
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
https://www.merl.com

Preference-based Multi-Objective Bayesian Optimization
with Gradients

Ip, Joshua Hang Sai; Chakrabarty, Ankush; Masui Hideyuki; Mesbah, Ali; Romeres, Diego

TR2025-011 January 09, 2025

Abstract
We propose PUB-MOBO for personalized multi-objective Bayesian Optimization. PUB-
MOBO combines utility-based MOBO with local multi-gradient descent to refine user-preferred
solutions to be near-Pareto-optimal. Unlike traditional methods, PUB-MOBO does not re-
quire estimating the entire Pareto-front, making it more efficient. Experimental results on
synthetic and real-world benchmarks show that PUB-MOBO consistently outperforms exist-
ing methods in terms of proximity to the Pareto-front and utility regret.

NeurIPS Workshop on Bayesian Decision-making and Uncertainty 2024

c© 2025 MERL. This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission
to copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes provided
that all such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi
Electric Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and
all applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall
require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139

Preference-based Multi-Objective Bayesian
Optimization with Gradients

Joshua Hang Sai Ip1 Ankush Chakrabarty2 Hideyuki Masui3

Ali Mesbah1 Diego Romeres2

1University of California, Berkeley 2Mitsubishi Electric Research Laboratories
3Mitsubishi Electric

1{ipjoshua, mesbah}@berkeley.edu 2{chakrabarty, romeres}@merl.com
3masui.hideyuki@bc.mitsubishielectric.co.jp

Abstract

We propose PUB-MOBO for personalized multi-objective Bayesian Optimization.
PUB-MOBO combines utility-based MOBO with local multi-gradient descent
to refine user-preferred solutions to be near-Pareto-optimal. Unlike traditional
methods, PUB-MOBO does not require estimating the entire Pareto-front, making
it more efficient. Experimental results on synthetic and real-world benchmarks
show that PUB-MOBO consistently outperforms existing methods in terms of
proximity to the Pareto-front and utility regret.

1 Introduction

Multi-objective Bayesian optimization (MOBO) is a particularly useful multi-objective optimization
(MOO) strategy when the objectives are black-box functions constructed from noisy observations.
Traditional MOBO methods such as q-EHVI [1] assume that all Pareto-optimal solutions are equally
desirable to the user, which might not be the case in practice. There has been a growing interest in
preference-based MOBO (e.g., [2, 3]) that leverages user preferences to guide the optimization process
towards regions of interest within the Pareto-front, typically in the form of pairwise comparisons
between solutions generated by the optimization algorithm. These comparisons are used to estimate an
underlying utility function that describes user preferences. In [4], the authors propose the EUBO and
qEIUU acquisition functions respectively, which take advantage of user-preference when querying
new points. However, while preference-based MOBO can effectively identify solutions with high
utility as informed by user feedback, the resulting solutions may not be Pareto-optimal.

We present Preference-Utility-Balanced MOBO (PUB-MOBO), that systematically determines the
user-informed regions of interest within the Pareto-front by synergizing global and local search
strategies. PUB-MOBO begins with a global search driven by utility maximization to identify regions
in the solution space that align with user preferences. Subsequently, a local search is conducted in
the vicinity of these solutions to discover dominating solutions that are closer to Pareto-optimality.
Additionally, a new utility function, the Preference-Dominated Utility Function (PDUF), is proposed
that encapsulates the concept of dominance within a single function. PDUF allows for consistently
identifying dominating solutions, while providing a straightforward means for expressing all possible
user preferences. This differs from existing utility functions for preference-based MOBO such as the
negative ℓ1 distance from an ideal solution irrespective of the solution being on the Pareto-front or an
infeasible ideal solution [5], or the weighted sum where not all Pareto-optimal points can be assigned
with the highest utility value from any choice of weights [6]. PDUF is then used in conjunction
with gradient descent (GD) to seamlessly combine user preferences with the notion of dominance to
identify user-preferred solutions that are approximately Pareto-optimal. Empirical demonstrations on

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

several synthetic benchmark and real-world problems show that PUB-MOBO not only enhances the
utility of the optimization solutions, but also yields near Pareto-optimal solutions.

2 Problem Formulation

We minimize nf expensive-to-evaluate objective functions, denoted by fi(x) for i ∈ {1, · · · , nf}.
Consequently, the objective function vector is denoted f(x), where x ∈ Rnx denote the decision
variables. We assume that for a candidate x, the function f(x) can be evaluated, but no first- or
higher-order information about any component of f is available. No analytical form of f is known.

For MOO problems without user-preferences, the objective is to attain Pareto-optimality, which is
defined as follows [7]. Note that accurately computing the set of Pareto-optimal points, referred
to as the Pareto-front Xpareto, can often be computationally prohibitive, even for small nf . In the
presence of a user, estimating the entire Pareto-front may become unnecessary, especially when only
specific sub-regions of the feasible set X is of interest. Mathematically, such user-preferences are
often abstracted in the MOBO literature via utility functions. Specifically, the MOO problem is recast
as a (scalar) utility maximization problem

max
x∈X

u (f(x)) , (1)

where u : Rny → R is the unknown utility function that dictates the behavior of the user. Note that
the input to the utility is a noise-corrupted outcome vector y = f(x)+ ε, where ε is zero-mean noise
with variance σ2

εIny where Iny is the ny × ny identity matrix. Let the highest utility Pareto-point be
defined as

x∗ ∈ argmax
x∈Xpareto

u(f(x)). (2)

Following the preference BO literature, we assume the utility function is not available to evaluate and
its functional form is unknown. Additionally, it is well-established that user preferences are difficult
to be assigned to continuous numerical values; instead we suppose that users are more inclined to
provide weak supervision in the form of pairwise comparisons [8, 4]. The following assumption is
made to assert that a typical user will select dominating solutions when possible: If y1 and y2 are
candidate outcomes presented to the user and y1 ≻ y2, then the user will always select y1; that
is, u(y1) > u(y2). This assumption should be enforced when modeling preference-based MOBO
problems to accurately reflect real user behavior.

3 Preference-Utility-Balanced (PUB) MOBO

Users often require some assurance that the suggested candidates are not only high in utility, but also
near-(Pareto)-optimal. PUB-MOBO relies on utility maximization to ascertain candidate solutions
that are preferred by the user while promoting a local search towards the Pareto-front using estimated
gradients. We observe that the local search finds solutions near Pareto points, which subsequently
accelerates the search for high-utility solutions.

3.1 PUB-MOBO Algorithm

The proposed PUB-MOBO method operates in three stages. We extend the two stages (PE: preference
exploration, and EXP: outcome evaluation via experiments) in [4] with an additional stage based on
local multi-gradient descent, denominated the GD stage. In each PUB-MOBO iteration, these three
stages are executed, and the process is repeated ad infinitum, or (more practically) until a pre-decided
budget for total number of outcome evaluations is attained; see Algorithm 1 in Appendix C.
Preference Exploration: Here, the user expresses their preferences over a query of two candidate
solutions in a form of pairwise comparisons. The comparison is used to update the estimate û of the
utility, obtained implicitly with a pairwise GP and the EUBO acquisition function proposed in [4];
see Appendix B.1 for the closed-form expression. Note that no evaluation of f is required for PE.
Outcome evaluation via Experiments: Here, we compute the optimal decision variables and
evaluate true outcomes to update the outcome model f̂ using the expected improvement under utility
uncertainty (qEIUU) [9] acquisition; see Appendix B.2 for the closed-form expression. Maximizing
qEIUU involves taking Monte Carlo samples [10, 11] and yields the optimal decision variables, xEXP.

2

After xEXP is obtained, we append it along with its true outcome value f(xEXP) to the current dataset.
Multi-gradient descent: This GD stage is motivated by the fact that xEXP, while expected to be
high in utility, is not specifically designed to be near the Pareto-front. Analogous to single-objective
optimization, we will pursue local gradients that are expected to generate a trajectory of x candidates
that evolves towards a nearby Pareto-optimal point. We will refer to these gradient-following decision
variables as ‘xGD’. We set the initial xGD to be xEXP.

For a MOO problem, gradient descent must be adapted for multiple objectives. We propose the
use of multiple gradient descent algorithm (MGDA) [12], which was designed for smooth multi-
outcome objective functions. MGDA exhibits some theoretical properties that, we hypothesize, and
demonstrate via experiments, are beneficial in the MOBO context.

MGDA exploits the KKT conditions [13] as a quadratic cost constrained on the probability simplex:

min
α≥0

∥∥α⊤∇f(x)
∥∥2 subject to: 1⊤α = 1. (3)

It is well-known, c.f. [12], that a solution to (3) is either: α⊤∇f(x) = 0, in which case the current
parameters x are Pareto-optimal, or α⊤∇f(x) ̸= 0, and α⊤∇f(x) is a feasible descent direction.
Given that (3) is a quadratic cost over linear constraints, we can use the Frank-Wolfe algorithm
[14, 15] to efficiently compute optimal solutions; see pseudocode in Algorithm 3 in Appendix C.

Solving (3) yields an optimal α with which we can take a gradient step xGD ← xGD−ηα⊤∇f(xGD).
However, there are two clear difficulties at this juncture. The first is that this update may yield an
xGD ̸∈ X. To counter this, we stop updating when this happens, and stop the local gradient search
phase, moving on to the next PUB-MOBO iterations with an updated dataset D that contains all the
xGD and correspond yGD observed so far. The second and more debilitating problem is that we do not
have access to gradients of f . Thankfully, we do have a surrogate model f̂ with which we can obtain
an estimate of the gradient at any x with µ∇ := E[∇f̂(x)] through (7a). The gradient step is then
xGD ← xGD − ηα⊤µ∇(xGD). Unfortunately, there is no clear correlation between the uncertainties
in f and ∇f , so µ∇ could have large uncertainties even near previously observed points. Therefore,
it is imperative to incorporate techniques that can reduce uncertainty in the posterior of the gradient
estimate. To this end, we propose to use the gradient information (GI) acquisition function [16].

Multi-gradient descent with GI acquisition: We briefly explain the mechanism of the GI acquisition.
Suppose we select the best candidate from the EXP stage, xEXP, and set it as the initial candidate
for the local gradient search: xGD. The GI acquisition tries to select a subsequent point x′ that will
minimize the uncertainty of the gradient at xGD if x′ and its corresponding y′ were known. By
considering all nf objective independently distributed, we assess the uncertainty can formulate the
uncertainty information using an A-optimal design criterion [17], which, for Gaussian distributions,
involves maximizing:

GI(x′) =

nf∑
i=1

Tr
(
∇ki(xGD,X

′)K−1
σ (X′)∇k⊤i (xGD,X

′)
)

(4)

where X′ = {X ∪ x′}. For each gradient-step in nGD, the GI acquisition function is optimized nGI
times to reduce gradient uncertainty. Upon each optimization, we evaluate the outcome function
to obtain a corresponding yGD, which is appended to the dataset D for subsequent PUB-MOBO
iterations. We provide the derivation of the GI acquisition function in Appendix B.3 and pseudocode
of multi-gradient descent in Algorithm 2, in Appendix C.

3.2 Preference-Dominated Utility Function

We propose the PDUF, which merges the concept of dominance with user preferences to help locate
high utility points that are close to Pareto-optimality. The utility function, which represents user
preferences, is employed to respond to user queries, such as providing pairwise comparisons between
two outcomes [4]. It should satisfy two key properties:

(P1) Dominance Preservation: When evaluating a query, the true utility function should satisfy
Assumption 1.

(P2) Preference Integration: The utility function should have parameters θu that allow unique strictly
maximal-utility Pareto-optimal solutions. That is, for any x ∈ Xpareto, there exists an easily
computable θu ∈ Rnu such that u(f(x)|θu) > u(f({Xpareto \ x}|θu).

3

For instance, the commonly used ℓ1 distance (a) fails to satisfy the Preference Integration property
when calculated from the utopia point, and violates Dominance Preservation when calculated from
any other point. This is illustrated in Fig. 1a, where the contours of an ℓ1 distance utility function is
shown with an example Pareto-front. Here, the two red points are indistinguishable according to the
utility function, demonstrating the limitations of ℓ1 distance in distinguishing between Pareto-optimal
solutions.

(a) ℓ1 distance Utility function (b) PDUF

Figure 1: Contour plots of (a) the commonly used negative l1 distance Utility function (b) the
proposed PDUF.

Therefore, we propose the preference-dominated utility function (PDUF) which merges the concept
of dominance with user preferences. An illustration of the contours in a 2D case is shown in Fig. 1b.
The PDUF integrates the concept of dominance with user preferences by combining multiple logistic
functions centered around different points in the objective function space and is expressed as:

u(y) =
1

nc

nc∑
i=1

ny∏
j=1

Lβ(yj , ci,j) (5)

where Lβ(yj , ci,j) = 1
1+exp(β·(yj−ci,j))

. ci = (ci,1, ci,2, . . . , ci,ny
) denotes the ith center for one

logistic function, β denotes a parameter that controls the steepness of the logistic function, and nc

denotes the number of centers. The logistic function Lβ(yj , ci,j) approximates the step function and
enforces dominance for each objective yj , as seen in the red dashed lines in Fig. 1b, and the product
aggregates this approximation for all objectives. Furthermore, the sum of logistic function products
preserve dominance in the objective space. Indeed, for every ȳ that dominates user query ci, PDUF
will express user preference with u(ȳ) > u(ci). Finally, the centers define the parameters θu that
ensure the utility function adheres to the preference integration property by aligning them along an
arbitrary line (the grey line in Fig. 1b).

4 Experiments

We validate the proposed PUB-MOBO method on benchmarks commonly found in MOO literature:
DTLZ1 (nx = 9, nf = 2) [18], DH1 (nx = 10, nf = 2) [7], Conceptual Marine Design (nx =
6, nf = 4) [19], Car Side Impact (nx = 7, nf = 4) [20]. The baselines and ablations that we compare
are (i) EUBO+qEIUU baseline which contains only the PE and EXP stages; (ii) PUB-MOBO-PG
which uses the predicted gradients (PG) without any outcome evaluations or GI optimizations in the
GD stage. This makes it relatively inexpensive, but it ignores the fact that additional samples can
yield useful derivative information; (iii) PUB-MOBO-PG+OE which is a PUB-MOBO ablation that
uses the predicted gradients as in PUB-MOBO-PG, but an Outcome Evaluation (OE) is performed at
every gradient descent step in an effort to lower gradient uncertainty around observed points; (iv)

4

Figure 2: Performance comparison on benchmarks DTLZ1, DH1, Conceptual Marine Design, Car
Side Impact. Continuous lines show median over 100 runs, and shading indicates 25-75 percentiles.

PUB-MOBO which is the proposed method. Figure 2 illustrates the performance of the experiments
in terms of utility regret and distance to the Pareto front w.r.t. outcome evaluations and user queries.

EUBO+qEIUU is the poorest-performing algorithm for all the metrics affirming the effectiveness
of the additional stage based on local gradient search. However, PUB-MOBO-PG performs equally
poorly, largely due to inaccurate gradient estimation obtained with the surrogate model f̂ in (7). We
frequently observe that the evolution of xGD in the GD stage is prematurely terminated either due to
infeasibility in x or because of incorrect solutions to MGDA due to erroneous µ∇(xGD). The PG+OE
variant significantly outperforms the PG variant due to its enhanced gradient estimation accuracy,
which justifies the additional computational cost of updating the outcome model. PUB-MOBO further
improves on the PG+OE variant by using the GI acquisition function to reduce gradient uncertainty,
leading to even more accurate gradient estimates.

5 Conclusion

In this work we presented PUB-MOBO, a sample efficient Multi-Objective Bayesian Optimization
algorithm that combine user-preference with a gradient-based search to compute near Pareto-optimal
solutions. We verify that our proposed method yields high utility and reduced distance to Pareto-front
solutions, and also demonstrate the importance of gradient uncertainty reduction in the gradient-based
search. Finally, the proposed utility function respects dominance while modeling different user
preferences.

5

References
[1] Samuel Daulton, Maximilian Balandat, and Eytan Bakshy. Differentiable expected hypervolume

improvement for parallel multi-objective bayesian optimization. Advances in Neural Information
Processing Systems, 33:9851–9864, 2020.

[2] Ketong Shao, Diego Romeres, Ankush Chakrabarty, and Ali Mesbah. Preference-guided
Bayesian optimization for control policy learning: Application to personalized plasma medicine.
In NeurIPS 2023 Workshop on Adaptive Experimental Design and Active Learning in the Real
World, 2023.

[3] Ryota Ozaki, Kazuki Ishikawa, Youhei Kanzaki, Shion Takeno, Ichiro Takeuchi, and Masayuki
Karasuyama. Multi-objective Bayesian optimization with active preference learning. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pages 14490–14498,
2024.

[4] Zhiyuan Jerry Lin, Raul Astudillo, Peter Frazier, and Eytan Bakshy. Preference exploration
for efficient bayesian optimization with multiple outcomes. In International Conference on
Artificial Intelligence and Statistics, pages 4235–4258. PMLR, 2022.

[5] Kaisa Miettinen. Nonlinear multiobjective optimization, volume 12. Springer Science &
Business Media, 1999.

[6] Giorgio Chiandussi, Marco Codegone, Simone Ferrero, and Federico Erminio Varesio. Compar-
ison of multi-objective optimization methodologies for engineering applications. Computers &
Mathematics with Applications, 63(5):912–942, 2012.

[7] Kalyanmoy Deb and Himanshu Gupta. Searching for robust Pareto-optimal solutions in multi-
objective optimization. In International conference on evolutionary multi-criterion optimization,
pages 150–164. Springer, 2005.

[8] Wei Chu and Zoubin Ghahramani. Preference learning with gaussian processes. In Proceedings
of the 22nd international conference on Machine learning, pages 137–144, 2005.

[9] Raul Astudillo and Peter Frazier. Multi-attribute bayesian optimization with interactive prefer-
ence learning. In Silvia Chiappa and Roberto Calandra, editors, Proceedings of the Twenty Third
International Conference on Artificial Intelligence and Statistics, volume 108 of Proceedings of
Machine Learning Research, pages 4496–4507. PMLR, 26–28 Aug 2020.

[10] James Wilson, Frank Hutter, and Marc Deisenroth. Maximizing acquisition functions for
bayesian optimization. Advances in neural information processing systems, 31, 2018.

[11] Maximilian Balandat, Brian Karrer, Daniel Jiang, Samuel Daulton, Ben Letham, Andrew G Wil-
son, and Eytan Bakshy. Botorch: A framework for efficient monte-carlo bayesian optimization.
Advances in neural information processing systems, 33:21524–21538, 2020.

[12] Jean-Antoine Désidéri. Multiple-gradient descent algorithm (mgda) for multiobjective opti-
mization. Comptes Rendus Mathematique, 350(5-6):313–318, 2012.

[13] Stefan Schäffler, Reinhart Schultz, and Klaus Weinzierl. Stochastic method for the solution of
unconstrained vector optimization problems. Journal of Optimization Theory and Applications,
114:209–222, 2002.

[14] Ozan Sener and Vladlen Koltun. Multi-task learning as multi-objective optimization. Advances
in neural information processing systems, 31, 2018.

[15] Martin Jaggi. Revisiting frank-wolfe: Projection-free sparse convex optimization. In Interna-
tional conference on machine learning, pages 427–435. PMLR, 2013.

[16] Sarah Müller, Alexander von Rohr, and Sebastian Trimpe. Local policy search with bayesian
optimization. Advances in Neural Information Processing Systems, 34:20708–20720, 2021.

[17] Ankush Chakrabarty, Gregery T Buzzard, and Ann E Rundell. Model-based design of experi-
ments for cellular processes. Wiley Interdisciplinary Reviews: Systems Biology and Medicine,
5(2):181–203, 2013.

6

[18] Kalyanmoy Deb, Lothar Thiele, Marco Laumanns, and Eckart Zitzler. Scalable test problems
for evolutionary multiobjective optimization. In Evolutionary multiobjective optimization:
theoretical advances and applications, pages 105–145. Springer, 2005.

[19] Michael G Parsons and Randall L Scott. Formulation of multicriterion design optimization
problems for solution with scalar numerical optimization methods. Journal of Ship Research,
48(01):61–76, 2004.

[20] Himanshu Jain and Kalyanmoy Deb. An evolutionary many-objective optimization algorithm
using reference-point based nondominated sorting approach, part ii: Handling constraints
and extending to an adaptive approach. IEEE Transactions on evolutionary computation,
18(4):602–622, 2013.

[21] Mauricio A Alvarez, Lorenzo Rosasco, Neil D Lawrence, et al. Kernels for vector-valued
functions: A review. Foundations and Trends® in Machine Learning, 4(3):195–266, 2012.

[22] Christopher KI Williams and Carl Edward Rasmussen. Gaussian processes for machine learning,
volume 2. MIT press Cambridge, MA, 2006.

[23] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. Advances in neural information processing
systems, 32, 2019.

7

Appendix

A Preliminaries

A.1 Modeling with Gaussian processes

We first discuss the modeling choices considered to learn the outcome function f and the utility
function u: their respective approximations are denoted f̂ and û.

A.1.1 Modeling outcomes

Gaussian process (GP) regression is a popular choice for constructing the surrogate f̂ for the true
outcome function f . We train an independent GP for each objective f i, though a multi-output GP
that models correlations between the objectives could also be considered [21]. Each GP is defined a
priori by a mean function m(x) and covariance function ki(x, x

′) called kernel. For this work, any
C2 kernel is admissible.

Let XT = [x1,x2, . . . ,xT]; we drop the subscript for brevity. Given a dataset D := (X,Y),
comprising input-outcome pairs, the mean and variance of the posterior are given by

µi(x) = m(x) + ki(x,X)K−1
σ (X)(Yi −m(X)), (6a)

Σi(x) = ki(x,x)− ki(x,X)K−1
σ (X)ki(X,x), (6b)

where Kσ(X) := ki(X,X) + σ2 I and m(·) is the prior mean. Since the derivative is a linear
operator, the derivative GP is another GP [22] characterized fully by the mean and covariance
functions

µ∇
i (x) = ∇m(x) +∇ki(x,X)K−1

σ (X)(Yi −m(X)), (7a)

Σ∇
i (x) = ∇2ki(x,x)−∇ki(x,X)K−1

σ (X)∇ki(X,x), (7b)

In the implementation, each GP is designed with a Matérn 5/2 kernel with ARD, a lengthscale prior
defined by Gamma(α = 3, β = 6), and an outputscale prior defined by Gamma(α = 2, β = 0.15). To
infer the gradient mean (7a) and covariance (7b) of the posterior, automatic differentation [23] is
used. The inputs X are normalized from [0, 1] and the outcomes Y are standardized to zero mean
and unit variance during GP fitting. We intialize the model with 6 outcomes.

A.1.2 Modeling preferences

We assume the user is only capable of weak supervisions in the form of pairwise comparisons (PC).
That is, if the user prefers y := f over y := f ′, the pairwise comparison function r(y,y′) = 0.
In the event that the user prefers y′ instead, r(y,y′) = 1. Pairwise GPs c.f. [8] allow us to learn
a latent functional representation û of the true user utility based on this preference feedback. The
latent function satisfies û(y) > û(y′) if the user prefers y, and vice versa. In the implementation,
we use the RBF kernel with ARD, a lengthscale prior defined by Gamma(α = 2.4, β = 2.7), and an
outputscale prior defined by a smoothed box prior from [0.01, 100]. The outcomes Y are normalized
from [0, 1] during GP fitting. We initialize with 12 Sobol points and form pairwise comparisons with
every consecutive pair of outcomes to yield 6 user comparisons.

B Acquisition functions

B.1 EUBO

The EUBO acquisition is given by:

EUBO(x1,x2) = E[max(û(f̂(x1), û(f̂(x2))], (8)

where the hat notation denotes surrogate models of the corresponding functions.

8

B.2 qEIUU

The expected improvement under utility uncertainty is given by

qEIUU(x) = E
[
max(û(f̂(x))− û(f(xbest)), 0)

]
, (9)

where xbest = argmaxx∈X û(f̂(x)), and xEXP := argmaxX qEIUU(x). Since the expectation
in (9) is with respect to the outcome and utility models, the analytical expression is challenging.

B.3 GI

We derive the GI acquisition function described in (4). The derivation is an adaptation of the Gradient
Information acquisition function in [16] to the case of independent multi-objectives. We begin by
expressing the difference in the trace of the gradient posterior covariance before and after the addition
of the new datapoint (x′,y′) to the dataset D

GI =
nf∑
i=1

E
[
Tr(Σ∇

i (xGD|D))− Tr
(
Σ∇

i (xGD|D, (x′,y′))
)]

.

This can be expressed as the Lebesgue-Stieltjes integral

GI =
nf∑
i=1

∫ [
Tr(Σ∇

i (xGD|D))− Tr
(
Σ∇

i (xGD|D, (x′,y′))
)]

dF (x′),

with F denoting the distribution of x′. For optimization purposes maximizing GI is equivalent to
maximizing

argmax
x′

GI ≡ argmax
x′

nf∑
i=1

∫
−Tr

(
Σ∇

i (xGD|D, (x′,y′))
)
dF (x′).

since the first term does not depend on the optimization variable x′. Rewriting this formulation as a
Reinmann integral will yield

argmax
x′

GI = argmin
x′

nf∑
i=1

∫
R
Tr

(
Σ∇

i (xGD|D, (x′,y′))
)
· p(f(x′) = y′|D)dy′.

As seen from (7b), the covariance in Gaussian distributions is independent of the observed outcomes,
so the acquisition function can be further reduced to

argmax
x′

GI = argmin
x′

nf∑
i=1

Tr
(
Σ∇

i (xGD|D, (x′,y′))
) ∫

R
p(f(x′) = y′|D)dy′︸ ︷︷ ︸

=1

,

= argmin
x′

nf∑
i=1

Tr
(
Σ∇

i (xGD|D, (x′,y′))
)
,

= argmax
x′

nf∑
i=1

Tr
(
∇ki(xGD,X

′)K−1
σ (X′)∇k⊤i (xGD,X

′)
)
,

where X′ = {X ∪ x′}.

9

C PUB-MOBO Algorithms

Algorithm 1 PUB-MOBO

1: Generate initial data: xINIT,yINIT, r(yINIT)
2: D = (xINIT,yINIT)
3: P = (yINIT, r(yINIT))

4: Update outcome model f̂ with (xINIT,yINIT)
5: Update preference model û with (yINIT, r(yINIT))
6: while # outcome evaluations ≤ budget do
7: PE stage
8: x1,x2 ← argmaxx1,x2

EUBO
9: y1, y2 = f̂(x1), f̂(x2)

10: r(y1, y2)← user provides a comparison
11: Append P with (y1, y2, r(y1, y2))
12: Update pref. model û with (y1, y2, r(y1, y2))
13: EXP stage
14: xEXP ← argmaxx qEIUU
15: yEXP = f(xEXP)
16: Append D with (xEXP,yEXP)

17: Update outcome model f̂ with (xEXP,yEXP)
18: GD stage
19: (XGD,Y GD)← Local Gradient Descent(xEXP)
20: Append D with (XGD,Y GD)
21: end while

Algorithm 2 MULTI-GRADIENT DESCENT

1: Initialize xGD ← xEXP
2: (XGD,Y GD) = (∅, ∅)
3: # of multi-gradient steps, nGD ▷ default:10
4: # of GI optimizations, nGI ▷ default:1
5: Early stopping threshold, εGD ▷ default:0.1
6: for i ≤ nGD do
7: Compute µ∇(xGD) using (7a)
8: Compute M = µ∇(xGD)

⊤µ∇(xGD)
9: α← Frank-Wolfe(M)

10: xGD ← xGD − ηα⊤µ∇(xGD)

11: if xGD∈X and
∣∣∣∣α⊤µ∇(xGD)

∣∣∣∣2
2
>εGD then

12: Evaluate the true objective: yGD = f(xGD)
13: Append (XGD,Y GD) with (xGD,yGD)

14: Update outcome model f̂ with (xGD,yGD)
15: for j ≤ nGI do
16: xGI ← argmaxx′GI
17: Evaluate the true objective: yGI = f(xGI)
18: Append (XGD,Y GD) with (xGI,yGI)

19: Update outcome model f̂ with (xGI,yGI)
20: end for
21: else
22: break
23: end if
24: end for
25: return (XGD,Y GD)

10

Algorithm 3 Frank-Wolfe Algorithm

1: input M
2: initialize α = [1

nf
, ..., 1

nf
] s.t. 1⊤α = 1

3: for j ≤ # max no. of Frank-Wolfe steps do
4: t̂ = argminr

∑
t αtMrt

5: γ̂ = argminγ ((1− γ)α+ γet̂)
⊤ M ((1− γ)α+ γet̂)

6: α = (1− γ̂)α+ γ̂et̂
7: if γ̂ ∼ 0 then
8: break
9: end if

10: end for
11: return α

11

	Title Page
	page 2

	/projects/www/html/my/publications/docs/TR2025-011.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11

