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Abstract
This report details MERL’s system for room impulse response (RIR) estimation submitted
to the Generative Data Augmentation Workshop at ICASSP 2025 for Augmenting RIR Data
(Task 1) and Improving Speaker Distance Estimation (Task 2). We first pre-train a neural
acoustic field conditioned by room geometry on an external large-scale dataset in which
pairs of RIRs and the geometries are provided. The neural acoustic field is then adapted
to each target room by using the enrollment data, where we leverage either the provided
room geometries or geometries retrieved from the external dataset, depending on availability.
Lastly, we predict the RIRs for each pair of source and receiver locations specified by Task
1, and use these RIRs to train the speaker distance estimation model in Task 2.
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Abstract—This report details MERL’s system for room impulse
response (RIR) estimation submitted to the Generative Data
Augmentation Workshop at ICASSP 2025 for Augmenting RIR
Data (Task 1) and Improving Speaker Distance Estimation (Task
2). We first pre-train a neural acoustic field conditioned by room
geometry on an external large-scale dataset in which pairs of
RIRs and the geometries are provided. The neural acoustic field
is then adapted to each target room by using the enrollment
data, where we leverage either the provided room geometries
or geometries retrieved from the external dataset, depending on
availability. Lastly, we predict the RIRs for each pair of source
and receiver locations specified by Task 1, and use these RIRs to
train the speaker distance estimation model in Task 2.
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I. INTRODUCTION

The goal of the Room Acoustics and Speaker Distance
Estimation Challenge, which is part of the Generative Data
Augmentation Workshop at ICASSP 2025, is to design systems
for room impulse response (RIR) estimation at unseen locations
from a small set of training examples [1]. The challenge is split
into two tasks, Augmenting RIR Data (Task 1), and Improving
Speaker Distance Estimation (Task 2).

Interest in RIR estimation has surged in recent years, with
the successful application of room acoustics estimation in
immersive experiences for virtual/extended reality, adaptive
sound reproduction systems, acoustic scene understanding, and
more [2]. Typical settings require a system to predict an RIR
from an existing set of acoustic measurements. With modern
approaches utilizing deep neural networks, the use of generated
acoustic data for augmentation has been essential for training
machine learning-based systems.

In our approach for Task 1, we use neural acoustic fields to
build spatially continuous representations of acoustic spaces.
We use an acoustic similarity-based retrieval method to build
a room-specific pre-training dataset, and then fine-tune our
model on limited training examples using low-rank adaptation
(LoRA) [3]. After pre-training and fine-tuning, the model can
be used to estimate the RIR at unseen source/receiver locations
within the specified room.

II. PRELIMINARIES

In Task 1, we are asked to generate RIRs for twenty different
rooms. For each room, between 5 and 10 RIRs at different
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Fig. 1. Retrieval strategy for pre-training dataset selection from a sample RIR.

source and receiver locations are provided in the enrollment set.
For rooms 1–10, room geometry information is provided in the
form of a room mesh object file. For rooms 11–20, only the
RIRs and source/listener locations are provided. An additional
room (Room 0) is provided with recorded and simulated RIRs
at 20 source/listener locations, and an additional 405 simulated
RIRs at grid locations within the room. The goal for Task
1 is to design a system to estimate the RIRs in each of the
twenty rooms at unseen source/receiver locations specified by
the organizers. The generated RIRs are then evaluated on a
variety of acoustic quality measures, namely RT60, EDF, and
DRR [1].

III. METHODOLOGY

A. Retrieval for Pre-training

Each room {Ri}20i=1 is provided with N RIRs {hi,j}Nj=1, and
pairs of corresponding source and receiver positions (si,j , ri,j).
To find appropriate data for pre-training, we use each room’s
provided RIRs to retrieve RIRs from an external dataset.
We use the GWA dataset [4], a large-scale RIR dataset that
contains over 2 million RIRs that were simulated based on
3D scene meshes from the 3D-FRONT dataset [5], [6] to
ensure acoustic diversity. Each scene in the 3D-FRONT dataset
contains multiple rooms and objects; by building bounding
boxes defined by the boundaries of the scene meshes, we
defined a set of rooms {R̃i}i>20 corresponding to different
regions within the 3D-front scenes.

To select an appropriate set of rooms from this dataset, for
each room, we use a similarity-based retrieval method shown
in 1. For each RIR hi,j in the enrollment data for room Ri, we
compute a multi-band RT60 with B bands RT60(hi,j) ∈ RB

+.
With it, we can query the dataset by using the L2 distance



Fig. 2. Pre-training and fine-tuning strategies for neural acoustic field training.

between each measured multi-band RT60 and that of each of
the RIR samples h̃l in the GWA set ∥RT60(hi,j)−RT60(h̃l)∥2,
selecting M closest RIRs in the dataset for each of the N
enrollment RIRs. For each of these N × M retrieved RIRs,
we collect the room(s) containing the source and receiver.
We can then rank these rooms based on their frequency in
the set of retrieved RIRs, providing us with a distribution
of matching rooms, each with several RIR measurements
at various source/receiver locations. In our experiments, for
training efficiency, we limited these rooms to the 100 most
frequently retrieved rooms. This set of rooms can be used to
create a room-specific pre-training set for each of our 20 rooms.
We compare this retrieval method with randomly selected rooms
in IV. In the cases of rooms 11–20, where no room mesh is
provided, we further retain the most closely matched room’s
geometry for use as the estimated geometry for the queried
room.

B. Neural Acoustic Field

For our model, we use a simplified single-channel version of
the INRAS architecture [7], excluding orientation information.
This model takes a pair of source and listener positions in 3D
space, as well as geometric features in the form of sampled
points from the surface of the room mesh (referred to as bounce
points). Following [8], for each room, we evenly sample the
room’s mesh using Poisson disk sampling, such that we are
provided with K evenly spaced points characterizing the room’s
geometry. These bounce points, as well as the coordinates of the
source and receiver, are used as inputs to our model. The model
then uses a sinusoidal encoding and a multilayer perceptron to
generate representations of the room’s IR measurement at a
given pair of source and receiver locations. After training, this
latent representation can then be used to generate RIRs at an
unseen pair of source and receiver positions.

C. Fine-Tuning

During pre-training, we expose the model to a wide range
of source and receiver location pairs inside a variety of room
geometries. After this step, we can then fine-tune the model
on the N provided enrollment RIRs. Several approaches for
fine-tuning can be taken; recent work in LLM fine-tuning
has shown the success of using low-rank adaptation, which
adjusts a low-rank matrix of weights to adapt a model to a

TABLE I
PERFORMANCE ON ROOM 0 OF MODELS USING DIFFERENT PRE-TRAINING
SETS AND FINE-TUNING METHODS IN TERMS OF THE ERROR IN RT60 [%],

EDF [DB], AND DRR [DB].

Pre-training set Fine-tuning method RT60 EDF DRR

Retrieved-GWA LoRA-1 0.090 0.520 3.009
Retrieved-GWA All Parameters 0.174 2.736 4.626
Random-GWA LoRA-1 0.186 0.652 5.155
Random-GWA All Parameters 0.792 0.562 11.172
None All Parameters 0.417 4.416 8.917

new domain with a limited amount of data [3]. For a given
d× d weight matrix W of the model, two additional weight
matrices A,B ∈ Rd×r are introduced to update the weights
as W̄ = W + BAT , where BAT defines a rank r weight
matrix learned on the enrollment data. We also experiment
with fine-tuning the model by simply using the pre-trained
model’s weights to initialize a model trained on the provided
training examples. After fine-tuning, we perform inference by
providing the coordinates of the target source and receiver
locations for evaluation, along with the provided (or retrieved,
for rooms 11–20) room mesh.

IV. RESULTS

We tested our method on the 5 provided examples from
“Room 0”, with the results shown in Table IV, evaluating on
the remaining provided examples in that room. We can see
in Table IV that our strategy’s ability to reconstruct rooms is
effective; we found that Rank-1 LoRA was the most effective
method for capturing the EDF of the RIR. We used the trained
models for each room to generate data for Task 2 using the
coordinates provided in the enrollment dataset, then fine-tuned
the provided SDE model on this data and submitted the results.
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