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Abstract
Understanding human actions could allow robots to perform a large spectrum of complex ma-
nipulation tasks and make collaboration with humans easier. Recently, multimodal scene un-
derstanding using audio-visual Transformers has been used to generate robot action sequences
from videos of human demonstrations. However, automatic ac- tion sequence generation is
not always perfect due to the distribution gap between the training and test environments.
To bridge this gap, human intervention could be very effective, such as telling the robot agent
what should be done. Motivated by this, we propose an error-correction-based action replan-
ning approach that regenerates better action sequences using (1) automatically generated
actions from a pretrained action generator and (2) human error-correction in natural lan-
guage. We collected single- arm robot action sequences aligned to human action instruction
for the cooking video dataset YouCook2. We trained the proposed error- correction-based
action replanning model using a pre-trained multimodal LLM model (AVBLIP-2), generat-
ing a pair of (a) single-arm robot micro-step action sequences and (b) action descriptions in
natural language simultaneously. To assess the performance of error correction, we collected
human feedback on correcting errors in the automatically generated robot actions. Experi-
ments show that our proposed interactive replanning model trained in a multitask manner
using action sequence and description outperformed the baseline model in all types of scores.
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Abstract—Understanding human actions could allow robots to perform
a large spectrum of complex manipulation tasks and make collaboration
with humans easier. Recently, multimodal scene understanding using
audio-visual Transformers has been used to generate robot action
sequences from videos of human demonstrations. However, automatic ac-
tion sequence generation is not always perfect due to the distribution gap
between the training and test environments. To bridge this gap, human
intervention could be very effective, such as telling the robot agent what
should be done. Motivated by this, we propose an error-correction-based
action replanning approach that regenerates better action sequences using
(1) automatically generated actions from a pretrained action generator
and (2) human error-correction in natural language. We collected single-
arm robot action sequences aligned to human action instruction for
the cooking video dataset YouCook2. We trained the proposed error-
correction-based action replanning model using a pre-trained multimodal
LLM model (AVBLIP-2), generating a pair of (a) single-arm robot
micro-step action sequences and (b) action descriptions in natural
language simultaneously. To assess the performance of error correction,
we collected human feedback on correcting errors in the automatically
generated robot actions. Experiments show that our proposed interactive
replanning model trained in a multitask manner using action sequence
and description outperformed the baseline model in all types of scores.

Index Terms—Robot action generation, Interactive error correction,
Human-robot collaboration, Multimodal scene understanding, Multi-
modal LLM

I. INTRODUCTION

Effective human-robot collaboration for shared goals is necessary
for the seamless integration of robots in human daily lives. To realize
such effective human-robot collaborative systems, multimodal scene
understanding is essential to provide robots with the capability to
interpret their environment and interact with humans based on such
understanding. An initial attempt to generate an action sequence for
a single-arm manipulator using an audio-visual transformer trained
from demonstration videos of human cooking was reported earlier in
[1]. However, the semantic representation capability for multimodal
reasoning was limited because the training data did not cover all
possible patterns from the fusion of different modalities. To address
this data sparsity issue, we extended BLIP2 [2] into a multimodal
large language model (AVBLIP-2) for generating robot actions [3].
We used various features, such as audio, visual, speech, and text,
that are embedded into the semantic space of a large language
model (LLM) by training a Q-former using both contrastive loss and
action generation loss. The multimodal LLM contributes to enhancing
the performance of robot action generation [3]. However, automatic
action sequence generation is still not perfect when applying the
trained model to the real world due to the differences in the training
data and test environments. In such situations, human intervention
could be useful in correcting the proposed incorrect sequence by
providing expert guidance on what should be done.

This paper proposes an interactive planning approach for error
correction using multimodal LLMs. We consider the use of a single-
arm robot as the manipulator in our proposed work. In general, tasks
which can be easily performed by humans need to be properly broken

down in micro-step action sequences for a single-arm robot. We
found that there is no prior dataset for micro-step action sequence
prediction for single-arm robots. We thus first collect single-arm robot
action sequences for cooking videos in the YouCook2 dataset [4]
by asking Amazon Mechanical Turk (AMT) workers to elaborate
human action instructions such as “stir soup” into micro-step action
sequences such as “pick up spatula from counter, stir soup in pot,
place spatula on counter”. We then trained a multimodal LLM
model (Audio Visual Bootstrapping Language Image Pre-training 2:
AVBLIP-2) [3] for the generation of robot action sequences using
the collected data as shown in Fig. 1. Futhermore, robots need to
be able to understand human instruction and describe their own
actions using natural language to interact with humans. Robots can
use natural language to ask humans whether their action planning
is correct, and humans can correct their actions before the robot
takes action. To implement the confirmation function by robots, we
modified AVBLIP-2 to generate a robot action description in natural
language aligned to micro-step action sequences. We trained an error
correction model using the original instruction in YouCook-2 as
pseudo error correction data. To evaluate the performance of the error
correction model, we asked AMT workers to rectify the automatic
action description by comparing it with the original instructions.
The proposed error-correction based action replanning model was
trained using the pre-trained AVBLIP-2 that generates robot action
description and micro-step action sequences simultaneously.

The main contributions of this work are (1) collecting single-arm
micro-step action sequences for instruction videos, (2) proposing an
interactive replanning approach for robot action generation based on
error correction, that first generates two-style robot actions, (a) single-
arm robot micro-step action sequence and (b) action description in
natural language, and then feeds them back to the model together
with human error correction, and (3) demonstrating the effectiveness
of the proposed interactive planning model for robot action sequence
correction in the cooking domain.

II. RELATED WORK

To build Human Robot Interaction (HRI) systems, there have been
some researches on language acquisition by robots to find associa-
tions between actions, objects, properties, and effects, and to map
those associations to language [5], [6]. However, it is impossible to
train models handling a huge vocabulary practically in real situations
with all kinds of robots. Thus, we segment robot manipulation into a
skill acquisition phase and a knowledge acquisition phase and propose
approaches for the knowledge acquisition in this paper.

Recently, Large Language Models (LLMs) have achieved impres-
sive results in creating robotic agents that perform open-vocabulary
tasks such as CLIPort [7], SayCan [8]. PROGPROMPT [9] introduces
a programmatic LLM prompt structure that facilitates the generation
of plans in diverse environments, robot functionalities, and tasks.
LLM-POP [10] targets partially observable task planning, leveraging
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Fig. 1. AVBLIP-2 for cooking demonstration videos [3]. Burning and frozen marks represent the trainable and frozen parameters, respectively. We updated
AVBLIP-2 to generate action description in natural language simultaneously with micro-step action sequences. Although the prior work [3] used two-arm
action sequences, we collected single-arm robot micro-step actions. The dashed line shows the new elements in this work.

an LLM to gather environmental data through a robot, deduce task
states from collected observations, and direct the robot to execute nec-
essary actions. LLMs expand vocabulary and context considerations,
while visual grounding LLMs enhance spatial reasoning capabilities.
COWP [11] introduces an LLM-based open-world task planning
system for robots. Some works explore using LLMs to directly predict
a dense sequence of end-effector poses for robot actions with vision
models [12]. Recent developments have extended the use of an audio-
visual Transformer for multimodal scene understanding to generate
a micro-step action sequence based on human demonstrations [1].
To enhance the micro-step action sequence generation using LLM, a
multimodal LLM (AVBLIP-2) has been employed to interpret human
behaviors [3]. Despite these advances, errors persist in the current
action-generation frameworks, with no provision for correcting au-
tomatically generated actions. Human-robot collaboration has the
potential to enable humans to rectify errors produced by automatic ac-
tion generators. An interactive method for robot action planning [13]
enables LLM analysis and collects missing information by engaging
humans through questions, although it requires a substantial number
of tokens. Another study [14] explores re-prompting strategies to
enhance the executability and accuracy of LLM-generated plans but
relies strictly on templated prompts. In our research, we present
an error-correction-based action replanning model for robot action
generation, leveraging the multimodal LLM AVBLIP-2. Our approach
involves automatically generated actions obtained from the multi-
modal LLM, alongside human action instruction in natural language.

III. DATA PREPARATION

Collection for Micro-step Action: To generate a micro-step action
sequence that a single-arm robot could perform, we translated human
instructions in YouCook2 [4] into micro-step action sequences. AMT
workers generated micro-step action sequences for single-arm robot
by selecting words for four placeholders, such as “single-arm action”,
“target object”, “preposition”, and “place”, to achieve the same
actions by humans as shown in Fig. 1. Single-arm actions were
selected from the following 12 candidates: Open, Close, Pick, Place,
Pour, Stir, TurnOn, TurnOff, Wipe, Cut, Scoop, Squeeze. The target
objects were selected as one of the nouns in the human action
instruction as much as possible.

Robot Action Description: YouCook2 is already annotated with
human instructions in natural language to describe human cooking
action steps, as shown in [4] . We used the human action instruction
to train a model generating robot action description to interact with
humans to confirm its action planning is correct.

IV. ACTION GENERATION USING AVBLIP-2

In this work, we employ AVBLIP-2 [3], an extension of BLIP-
2 [2], a vision-language pre-training method. BLIP-2 bootstraps from
a frozen image encoder and a frozen large language model, where a
Querying Transformer (Q-former) [15] is trained to bridge the gap
between the vision and text modalities. In AVBLIP-2, the image
encoder is replaced with audio-visual encoders that encode video,
audio, and text feature sequences.

As shown in Fig. 1, AVBLIP-2 mainly consists of two modules: Q-
former and LLM Decoder. The Q-former is trained to extract a fixed
number of output features from multimodal encoder outputs with
different lengths. It has two transformer submodules that share the
same self-attention layers: (1) a multimodal transformer that interacts
with the frozen audio-visual encoders and (2) a text transformer that
works as a text encoder and a text decoder. It also has a set of
learnable query embeddings as input to the multimodal transformer.
The queries interact with each other through self-attention layers and
interact with audio-visual features through cross-attention layers. The
queries can additionally interact with the text through the same cross-
attention layers. Finally, the queries are converted to an output feature.

The LLM Decoder generates a sequence of micro-step actions for
a single-arm robot from multimodal features aligned to language
features obtained by the Q-former. The LLM Decoder is constructed
with a frozen LLM and a feed-forward layer. By using the LLM
as a decoder, it leverages the LLM’s inference capabilities when
generating action sequences. In this study, we use OPT-2.7B [16]
as the LLM.

The training of AVBLIP-2 consists of two stages: (1) vision-
language representation learning with frozen multimodal encoders
and (2) vision-to-language generative learning with a frozen LLM.
In the second stage, we connect the Q-former to the frozen LLM
Decoder and perform multimodal action sequence generation. As
shown in Fig. 1, we process the multimodal features obtained by the
Q-former by using a fully-connected layer. Then, the LLM Decoder
generates action sequences from the features. We use the cross-
entropy loss function in this stage.

V. ERROR CORRECTION-BASED REPLANNING MODEL

Although AVBLIP-2 can generate a sequence of actions in various
situations by utilizing the generalization capability of LLMs, it can
sometimes generate wrong plans due to the distribution gap between
training and testing environments. To fill the gap, we extend the
AVBLIP-2-based micro-step action sequence generation by introduc-
ing an error correction module.
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Fig. 2. Error-correction-based action replanning model. AVBLIP-2-based action generation with an error correction module (in the dashed box), that encodes
the generated action sequence and human feedback with the text encoder, and then the encoded text and the Q-former output are fed to the LLM as a prompt
to regenerate a corrected action sequence. Robot action confirmation utterances are generated using robot action description.

Figure 2 shows the extended system with the additional com-
ponents in the dashed box. The first pass generates a micro-step
action sequence through multimodal feature extraction, Q-former-
based feature encoding, and LLM-based sequence generation.

For interactive action replanning, we extend the model to generate a
natural language action description in addition to the action sequence
to confirm the robot’s action to the human. We train AVBLIP-2 to
generate the two output sequences. In this work, we compare two
approaches: (1) Target sequence concatenation, where we concatenate
the action description and the action sequence between which we
insert a special token “<a>”, and (2) Multitask training, for which
we duplicate the training data, where one half has action description
targets with prompt “<d>” and the other half has action sequence
targets with prompt “<a>”.

The error correction pass encodes the generated action description
and human error-correction sentence with the text encoder. Then the
encoded text and the Q-former output are fed to the LLM as a prompt
to regenerate a corrected action sequence. The Q-former for error
correction is separately trained to generate correct action sequences
from the first-pass outputs and the human error-correction sentence.

The text encoder is trained jointly with the Q-former for error
correction, where the multimodal encoders and the LLM remain
frozen. The text encoder can be a transformer encoder or just a linear
projection on top of the word embedding layer of the LLM. In this
work, we use a linear projection.

VI. EXPERIMENTS

A. Setup

We test the proposed method using YouCook2 consisting of
cooking action video clips aligned with human action instruction
in natural language. Each video in the dataset consists of 5 to 16
human cooking steps. The dataset contains 2K videos of 89 recipes,
divided into training, validation, and test sets, containing 1,333, 457,
and 210 videos, respectively. In this work, we used the validation
set as the test set because the test set was not publicly available.
We collected micro-step action sequences as described in Section III,
which contain 2,790 unique phrases of 195 verbs, 2,229 objects, 33
prepositions, and 1002 places. The training and validation sets include
8,928 and 3,122 action sequences, each of which corresponds to a
human cooking step. The vocabulary size of the training set is 1037.
The out-of-vocabulary rate of the validation set is 6.6%. The average
sequence lengths are 25.3 and 25.5 words, respectively.

Multimodal features such as video, image, and audio are extracted
using Omnivore [17], Contrastive Language-Image Pre-Training
(CLIP) [18], and Audio Spectrogram Transformer (AST) [19], respec-
tively. The image and video features are concatenated and projected to
a single video feature sequence before feeding them to the encoder. If
a subtitle is available in the video, text features are extracted by Glove

word embedding [20]. Otherwise, we feed an embedding vector for
the <unk> label instead. The numbers of dimensions of the audio,
visual, and text features are 768, 1024, and 300, respectively.

We initialize the Q-former with the pre-trained weights of BERT-
base [21], while the cross-attention layers are randomly initialized.
We set the number of dimensions of the hidden layers to 768, which
results in 188M parameters in total. In the experiments, we use 32
queries, where each query has a 768-dimensional vector, which equals
the hidden dimension of the Q-former.

To evaluate the quality of the generated action sequences, we
collected human error correction for automatically generated robot
actions as shown in Fig. 3. Humans generated sentences to correct
the errors based on the original instructions and the automatic action
confirmation.

Add pepper as well. 

Original instruction: Sprinkle cheese and pepper on top.
Robot confirmation:   Sprinkle some grated parmesan cheese on top and serve?
Error correction:     

Fig. 3. Robot action error correction by AMT workers.

The performance was evaluated using the BLEU-2 and METEOR
scores computed between the generated and ground-truth sequences
used in the robotics field [22], [23].

B. Results

Table II shows the quality of the action sequences and the action
descriptions generated using different models, where “Baseline”
denotes the Q-former model trained with the pairs of audio-visual
features and their target action sequences. The baseline model only
outputs action sequences, while the extended models based on target
concatenation (concat) and multitask training (multitask) can generate
both action sequences and action descriptions. The multitask training
achieves action quality slightly better than the baseline despite
generating two sequences. On the other hand, the target concatenation
model is not better than the multitask model. Looking at some low-
quality outputs, there are over-generated descriptions that are much
longer than the references. In addition, the action sequences are prone
to be sensitive to action description errors. We also measured the ratio
of overlapping words1 in generated action sequence/description pairs
because these two outputs should indicate the same goal. The target
concatenation model has a higher overlapping ratio than the multitask
model. This is because the model generates each action sequence
explicitly conditioned on the description. However, considering that
the ratio for the reference sequence pairs was 0.64, the overlapping
ratio is high enough with the multitask model. Thus, we decided to

1Computed as the ratio of the content words that appeared in both the
action sequence and description to all content words in the description.



TABLE I
EXAMPLES OF ERROR CORRECTION. OBJECT-LEVEL ERRORS ARE HIGHLIGHTED IN RED. CORRECTED OBJECT NAMES ARE HIGHLIGHTED IN BLUE.

Video Id Sequence type Action sequence or human feedback

xHr8X2Wpmno

Reference Pick lettuce, Place lettuce on cutting board, Pick knife, Chop lettuce, Place knife on counter, Pick bowl, Place bowl
on counter, Pick lettuce, Place lettuce in bowl

1st-pass output Pick radish, Place radish on cutting board, Pick knife, Cut radish with knife, Place knife on counter, Pick radish,
Human feedback Chop lettuce and place it in a bowl
Corrected output Pick lettuce, Place lettuce on counter, Pick knife, Cut lettuce with knife, Place knife on counter, Pick lettuce,

Place lettuce in bowl

c9eELn4axpg

Reference Pick eggs, Add eggs to pan, Place eggs on counter, Pick pepper, Sprinkle pepper, Place salt on counter, Pick pepper,
Pour pepper into pan

1st-pass output Pick olive oil, Pour olive oil into pan, Place olive oil on counter, Pick salt, Sprinkle salt into pan, Place salt on counter
Human feedback Add 2 eggs and season with salt and pepper
Corrected output Pick eggs, Pour eggs into pan, Place eggs on counter, Pick salt, Pour salt into pan, Place salt on counter, Pick pepper,

Pour pepper into pan

xPiv3hP5888

Reference Pick frozen peas, Pour frozen peas into pan, Place frozen peas on counter, Pick spatula, Stir ingredients in pan
1st-pass output Pick spices, Pour spices into pan, Place spices on counter, Pick spatula, Stir pan
Human feedback Add frozen peas to the pan and stir
Corrected output Pick frozen peas, Place frozen peas in pan, Pick spatula, Stir peas in pan

RllWJUvrxEY

Reference Pick foil, Place foil on counter, Pick sandwich, Place sandwich on foil, Fold foil over sandwich
1st-pass output Pick pita, Place pita on grill
Human feedback Fold the foil around the sandwich
Corrected output Pick foil, Fold foil around sandwich

TABLE II
QUALITY OF GENERATED ACTION SEQUENCE AND DESCRIPTION.

Action sequence Action description

BLEU-2 METEOR BLUE-2 METEOR Word overlap

Baseline 0.356 0.249 - -
Concat 0.346 0.243 0.198 0.143 0.71
Multitask 0.370 0.257 0.220 0.158 0.62

use the multitask model for the rest of the experiments. For reference,
we also evaluated the case of complete feedback, where we used the
reference descriptions as human feedback.

Table III shows the quality of the generated sequences. We used
the multitask model to generate the 1st-pass action sequence and
description. “EC” denotes the error correction model trained with
three different feedbacks: feedback from the 1st-pass action sequence
output, human feedback, and both. As shown in the Table, the 1st-
pass feedback provides a slight improvement on the two metrics
over the baseline. However, the gains are very limited without the
human feedback, which are less than 2% relative. This is probably
because the model was learned from insufficient pairs of error patterns
and correct answers. Since we used only single-best hypotheses for
training, we need data augmentation to increase the diversity of the
error-correction samples. On the other hand, the human feedback
significantly improves the quality of action sequences, showing
relative gains of 8 – 10%. This result demonstrates that the proposed
approach can correct erroneous action sequences by human feedback
in natural language. However, error correction with both types of
feedback does not show further improvement compared to human
feedback only. This also implies that the data sparseness issue exists
in the training with only single-best hypotheses. This issue will be
addressed in future work.

Table I shows examples of generated action sequences, where each
row contains the reference, the 1st-pass output (baseline), the human
feedback, and the corresponding corrected (regenerated) sequences.
In the first example, the 1st-pass action generation misrecognizes
“lettuce” as “radish” and does not emit “bowl”. With human feedback
“Chop lettuce and place it in a bowl”, the errors are corrected in the
output sequence, where “lettuce” and “bowl” are placed correctly in

TABLE III
QUALITY OF GENERATED ACTION SEQUENCE AND DESCRIPTION AFTER

ERROR CORRECTION FEEDBACK.

Action sequence Action description

BLEU-2 METEOR BLEU-2 METEOR

Multitask 0.370 0.257 0.220 0.158
EC w/ 1st-pass feedback 0.375 0.258 0.231 0.161
EC w/ human feedback 0.408 0.281 0.398 0.303
EC w/ both 0.379 0.262 0.331 0.246

a one-hand action sequence. We can also see similar error corrections
for object names, e.g., “olive oil” to “eggs” in the second example and
“spices” to “frozen peas” in the third example, which are all corrected
as the human feedback contained such keywords. In the fourth
example, the object “pita” is corrected with “foil” and “sandwich”,
but the output contains the human feedback as it is. This is a failure
example of error correction since the actions are not in the one-hand
style and, therefore, the robot cannot follow the sequence.

VII. CONCLUSIONS

This paper proposed a method for error-correction-based action
replanning approach that feeds (1) actions generated by a multimodal
LLM and (2) human error-correction in natural language. We col-
lected micro-step action sequences for single-arm robot using the
cooking video dataset YouCook22. We trained the proposed error-
correction-based action replanning model using a pre-trained multi-
modal LLM model (AVBLIP-2) generating a pair of (a) single-arm
robot micro-step action sequences and (b) robot action description in
natural language simultaneously. Experiments show that our proposed
interactive replanning model trained in a multitask manner using
action sequence and description outperformed the baseline model for
all types of scores. This work is the first attempt to apply multimodal
understanding trained from human demonstration videos for robot
action planning aligned with action description in natural language.
We will open the data and our baseline to accelerate research in this
direction.

2Hiroto Takeuchi, a student at Rochester Institute of Technology, collected
robot action sequences as an intern at MERL.
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