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Abstract

Modern quantum machine learning (QML) methods involve
the variational optimization of parameterized quantum cir-
cuits on training datasets, followed by predictions on testing
datasets. Most state-of-the-art QML algorithms currently lack
practical advantages due to their limited learning capabili-
ties, especially in few-shot learning tasks. In this work, we
propose three new frameworks employing quantum diffusion
model (QDM) as a solution for the few-shot learning: label-
guided generation inference (LGGI); label-guided denoising
inference (LGDI); and label-guided noise addition inference
(LGNAI). Experimental results demonstrate that our proposed
algorithms significantly outperform existing methods.

Introduction

Quantum machine learning (QML) has emerged as a trans-
formative tool for automated decision-making, influencing
diverse fields such as finance, healthcare, and drug discovery
(Wang, Baba-Yara, and Chen 2024; Focardi, Fabozzi, and
Mazza 2020; Parsons 2011; Cao, Romero, and Aspuru-Guzik
2018). However, in the specific context of few-shot learning,
where only limited data is available for training, QML has
yet to reach its full potential, often demonstrating suboptimal
performance. In classical machine learning, diffusion models
have proven effective as zero-shot classifiers and exhibit sig-
nificant promise in tackling few-shot learning challenges (Li
et al. 2023; Clark and Jaini 2024). Nevertheless, the use of
quantum diffusion models (QDMs) within QML for few-shot
learning remains largely unexplored.(Koélle et al. 2024). This
gap is largely attributed to the limitations of current quantum
computing resources and the intrinsic noise that hinders the
performance of QDMs, despite their demonstrated success in
generative tasks(Preskill 2018).

In this work, we propose a suite of novel algorithms based
on the QDM framework to address the few-shot learning
problem in QML. Our contributions are as follows:

¢ Introduction of QDM Based Few-shot Learning Al-
gorithms: Leveraging the QDM’s generative strengths,
we present the QDM based Label-Guided Generation
Inference (Qdiff-LGGI) algorithm, designed specifically
for few-shot learning by harnessing label-guided gener-
ative capabilities. To further enhance inference during
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different stages, we introduce two complementary algo-
rithms—QDM based Label-Guided Noise Addition In-
ference (Qdiff-LGNAI) and QDM based Label-Guided
Denoising Inference (Qdiff-LGDI)—tailored to perform
test inference during the diffusion and denoising stages,
respectively.

* Extensive Comparative Analysis: We evaluate our pro-
posed algorithms across multiple benchmark datasets and
compare them against established baselines, demonstrat-
ing the superior performance and robustness of our ap-
proaches. Additionally, our findings include testing on a
real quantum computer, where we analyze the effect of
quantum noise on the model’s effectiveness.

* Comprehensive Ablation Study: We conduct a thorough
ablation study to assess the influence of various compo-
nents and hyperparameters on algorithmic performance.
This analysis also extends to examining the potential of
our proposed approaches in zero-shot learning, providing
insights into their adaptability beyond few-shot contexts.

Background

Quantum Neural Network (QNN). Quantum Neural Net-
works (QNN5s) represent a class of models that extend tra-
ditional neural network concepts into the quantum domain,
offering powerful computational tools for diverse machine
learning tasks. A typical QNN consists of three core compo-
nents: a data encoder F(x) that maps classical input data x
into a quantum state |z), a variational quantum circuit (VQC)
(@ that manipulates this quantum state to generate a processed
output, and a measurement layer M that projects the quan-
tum output back to a classical vector. Various VQC ansatzes
commonly used in QNNs are depicted in Fig. 1 (Chu et al.
2022; Sim, Johnson, and Aspuru-Guzik 2019; Patel, Silver,
and Tiwari 2022; Wang et al. 2022).

During training, classical data x is transformed into a quan-
tum input feature map via F(x), enabling quantum opera-
tions to act directly on encoded features. A parameterized
VQC then applies unitary transformations to manipulate this
quantum feature representation. The final output is obtained
by measuring the output quantum state. The model is trained
by minimizing a predefined loss function that quantifies the
difference between the QNN’s output and the target label
y. This training process involves hybrid quantum-classical
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Figure 1: Various types of variational quantum circuits (VQC) commonly used in Quantum Neural Networks.
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Figure 2: Framework of the Quantum Denoising Diffusion Model
(QDDM). The Noise Predictor estimates noise present in the noisy
image data.

optimization, where parameters in the VQC are iteratively
updated to minimize the loss.

Few-Shot Learning (FSL). FSL addresses the challenge
of performing supervised learning with limited labeled
data(Sun et al. 2019; Parnami and Lee 2022). It is typically
structured around two main sets: a support set, containing a
small number of labeled examples across n classes with &
examples per class (known as n-way k-shot learning), and a
query set, which contains unlabeled examples that the model
must classify into one of the n classes. Solutions to FSL gen-
erally fall into data-based, model-based, and algorithm-based
approaches (Wang et al. 2020).

Quantum Few-Shot Learning (QFSL). QFSL leverages
QNN as classifiers to tackle few-shot learning tasks within
the quantum realm (Liu et al. 2022; Wang, Richerme, and
Chen 2023). However, conventional QFSL algorithms often
struggle with performance limitations due to the constraints
of quantum computing resources and the presence of noise
in quantum hardware, which can reduce model effectiveness.
Overcoming these challenges is key to advancing the ap-
plicability of QFSL in practical quantum machine learning
scenarios.

Diffusion Model (DM). Diffusion models (Ho, Jain, and
Abbeel 2020; Song, Meng, and Ermon 2020) are generative
models designed to produce high-dimensional data, such as
images. A diffusion model operates through two primary
processes: the diffusion process, which gradually adds noise
to the data over multiple steps, transforming it into a simpler
distribution, and the denoising process, which reverses this
noise to reconstruct the original data. The diffusion process
is defined by

q(xe|zi—1) = N(z; /1 = Brx—q, Bil) ()

where N (+; u, X) is a normal distribution with mean 4 and
covariance X, 3; controls the noise level added at step ¢, and

I is the identity matrix.

In the denoising process, the model learns to reverse this
noise addition, progressively reconstructing the data from the
noisy state back to its original form. The training objective
for the denoising process is given by

T
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where q(z1—1|x¢, o) is the posterior distribution in the
forward diffusion process, and the model pg(z;—1|x;) pre-
dicts the data point from the previous step given the current
noisy data. The denoising distribution is defined by

(xi—1]ze, 20) Hpe(fft—ﬂxt)) , (@

po(@i—1|ze) = N(@i—1; po(ze,t), Zo(xe,1)).  (3)
Quantum Diffusion Model (QDM). The QDM extends
diffusion models to the quantum domain, integrating quantum
machine learning (QML) with diffusion models for gener-
ative tasks, such as quantum state generation and quantum
circuit design. The Quantum Denoising Diffusion Model
(QDDM) (Kolle et al. 2024) is a leading approach in this
field, surpassing classical models of similar size by harness-
ing the computational advantages of quantum mechanics.
Fig. 2 presents the QDDM framework, while Fig. 4 illus-
trates its image generation process under label guidance.
Our work augments the Quantum Diffusion Model (QDM)
with a label-guided mechanism, enhancing its capability to
tackle Quantum Few-Shot Learning (QFSL) tasks. This ex-
tension incorporates an additional qubit and applies a Pauli-X
rotation by an angle of 223’ , where y denotes the target la-
bel and n represents the total number of classes. Leveraging
QDDM’s state-of-the-art performance, we adopt it as the
foundational QDM framework in this study. Our implementa-
tion includes multiple strongly entangling layers, illustrated
in Figure 3. The Quantum Neural Network (QNN) archi-
tecture within QDDM is further tailored to each dataset by
adjusting the number of entangled layers, aligning with the
dataset’s complexity. Additional configuration details are pro-
vided in Section .

Method

To address QFSL challenges, we propose methods from both
data and algorithmic perspectives. From the data perspective,
we leverage QDDM to augment the training samples, using
the generated data to enhance QNN training and thereby
improve its prediction accuracy on real data. From an algo-
rithmic standpoint, we employ two strategies to guide QDDM
in completing the inference process across two distinct stages:
diffusion and denoising.
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Figure 3: Illustration of a four-qubit strongly entangled layer, with red lines marking the layer boundaries.
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Figure 4: Generated images using QDDM under the guidance of different labels. The input to the model is random noise, which is progressively

transformed into label-specific images.
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Figure 5: Framework of QDDM-based Label-Guided Generation
Inference (QDiff-LGGI). The gray-filled circle represents the em-
bedded label.

QDiff-Based Label-Guided Generation Inference
(QDiff-LGGI)

In Quantum Few-Shot Learning (QFSL), the limited avail-
ability of labeled training data often hampers the performance
of Quantum Neural Networks (QNNs). To address this limi-
tation, expanding the training dataset through data augmen-
tation techniques is essential for enhancing model accuracy
and robustness. Leveraging the Quantum Denoising Diffu-
sion Model (QDDM), known for its strong generative capa-
bilities, provides a powerful solution to augment the dataset
effectively in QFSL tasks.

The QDiff-LGGI algorithm is designed to maximize QFSL
outcomes by generating high-quality, label-guided synthetic
data. Initially, we leverage a separate pretrained dataset to
conduct the QDDM’s pretraining, followed by fine-tuning on
a small subset of labeled data. Once fine-tuned, the QDDM
acts as a generative model, producing additional samples
that closely approximate the distribution of the original data.
These synthetic samples are incorporated into the training set,
expanding the dataset used to train the QNN. This augmenta-
tion process leads to a more comprehensive dataset, which
enhances the QNN’s inference accuracy on real-world data
by improving its generalization to unseen examples.

To further refine the data generated by the QDDM, we
employ a label-guided generation technique. During QDDM
training, amplitude encoding is applied to represent classical

data in the quantum state space, while angle encoding is used
to embed label information. In the generation phase, random
noise combined with a specified label is provided as input
to the QDDM, which generates data aligned with that label.
This method ensures that the synthetic data is label-specific,
which increases the QNN’s ability to distinguish between
classes accurately.

Fig. 4 illustrates the data generation process for different
label-guidance scenarios, showing how label-specific data
distributions are created. Fig. 5 presents the framework of the
QDiff-LGGI algorithm in detail, highlighting the integration
of label guidance into the QDDM’s generative process to
produce targeted data for QFSL.

QDiff-Based Label-Guided Noise Addition
Inference (QDiff-LGNAI)

The learning objective of the Quantum Denoising Diffusion
Model (QDDM), as defined in Equation 2, relies on the accu-
racy of a noise predictor to estimate and reduce noise within
noisy data, aiming to minimize the discrepancy between pre-
dicted noise and actual noise. In QDiff-LGNALI, this noise
prediction process is guided by label information, where each
label is associated with a unique noise prediction that reflects
the characteristics of that label. By applying the correct label
guidance, the error between the predicted and actual noise can
be minimized, thus improving inference accuracy. Based on
this principle, we introduce the QDiff-Based Label-Guided
Noise Addition Inference (QDiff-LGNAI) method, illustrated
in Fig. 6.

The QDiff-LGNAI process begins with finetuning the
QDDM on a small subset of labeled data. Once trained, the
noise predictor P within the QDDM is used for inference.
Given an input x, with potential labels { L1, Lo, ..., Ly, },
noise is progressively added to xg across 7 iterations to
simulate various levels of data degradation. At each time
step t, the noisy data x; is calculated as xy_; + €, where
€r ~ N (zi—1, W[t]), and W is a weight matrix that controls
the magnitude of noise added at each step.

The noise predictor P is then used to estimate the noise
in x; for each label, producing a set of label-specific noise
predictions {P(z¢|L1),...,P(x¢|Ly,)}. This label-guided
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Figure 6: Framework of QDDM-based Label-Guided Noise Addition Figure 7: Framework of QDDM-based Label-Guided Denoising Infer-

Inference (QDiff-LGNAI). The term

€, represents the predicted noise ence (QDiff-LGDI). Solid circles in different colors represent distinct

at step m associated with label n. Lo/L1-loss denotes the difference embedded labels. The output images, each framed by a square of vary-
between the true noise and the predicted noise under the guidance of ing colors, indicate the generated images guided by different labels L;.

different labels L;.

noise prediction allows QDiff-LGNATI to evaluate how well
each label aligns with the observed noisy data.

To identify the correct label, we calculate the mean squared
error (MSE) between each predicted noise value P(x¢|L;)
and the actual noise ¢;. By minimizing this discrepancy,
QDiff-LGNAI aims to select the label that most accurately
explains the noisy data across all 7 iterations. The label with
the minimum cumulative error over 7 time steps is chosen
as the predicted label, as shown below:

-
arg min tzzl MSE(P(z¢|L;), €¢)-

This approach leverages the QDDM’s ability to capture
label-specific noise patterns, allowing QDiff-LGNAI to en-
hance classification accuracy even in the presence of noisy
inputs. By aligning predicted noise with actual noise under
different label conditions, QDiff-LGNAI improves the robust-
ness of QFSL applications, especially where noisy data is
prevalent.

QDiff-Based Label-Guided Denoising Inference
(QDiff-LGDI)

The QDiff-Based Label-Guided Denoising Inference (QDiff-
LGDI) method leverages the denoising capabilities of the
Quantum Denoising Diffusion Model (QDDM) to iteratively
restore noisy data, steering it toward its original structure.
In QDiff-LGDI, the QDDM’s noise predictor estimates the
noise in each sample and iteratively subtracts it over a se-
ries of steps. By introducing label-specific guidance at each
denoising step, QDiff-LGDI ensures that the data generated
under the correct label aligns most closely with the original
data, enhancing the accuracy of inference.

Starting with an initial input z, noise is incrementally
added across 7T iterations, producing a sequence of progres-
sively noisier data points {x1, x2, ..., 27 }. For each noisy
data point, the QDDM’s noise predictor P estimates the noise
under a specified label L;, with P(z7|L;) representing the
label-guided noise estimate. This predicted noise is then sub-
tracted iteratively, resulting in progressively denoised data
points {z7 41, X742, .., T2}, where each denoising step
is defined by:

- P(ZET+t|L1)

This iterative denoising sequence ultimately reconstructs a
fully restored version of the data, with the goal of identifying
the label L; that provides the most accurate denoising guid-
ance. This label selection ensures that the denoised output
aligns as closely as possible with the original data state prior
to noise addition.

To determine the correct label, QDiff-LGDI calculates
the Mean Squared Error (MSE) between each denoised data
point zo7_|L; and the corresponding noisy data point x,
aggregated across all 7 iterations. This cumulative MSE pro-
vides a measure of discrepancy between the generated data
and the original data for each label. The label that minimizes
this cumulative error over all denoising steps is chosen as the
most accurate:

Tre1|Li = T4t

T

arg min
L;eL

MSE(%, ToT — t|L )

By aligning noise prediction with label-specific guidance,
QDiff-LGDI empowers the QDDM to generate data that is
both accurate and closely aligned with the correct label. This
approach is particularly advantageous in scenarios requiring
fine distinctions between closely related classes, as it lever-
ages subtle label-specific variations in noise characteristics.
This label-guided denoising technique refines the QFSL al-
gorithm’s classification performance, enhancing its capacity
to discern nuanced patterns within noisy data environments.

Experiment

In this section, we outline the foundational settings of our ex-
perimental setup, detailing the datasets, baseline algorithms,
and parameter configurations. Each of these components is
crucial for assessing the performance of our proposed QDiff-
based algorithms in quantum few-shot learning (QFSL). We
further conduct a series of experiments to address the fol-
lowing research questions, with each question explored in its
respective subsection:

* What are the performance advantages of our proposed
QDiff-based algorithms compared to existing baseline
methods?



Table 1: QNN structures used in the few-shot learning task. The
variable n indicates the number of layers in the QNN, with a default
of n = 1.

QNN # Qubits 1QG 2QG  #Param.
QMLP 6 ROT CRX 24 X n
C14 6 RY CRX 12 xn
OPTIC 6 ROT CNOT 18 xn
Quantumnat 6 U3 CU3 36 X n

* Which factors most significantly influence the perfor-
mance of our algorithms?

* How effectively do our algorithms address the zero-shot
learning problem?

Basic Experimental Settings

We begin by providing a detailed description of the datasets
utilized, the baseline algorithms chosen, and the specific
configurations applied in our experiments.

Dataset. For our experiments, we utilize the Digits
MNIST (Alpaydin and Alimoglu 1996), MNIST (LeCun et al.
1998), and Fashion MNIST (Xiao 2017) datasets, which al-
low for a comprehensive assessment of our algorithms across
varied data characteristics. For the 2-way k-shot tasks, we
select classes 0 and 1 from both Digits MNIST and MNIST,
and the T-shirt and Trouser classes from Fashion MNIST. In
the 3-way k-shot tasks, we include classes 0, 1, and 2 from
Digits MNIST and MNIST, and the T-shirt, Trouser, and
Pullover classes from Fashion MNIST. The remaining cate-
gories in each dataset are reserved for QDDM pretraining; for
example, classes 4-9 in MNIST are used to pretrain QDDM
for evaluating QDiff-based QFSL algorithms on MNIST. To
simulate few-shot learning, we use one image per class for
one-shot tasks and ten images per class for ten-shot tasks.
During inference, each class is represented by 200 images
in the evaluation dataset. For computational efficiency, all
images are resized to 8 x 8.

Baselines and Parameter Settings. To rigorously evaluate
the performance of our QDiff-based algorithms against estab-
lished benchmarks, we select four prominent Quantum Neu-
ral Network (QNN) architectures that are widely employed
in quantum machine learning (QML) for quantum few-shot
learning (QFSL) tasks (Chu et al. 2022; Sim, Johnson, and
Aspuru-Guzik 2019; Patel, Silver, and Tiwari 2022; Wang
et al. 2022). These architectures are depicted in Figure 1,
providing a visual overview, while detailed specifications, in-
cluding their structural configurations and parameter settings,
are summarized in Table 1. During training, classical data is
mapped to quantum states using amplitude encoding, ensur-
ing efficient representation within the quantum framework.
Optimization is conducted via the Adam optimizer, with a
learning rate fixed at 0.001, to minimize the cross-entropy
loss function over 40 iterations, providing a robust foundation
for comparative analysis.

QDDM Training. Before applying the QDiff-based algo-
rithms to the QFSL tasks, we pre-train the Quantum Denois-
ing Diffusion Model (QDDM) using a label-guided, quantum-
dense architecture. Labels are encoded through R X rotations,

and strongly entangling layers (Bergholm et al. 2018) are uti-
lized to effectively process the data. The training process
employs the Adam optimizer over 10,000 iterations. To fur-
ther enhance the QDDM’s performance, the architecture is
fine-tuned to extract critical features from the input images.

The depth of the Quantum Neural Network (QNN) within
QDDM significantly influences its feature extraction capabili-
ties. While deeper architectures often provide superior feature
representations, excessive depth may lead to barren plateaus
that impede effective training. To address this challenge, we
carefully design the model architecture and optimize the
learning rate for each dataset. Table 2 summarizes the spe-
cific training configurations applied across datasets, forming
the basis of our evaluation of the QDiff-based algorithms in
few-shot learning tasks.

By meticulously configuring and pre-training the QDDM
model and selecting robust QNN baselines, we aim to provide
a comprehensive assessment of the efficacy and reliability of
the proposed methods. Figure 8 illustrates the training loss
trend as QDDM is trained on the Digits MNIST dataset. The
progressive decrease in training loss over time reflects the
enhanced accuracy of the noise predictor in estimating noise
levels, resulting in increasingly denoised images that closely
align with the target images.

During the fine-tuning phase, we utilize a small dataset to
refine the model over 100 iterations, maintaining the same
learning rate as used in the initial training phase.

Table 2: Parameter configurations used in QDDM training. LR
denotes the learning rate, while Diff-Step specifies the number of
diffusion steps.

Dataset Model Shape LR Diff-Step
Digit MNIST 47 layers 0.00097 10
MNIST 60 layers 0.00211 10
Fashion MNIST 121 layers 0.00014 10

Performance Analysis of QDiff-based QFSL
Algorithms

In the structured n-way, k-shot configuration, we systemati-
cally sample k£ images from each of n distinct categories,
amassing a comprehensive dataset of n x k training im-
ages. These images are subsequently utilized to complete
the fine-tuning of the QDDM. The fine-tuned model is then
integrated into the QDiff-based algorithms, enhancing their
performance and adaptability in diverse quantum few-shot
learning scenarios.

Table 3 presents a detailed performance comparison of
the QDiff-based Quantum Few-Shot Learning (QFSL) al-
gorithms against established baseline methods within var-
ied scenarios: 2-way 1-shot, 2-way 10-shot, 3-way 1-shot,
and 3-way 10-shot. The outcomes clearly indicate that the
QDiff-based algorithms consistently deliver state-of-the-art
performance, thereby confirming their superior efficacy in
few-shot learning applications. Furthermore, we evaluate the
resilience of the QDiff-based algorithms in a practical set-
ting by testing them on a 3-way, 1-shot task using the Digits
MNIST dataset on the IBM_Almaden quantum processor. As



Table 3: Performance comparison of QDiff-based algorithms across various tasks, with 7~ = 5. Each algorithm is evaluated using
5 random seeds to report mean performance and standard error. The best-performing algorithm for each task is highlighted in

blue.
Dataset Tasks | QDiff-LGDI QDiff-LGNAI QDiff-LGGI QMLP C14 OPTIC Quantumnat
2w-01s | 0.97540.059 0.97810.003 0.99240.009 | 0.764+0.108 0.505+0.175 0.52540.133  0.75140.147
Digits 2w-10s | 0.983.10.006 0~9?7io.002 0.98440.012 | 0.89210.085 0.62710.086 0.88640.193  0.72240.186
3w-01s | 0.52540.001 0.635+0.007 0.573+0.069 | 0.338+0.087 0.44740.193 0.47540.021  0.555+0.013
3w-10s | 0.857+0.015 0.80119.008 0.63240.035 | 0.35540.050 0.48140.183 0.69810.121  0.687+0.156
2w-01s | 0.94310.002 0.965+0.003 0.805+0.003 | 0.67540.067 0.567+0.06a 0.845+0.149  0.70110.162
MNIST 2w-10s | 0.95340.011 0.978+0.005 0.91540.079 | 0.81749.048 0.81040.152 0.80749.173  0.72740.151
3w-01s | 0.475+0.003 0.505+0.007 0.42840.035 | 0.32540.027 0.50340.122 0.47740.150  0.501+0.012
3w-10s 0-720i0.016 0-825i0.008 0-405i0.022 0-547i0.085 0.60710,142 0-77Oi0.191 O~527i0.078
2w-01s | 0.738+0.007 0.768+0.007 0.898+0.036 | 0.-688+0.064 0.58140.187 0.76540.149  0.58310.181
Fashion —2V-10s | 0.75540.020 0.805+0.002 0.89540.066 | 0-73140.035 0.77310.009 0.79310.157  0.88710.129
3w-01s | 0.45310.008 0.433+0.001 0.483+0.012 | 0-33140.008 0.33240.172 0.47310.128  0.62210.063
3w-10s | 0.65510.018 0.735+0.004 0.5854+0.025 | 0.64740.015 0.52740.173 0.593+0.139  0.65310.032
Average 0.75410.015 0.79510.004 0.71940.045 | 0.57440.060 0.54640.140 0.67810.150  0.666+0.120

illustrated in Fig. 10, despite the inherent noise challenges
of quantum hardware, the performance degradation observed
is marginal. This finding underscores the robustness of our
algorithms, maintaining high accuracy in adverse quantum
environments and demonstrating their strong potential for
real-world deployment on quantum computing platforms.

Factors Impacting the Effectiveness of QDiff-based
QFSL Algorithms

This section investigates key factors that affect the perfor-
mance of QDiff-based algorithms, including the influence
of diffusion and denoising step counts, the quantity and di-
versity of training data, and the selection of QNNs used in
QDiff-LGGI.

Impact of Diffusion and Denoising Steps. The calibra-
tion of diffusion and denoising steps is crucial in shaping the
quality of the generated images, which in turn significantly
impacts the inference accuracy of QDiff-based algorithms.
As depicted in Fig. 9, modifying the step count leads to
significant performance variations on the Digits MNIST and
MNIST datasets. Our experiments highlight that QDiff-LGGI
is notably responsive to changes in these steps. Increasing the
number of steps generally improves the fidelity of the images
to the target data distribution, thereby enhancing inference
performance. However, an excessive number of steps can re-
sult in substantial degradation of the initial image into noise
during the diffusion process, complicating the subsequent re-
construction in the denoising phase. This can result in the re-
construction algorithm overly emphasizing the guiding label,
creating discrepancies with the original image—a challenge
particularly pronounced in QDiff-LGNAI and QDiff-LGDI.
This observation underscores the critical need for a judicious
balance in step count to optimize inference accuracy effec-
tively.

Effect of Training Data Quantity. The volume of train-
ing data critically affects the performance of QDiff-based
QFSL algorithms, directly influencing the quality and effi-
cacy of the QDDM model. This study compares one-shot
and ten-shot learning scenarios across various datasets, with
detailed performance metrics consolidated in Table 3. The

findings affirm that an increased volume of training data sub-
stantially benefits the training of the QDDM model, fostering
more nuanced representations and enabling the generation
of more precise and varied samples. Consequently, QDiff-
based algorithms exhibit enhanced inference accuracy with a
well-trained QDDM model, accentuating the significance of
ample and representative training data in few-shot learning
tasks.

Choice of QNN Architecture. The architecture of the
QNN employed within QDiff-LGGI profoundly influences
inference performance by determining the model’s represen-
tational and generalization capabilities. QDiff-LGGI utilizes
images generated by QDDM to train the QNN, which is then
employed for inference tasks. As illustrated in Fig. 11, the
inference accuracy notably varies across different QNN ar-
chitectures, potentially attributable to variations in circuit
expressibility and entangling capabilities, as noted in (Sim,
Johnson, and Aspuru-Guzik 2019). Certain QNN architec-
tures may offer more robust representations of the input data,
capturing complex relationships with greater fidelity and thus
yielding superior performance in QFSL tasks. This insight
highlights the importance of selecting an appropriate QNN
architecture that aligns with the complexity of the task and
the characteristics of the data to maximize the effectiveness
of QDiff-LGGI.

Zero-Shot Learning with QDiff-based QFSL
Algorithms

We explore the efficacy of our QDiff-based algorithms in
addressing zero-shot learning tasks, where no prior examples
from the evaluation classes are available during training. To
assess this capability, we perform evaluations between two
datasets with closely aligned data distributions: Digit MNIST
and MNIST. Given the challenges posed by quantum diffu-
sion models and limited hardware resources, these datasets
provide an ideal testbed to verify cross-domain generalization
in zero-shot settings. We conduct the following verifications:

¢ Verification of QDiff-LGDI Performance in Zero-Shot
Learning: This setup aims to assess the generalization
capacity of QDiff-LGDI when a QNN is trained on data
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generated by QDDM from one domain and subsequently
applied to another.

— Digit MNIST: The QDDM model is trained on the MNIST
dataset, where an augmented dataset is generated for QNN
training. After training the QNN, it is used to perform infer-
ence on the Digit MNIST dataset to evaluate cross-domain
generalization.

— MNIST: The QDDM model is trained on the Digit MNIST
dataset, with the augmented dataset used for QNN training.
The trained QNN is then applied to the MNIST dataset for
inference, allowing us to evaluate generalization in the reverse
direction.

Verification of QDiff-LGNAI and QDiff-LGGI Perfor-
mance in Zero-Shot Learning: This evaluation tests the
direct applicability of QDiff-LGNAI and QDiff-LGGI al-
gorithms in zero-shot settings without retraining the QNN
on new data.

— Digit MNIST: The QDDM model is trained on the MNIST
dataset and directly applied for inference on the Digit MNIST
dataset, examining the robustness of the QDiff-LGNAI and
QDiff-LGGI algorithms in adapting to unseen yet similar data
distributions.

— MNIST: Similarly, the QDDM model is trained on the Digit
MNIST dataset and subsequently applied directly for inference
on the MNIST dataset, assessing the generalization potential
of these algorithms in the reverse direction.

Figs. 12 and 13 illustrate the performance results for
the zero-shot tasks across these configurations. The results
demonstrate that QDiff-based algorithms achieve strong zero-
shot learning performance, particularly when the source and
target datasets exhibit similar data structures and distributions.
These findings underscore the robustness and adaptability of
QDiff-based QFSL algorithms, showcasing their potential
to generalize effectively across related domains even in the
absence of target domain data during training.

shot task based algorithms on the zero-shot, based algorithms on the zero-shot,
two-class classification task.

three-class classification task.

Conclusion and Future Work

In this work, we present the quantum diffusion model (QDM)
as a pioneering approach to overcome the unique challenges
of quantum few-shot learning (QFSL). We introduce three
novel algorithms—QDiff-LGDI, QDiff-LGNAI, and QDiff-
LGGI—developed from complementary data-driven and al-
gorithmic perspectives to enhance the performance of QFSL
tasks. Through extensive experimentation, we demonstrate
that these algorithms achieve significant performance gains
over traditional baselines, underscoring the potential of QDM
to advance QFSL by effectively leveraging quantum noise
modeling and label guidance.

While the results are promising, our current implementa-
tion of QDM faces limitations, particularly in its scalability to
more complex datasets and real-world quantum applications.
These constraints highlight the need for further research to
unlock the full potential of QDM. Future work could focus
on extending the capabilities of QDM through improvements
in model architecture and optimization techniques, enabling
it to handle more intricate datasets with diverse and high-
dimensional features.

Moreover, expanding QDM'’s applicability across addi-
tional quantum machine learning (QML) domains presents
exciting opportunities. Potential directions include quantum
object detection, quantum semantic segmentation, and other
advanced generative tasks where QDM’s noise-guided diffu-
sion and label-conditional modeling could provide significant
advantages. Integrating QDM into these areas would not only
broaden its utility but could also position it as a versatile and
foundational framework for future quantum learning architec-
tures. By advancing QDM’s robustness and adaptability, this
line of research has the potential to transform QML appli-
cations and contribute meaningfully to the field of quantum
artificial intelligence.
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