. 1, true motor parameters;
3) P1, proposed in Fig. 2, true motor parameters;
4) P2, proposed in Fig. 2, estimated motor parameters.

As illustrated in Fig. 3, the constant max torque cannot
be applied continually because the max torque decreases
when ω > ωr. The default motion planner contains dynam-
ically infeasible acceleration due to this attribute. Fig. 6a
demonstrates that when the motion planner provides an
aggressive initial reference trajectory (dashed red line), B1,
without the RR in place, can only generate a torque trajectory
following the solid blue line, indicating that the reference
trajectory is infeasible. An infeasible τdes results in infeasible
id,des, iq,des, which prevents the motor current controller
from tracking them within bounded ud, uq. The spike of
the actual torque trajectory in blue at 2.3 s indicates the
violation of motor current and voltage constraints. By em-
pirically reducing 30% of am = 1.44 m/s2, a less aggressive
initial reference trajectory (in dashed magenta of Fig. 6a)
produces a torque trajectory in solid cyan without violating
any constraints, but still suffers from infeasibility. As Table II
shows, the aggressive and dynamically infeasible reference
trajectory of B1 produces a large final position error; the less
aggressive trajectory of B2 leads to a relatively large final
position error and a relatively longer motion.

TABLE II
PERFORMANCE SUMMARY FOR REFERENCE RESHAPER

Index B1 B2 P1 P2

Violated V & I constraints Y N N N
Max Acceleration [m/s2] 1.44 1.00 1.44 1.44

Motion Time [s] 2.9277† 3.4641 3.0607 3.0607
Final Pos. Error [mm] 205.1 16.1 0.9 2.6

Avg. RR Comp. Time [ms] N/A N/A 1.18 1.26

†: strikethrough indicates constraint violation

Fig. 6b presents the case with RR (P2), where the desired
torque trajectory is obtained by reshaping the very aggressive
initial trajectory (of B1) in Fig. 6a. The true trajectory tracks
the reshaped desired trajectory closely, which implies the
recovery of dynamical feasibility by the RR. By Table II, P1
and P2 yield the smallest motion time. With the estimated

motor parameters, P2 has a similar final position error,
compared to P1 with true parameters. Without any code op-
timization, a basic MATLAB implementation of Algorithm 1
results in an average computation time of approximately 1 ms
for the RR. Even though this is slightly longer than ∆ = 1
ms, it is anticipated that implementing Algorithm 1 in C++
with code optimization will reduce the computation time
to within 1 ms. A naive implementation of RR by solving
the optimization (7a) via IPOPT yields an average compu-
tation time of 9.92 ms. Fig. 6c provides the desired motion
trajectory before (dashed red) and after (dashed magenta)
reshaping and the actual motion (solid blue) tracking of
the reshaped desired trajectory. The discrepancy between the
dashed red and the dashed magenta indicates the dynamical
infeasibility of the original aggressive reference trajectory.
On the other hand, the actual motion in solid blue indicates
the effectiveness of the proposed reference reshaper given
estimated motor parameters.

V. CONCLUSION AND FUTURE WORK

Aiming to address the conservativeness or dynamical
infeasibility of conventional trajectory generation methods
for servo systems, this paper proposes a method that first
performs stable adaptive estimation of the servomotor model
parameters, then establishes the torque capacity constraints
as analytical functions of the speed based on parameter
estimates, and finally develops a computationally efficient
algorithm to reshape an aggressive (dynamically infeasible)
trajectory into a feasible one according to the constraints.
Future work includes the improvement of the algorithm’s
computational efficiency, the experimental validation, and the
extension to multi-axis servo systems.

APPENDIX

Proof of Theorem 1. The Lagrangian of (8) is written by

L(wk+1,λ) = ||(
ZJ

∆
ωk+1 −

vk
∆

)− ades,k+1||2

+ λ1((
J

∆
ωk+1 −

vk
Z∆

)− γτm(ωk+1))

+ λ2(−(
J

∆
ωk+1 −

vk
Z∆

)− γτm(ωk+1))

+ λ3(ωk+1 − ωm(β)) + λ4(−ωk+1 − ωm(β)),

(9)

where λ =
[
λ1 λ2 λ3 λ4

]⊤ ∈ R4 is the Lagrange mul-
tiplier. Denote τ̇k+1 ≜ ∂τm(ω)

∂ω |ω=ωk+1
. The KKT necessary

conditions of (8) are

2ZJ

∆
((
ZJ

∆
ωk+1 −

vk
∆

)− ades,k+1) + λ1(−γ

τ̇k+1 +
J

∆
) + λ2(−γτ̇k+1 −

J

∆
) + λ3 − λ4 = 0,

(10a)

λ1((
J

∆
ωk+1 −

vk
Z∆

)− γτm(ωk+1)) = 0, (10b)

λ2(−(
J

∆
ωk+1 −

vk
Z∆

)− γτm(ωk+1)) = 0, (10c)

λ3(ωk+1 − ωm(β)) = 0, λ4(−ωk+1 − ωm(β)) = 0, (10d)



(a) Desired and actual torque trajectory
given high (B1) and low (B2) accelera-
tion.

(b) Desired and actual torque trajectory
given high acceleration with reference
reshaper (P2).

(c) Desired motion before (with des)
and after reference reshaper (with ∗) vs
actual motion (P2).

Fig. 6. Desired and actual torque and motion trajectory of different methods.

λ1, λ2, λ3, λ4 ≥ 0, (10e)

(
J

∆
ωk+1 −

vk
Z∆

)− γτm(ωk+1) ≤ 0, (10f)

− (
J

∆
ωk+1 −

vk
Z∆

)− γτm(ωk+1) ≤ 0, (10g)

ωk+1 − ωm(β) ≤ 0, −ωk+1 − ωm(β) ≤ 0. (10h)

The optimal solution to (8) must lie in the solutions to
(10). The following analyzes the solutions to (10) and then
determines the solution to (8). The possible solutions of (10)
are divided into three cases depending on the values of λ.

Case A: λ1 = λ2 = λ3 = λ4 = 0. This case corresponds
to the scenario where all the primal constraints are inactive.
In this case, (10a) reduces to

ω∗
k+1 = (vk +∆ades,k+1)/(ZJ). (11)

Note the objective function value of (8) given the ω∗
k+1 in

(11) is exactly 0. Therefore, if (11) satisfies all the primal
constraints, then it is the optimal solution to (8).

Case B: λi > 0 for some i ∈ {1, 2, 3, 4}. This case
corresponds to the scenario where some primal constraints
are active. In this case, w∗

k+1 lies on the boundary of the
feasible region. Recall ΩL and ΩU are the roots of (10f) and
(10g) when the equality is achieved. Then in Case B, the
candidate w∗

k+1 falls into the set of ΩL ∪ ΩU ∪ {±ωm(β)}.
As illustrated in Fig. 4, ZJ/∆ and J/∆ cannot be zero.
Thus, ΩL ≜ {ω|ξL(ω) := γτm(ω) + ( J

∆ω − vk
Z∆ ) = 0}

and ΩU ≜ {ω|ξU(ω) := γτm(ω) − ( J
∆ω − vk

Z∆ ) = 0} only
contains at most one point, respectively.

Case C: This case corresponds to the scenario with no
feasible solution to (8), i.e. the constraints (8b) and (8c)
might be violated. In other words, there exists no acceleration
to further increase the motor speed from ωk to ωk+1. Thus,
the solution in this case is ωk.

By combining all three cases, as Line 1-2 of Algorithm 1
state, one can construct the solution candidate set Ω, which
contains all the possible solutions of the necessary conditions
(10). The optimal solution to (8) must lie in the solution
candidate set Ω. Then, by filtering the feasible solution
candidate set as Ω̄ and sorting the objective function value
F (ω) of each candidate in Ω̄, one can obtain the optimal

solution to (8), which is equivalent to the problem (7) by
changing the decision variable. This completes the proof. ■
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