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Optimal control theory is applied to analyze the time-optimal solution with a single scalar control

knob in a two-level quantum system without quantum decoherence. Emphasis is placed on the de-

pendence on the maximum control strength umax. General constraints on the optimal protocol are

derived and used to rigorously parameterize the time-optimal solution. Two concrete problems are

investigated. For generic state preparation problems, both multiple bang-bang and bang-singular-

bang are legitimate and should be considered. Generally, the optimal is bang-bang for small umax,

and there exists a state-dependent critical amplitude above which singular control emerges. For the

X-gate operation of a qubit, the optimal protocol is exclusively multiple bang-bang. The minimum

gate time is about 80% of that based on the resonant Rabi π-pulse over a wide range of control

strength; in the umax → 0 limit this ratio is derived to be π/4. To develop practically feasible pro-

tocols, we present methods to smooth the abrupt changes in the bang-bang control while preserving

perfect gate fidelity. The presence of bang-bang segments in the time-optimal protocol indicates that

the high-frequency components and a full calculation (instead of the commonly adopted Rotating

Wave Approximation) are essential for the ultimate quantum speed limit.

I. INTRODUCTION

Optimal Control Theory (OCT), also known as Pontryagin’s Maximum Principle (PMP), is a powerful tool to

analyze and construct the open-loop optimal control protocol [1–4]. The basic formalism of OCT is the calculus of

variations, but its general applicability requires detailed analysis that takes the control constraint and the non-smooth

behavior into account [2, 3]. OCT aims to minimize a user-defined terminal cost function, subject to the dynamics that

contains a time-dependent control protocol, and its success hinges on a sufficiently accurate model due to its open-loop

nature. This framework is naturally suited to a wide class of quantum tasks [5–8]. The state variables, represented by

the wave function of the quantum system, cannot be completely determined during the evolution while the governing

dynamics, the Schrödinger equation describing the quantum system, are usually known to high precision. Well-known

examples include the fast quantum state preparation [9–13] where the terminal cost is the overlap to the known

target state, the “continuous-time” variation-principle based quantum computation [14–16] where the terminal cost

is the ground-state energy, and quantum parameter estimation (quantum metrology) [17–25] where the cost function

is the classical or quantum Fisher information. In a more general context, OCT has been used for the stabilization of

ultracold molecules [26], optimizing the performance in nuclear magnetic resonance measurement [27–30], cooling of

quantum systems [31–33], charging a two-level quantum battery [34, 35], and optimizing the quantum emitter [36].

Quantum two-level system (qubit) is at the heart of many important technologies, such as Nuclear Magnetic

Resonance [37], Electron Paramagnetic Resonance spectroscopy [38] and atomic clock [39]. Some applications require

manipulating the quantum state. For example, in Magnetic Resonance Imaging or general quantum sensing schemes

∗ The Flatiron Institute is a division of the Simons Foundation.
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one needs to prepare a state that is a superposition of its natural eigenstates [40–45]; in quantum computation the

single-qubit gates are essential for implementing the universal gate set [46–52]. Qubit states can be manipulated using

multiple fields [53–56] and various experimental techniques such as AC Stark tuning [57] or dichromatic excitation

[58], and in this paper we consider a more common qubit system having only one single scalar control. When the

scalar control is constrained by a maximum amplitude umax, OCT classifies the control into bang control and singular

control. The former corresponds to ±umax whereas the latter may take any values in between. The intuition brought

by OCT (from analyzing linear systems) is that the bang-bang protocol is a strong candidate of time-optimal control

[3]; when this is indeed the case the parametrization of optimal protocol is greatly simplified. This intuition is the

basis of some quantum algorithms, notably QAOA (Quantum Approximate Optimization Algorithm) [59, 60], which

relies exclusively on bang controls to find the ground state. For generic quantum tasks, the optimal control typically

involves a singular component [25, 61–63] whose values are unknown prior to optimization. For a dissipationless qubit,

the allowed singular control is known a priori [61, 64], which can be used to constrain the functional space of optimal

protocol.

Our work particularly focuses on the influence of the maximum control amplitude and is complementary to the

existing results [56, 64, 65] in the following three aspects. First, the time-optimal protocol of a qubit for the state

preparation has been shown to be of multiple bangs [8, 65] or of bang-singular-bang [61, 64, 66–68]. We provide a

more complete picture by demonstrating that a sufficiently large control amplitude is the key for the singular control.

We also point out two minor but subtle points about the meta-stable solution and the bang duration which were

omitted in the literature. Second, we apply OCT to the X-gate of a qubit where the global phase matters. The

X-gate is typically accomplished by the resonant Rabi π-pulse with some minor modifications [69–71]; the derivation

is based on Rotating Wave Approximation that neglects the high-frequency components. Our main finding is that the

optimal gate time is about 80% of the Rabi π-pulse and approaches π/4 of the latter in the small amplitude limit. The

intuition behind the Rabi protocol is resonance, and we shall see how the resonant behavior and bang-bang protocol

reconcile in OCT analysis. From the physical point of view, the bang-bang solution implies that the high-frequency

components and the full calculation are essential for the ultimate quantum speedup. Finally, to construct a realizable

protocol we address the issue of bang-bang control by proposing a few methods that smooth the sharp changes of the

time-optimal bang-bang protocol but at the same time preserve the gate fidelity. The smoothed solutions are only

meaningful when the evolution time is longer than the minimum gate time using the bang-bang protocol. For this

task the bang-bang solution provides a theoretical minimum gate time and serves as a starting point for more realistic

considerations.

The paper is organized as follows. In Section II we define the system and the control problem and review the OCT.

The features specific to a qubit of unitary dynamics are explicitly pointed out. General optimality conditions used

to regulate the optimal protocol are derived; the conditions that rule out singular control are provided. In Section

III we consider a generic state preparation problem. We shall show how the amplitude constraint affects the optimal

protocol, particularly the emergence of a singular control. In Section IV, we apply the OCT to find the minimum

time to achieve the X-gate of a qubit. The general control protocol is found to be bang-bang. The minimum gate

time is about 20% shorter than the widely used protocol based on resonant Rabi π-pulse. The small-amplitude limit

is derived and the effects of high frequency are discussed. In Section V, we provide a few methods to suppress the

high-frequency components introduced by the time-optimal bang-bang protocol while maintaining the gate fidelity.

A brief conclusion is given in Section VI. In the Appendix A we give the qubit dynamics in terms of angular variables

on the Bloch sphere. Appendix B provides heuristics on why the odd harmonics play an important role on qubit

dynamics based on perturbation.

II. GENERAL FEATURES OF QUBIT SYSTEM

In this section, we give a short introduction of OCT. While extensive reviews have been presented in the literature

[6, 7], we emphasize its consequences on the qubit system of unitary dynamics. OCT is typically formulated in terms

of real-valued dynamical variables, but quantum systems are naturally described by complex-valued wave functions.

We shall keep the derivations in the complex-valued form consistent with Schrödinger equation that can facilitate

generalization to systems of higher dimensions. We begin with a brief recapitulation of the OCT on generic quantum

systems and introduce the optimality conditions and relevant terminologies required for later discussion. The practical

usefulness of optimality conditions will be explicated. For a qubit with unitary dynamics, there are important features
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arising from its low-dimensionality; there are additional constraints specific to the Hamiltonian and initial/target qubit

states. Altogether, the general behavior derived from OCT analysis enables rigorous few-parameter parametrizations

of the time-optimal protocol, which will be tested and applied to concrete examples in the following sections.

A. Optimal control on generic quantum systems

The quantum system with a single-scalar control can be described by the Hamiltonian

H(t) = H0 + u(t)H1 (1)

H0 is the system Hamiltonian, and H1 is the externally applied term whose amplitude u(t) is the scalar that we can

control. The optimal control problem for the state preparation is formulated as follows. Given (i) an initial state

|ψinit⟩, (ii) a target state |ψtarget⟩, (iii) the maximum control amplitude umax, and (iv) a total evolution time T , find

the optimal control u∗(t) that minimizes

Cterm
SP [u(t);T ] = −

∣∣⟨ψtarget|U(u(t))|ψinit⟩
∣∣2 (2)

where U(u(t);T ) = T e−i
∫ T
0

H(t)dt is the evolution operator defined by a control u(t) at a given T and T denotes

time-ordering. Eq. (2) is referred to as the “terminal cost”. For a time-optimal control problem, we are given (i)-(iii)

and aim to identify the optimal control u∗(t) and the shortest evolution time T ∗ that lead to the global minimum

of CSP[u(t);T ] (-1 in this case). We would like to point out that, in experiments, we typically have direct control

over the amplitude of a specific control variable within a given setup, which must be a finite quantity. For instance,

in the qubit scenario discussed in this paper, the voltage amplitude generated by the arbitrary waveform generator

represents such a variable. Hence, constraint (iii) aligns well with practical considerations.

OCT provides a set of necessary conditions for the optimal solution u∗(t); they can be used to constrain the

parametrization of optimal protocol and quantify the quality of a numerical solution. OCT for the quantum system

of Eq. (1) are summarized as follows.

Hoc(t) = Re
[
− i⟨λ(t)|H(t)|ψ(t)⟩

]
=

1

2i

[
⟨λ(t)|H(t)|ψ(t)⟩ − ⟨ψ(t)|H(t)|λ(t)⟩

]
(3a)

∂t|ψ⟩ = 2
δHoc

δ⟨λ(t)|
= −iH(t)|ψ⟩ with |ψ(0)⟩ = |ψinit⟩, (3b)

∂t|λ⟩ = −2
δHoc

δ⟨ψ(t)|
= −iH(t)|λ⟩ with |λ(T )⟩ = 2

δCterm

δ⟨ψ(T )|
, (3c)

δCterm

δu(t)
= Re

[
− i⟨λ(t)|H1|ψ(t)⟩

]
dt ≡ Φ(t)dt, (3d)

δCterm

δT
= Hoc(T ). (3e)

The control-Hamiltonian Hoc(t), adjoint field |λ(t)⟩, and switching function Φ(t) in Eq. (3) are quantities introduced

by OCT that are very informative to characterize the system behavior. Eq. (3a) defines the control-Hamiltonian

Hoc(t) which is a real-valued scalar and should not to be confused with a quantum Hamiltonian which is generally a

complex-valued matrix. Eq. (3b) is the Schrödinger equation for the wave function |ψ(t)⟩; Eq. (3c) is the Schrödinger-
like equation for the adjoint field |λ(t)⟩. Eq. (3d) defines the switching function Φ that is proportional to the gradient

of the user-defined cost function Cterm with respect to the control. Practically Eq. (3d) provides the most efficient

way, in terms of both memory and speed, to compute δCterm

δu(t) and is widely used in the gradient-based optimization

algorithm to obtain a numerical solution [72]. Eq. (3d) is the core of the procedure introduced in Section VD (see

Table I and related discussion).

The control system described by Eq. (1) is control-affine [linear in u(t)] and time-invariant [the time dependence is

solely from u(t)] which lead to two general optimality conditions. First, the optimal control is u∗(t) = −umaxSgn[Φ]

when Φ ̸= 0 where Sgn denotes the sign function; this is referred to as a bang (B) control as the control is at one of
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its two boundary values. If Φ = 0 over a finite time interval, the control is referred to as a singular (S) control. The

optimal solution can be expressed as

u∗(t) =

{
−umaxSgn[Φ] if Φ ̸= 0

using(t) if Φ = 0
(4)

The singular control using is generally unknown until the numerical calculation is done, but for a unitary qubit the

allowed using can be determined before the calculation. Second, Hoc(t) is a constant for an optimal solution and is

the derivative of the terminal cost function with respect to the evolution time T ; it is negative when T < T ∗ (i.e.,

the terminal cost can further decrease upon increasing T ) and is zero at the time-optimal solution T = T ∗. These

optimality conditions are the first-order necessary conditions and are always checked for a numerical solution. The

minimum time satisfying both Hoc(T
∗) = 0 and Cterm[u∗(t), T ∗] = −1 (global minimum of Cterm) is used to identify

the time-optimal solution. In next two subsections we discuss general properties of bang and singular controls for

pure qubit systems without quantum decoherence.

B. Qubit and bang-bang control

We now apply the OCT to a typical qubit Hamiltonian

H(t) =
ω0

2
σz + u(t)σx. (5)

Here ω0 is the natural frequency of the system (i.e., the difference of two eigenenergies without control) and we take

ω0 = 2 for the reminder of the discussion; they correspond to H0 = σz and H1 = σx in Eq. (1). u(t) is the scalar

control knob which is bounded by |u(t)| ≤ umax. How the time-optimal protocol changes under different umax’s is the

main focus of this work.

For later discussion we derive the constraint specific to BB control of Eq. (5) [8, 65]. For the optimal solution,

Hoc(t) is a constant [see discussion below Eq. (4)] and is denoted as Hoc(t) = −|λ0|. Eq. (3a) implies

−|λ0| = Re
[
− i⟨λ(t)|σz|ψ(t)⟩+ u(−i⟨λ(t)|σx|ψ(t)⟩)

]
⇒ Re

[
i⟨λ(t)|σz|ψ(t)⟩

]
= uΦ+ |λ0|

(6)

Taking first and second derivatives of Φ and using the commutation relation of Pauli matrices leads to

Φ̇ = Re
[
− i(+i)⟨λ(t)|[σz + uσx, σx]|ψ(t)⟩

]
= Re

[
+ i⟨λ(t)|2σy|ψ(t)⟩

]
, (7a)

Φ̈ = Re
[
+ i(+i)⟨λ(t)|[σz + uσx, 2σy]|ψ(t)⟩

]
= −Ω2Φ− 4u|λ0| with Ω2 ≡ 4(1 + u2). (7b)

For the BB control [Eq. (4)], the switching function Φ(t) satisfies

4|λ0| · umax sgn[Φ(t)] = Φ̈ + Ω2Φ. (8)

According to Eq. (8), Φ(t) is periodic and its frequency is determined as follows. Over the time interval where Φ > 0,

the formal solution is

Φ(t) = A

(
sin(Ω(t− t0)) +

|λ0|
|A|

4umax

Ω2

)
. (9)

with A > 0 [for Φ < 0, take A = −|A| in Eq. (9)]. Zeros of Φ are given by sin(Ω(ti − t0)) = − 4umax|λ0|
AΩ2 . The time

interval between two adjacent zeros of Φ(t) is given by

T = ti+1 − ti =
π

Ω
+

2

Ω
sin−1

(
4|λ0|
A

umax

Ω2

)
. (10)

The angular frequency ωeff of the switching function Φ(t) is given by

ωeff ≡ π

T
=

Ω

1 + 2
π sin−1

( 4|λ0|
A

umax

Ω2

) ≤ Ω. (11)
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The optimal BB control is

u∗bb(t) = −umaxSgn

[
cos

(
ωeff(t− t0)

)]
for 0 ≤ t ≤ T . (12)

Eq. (12) offers a rigorous two-parameter parametrization of the optimal protocol which greatly reduces the complexity

of the numerical optimization. Our derivation preserves the complex-valued form of |λ⟩ and |ψ⟩ without introducing
any additional real-valued functions and facilitates generalization, otherwise is equivalent to those given in Refs. [8, 65].

Eq. (12) implies that the optimal bang duration is a constant except the first and the last bangs. The Fourier

transform implies only odd harmonics of ωeff are important, and a connection to the Schrödinger equation is provided in

Appendix B. One subtlety which was not pointed out previously [8, 64, 65] deserves our attention. For the time-optimal

solution where |λ0| = 0, one might conclude from Eq. (11) that ωeff = Ω. This is not true: Φ0(t) = A sin(Ω(t − t0))

alone cannot satisfy Eq. (8) because Φ̈0 + Ω2Φ0 = 0 but Sgn[Φ0] ̸= 0. What happens is that both Φ and Hoc vanish

for the time-optimal BB solution (i.e., both A and |λ0| approach zero) and ωeff depends on the ratio lim|λ0|→0
|λ0|
A

which is generally non-zero. This subtlety will be numerically verified by examining the optimality conditions stated

in Section IIA. Whether BB is the optimal protocol or not is generally unknown a priori; for qubit systems we shall

give the conditions that guarantees BB as optimal protocol shortly.

C. Qubit and singular control

  (a) (b) 

FIG. 1: Four quadrants on the Bloch sphere defined by the sign of α. (a) Bloch sphere. In our convention defined in Eq. (13),

the north pole corresponds to the state [1, 0]T while the south pole [0, 1]T . (b) θ − ϕ plane. The green color indicates the

quadrant of positive α. Arrows in (b) indicate the motion of the optimal trajectory along the singular arc.

A qubit of unitary dynamics is fundamentally a planar system (i.e., two real-valued variables) as a qubit state can

be represented by a point on a Bloch sphere or θ-ϕ plane:

|ψ(θ, ϕ)⟩ =
[

cos θ
2

sin θ
2e

iϕ

]
⇔ x =

[
θ

ϕ

]
(13)

where θ ∈ [0, π] is the polar angle and ϕ ∈ (−π, π] the azimuthal. A planar control system has been thoroughly

analyzed in Refs. [73, 74] and is presented in detail in Ref. [3]. The most relevant consequence is that the allowed

singular control [using in Eq. (4)] and its corresponding trajectory can be determined without solving the dynamic

equation. We shall sketch the derivation and apply it to Eq. (5).

The first step is to formulate control dynamics in the planar form ẋ = f + u(t)g where x = [θ, ϕ]T and f , g are two

real-valued vector fields. The map between Pauli matrices and their corresponding vector fields are given in Appendix

A (see also Ref. [61, 68] for detailed derivations). Next we determine a scalar α(θ, ϕ) by [f ,g] = αf + ζg where [f ,g]

is the Lie bracket of two vector fields (see Appendix A; ζ is not needed in the following discussion) [75]. In the region

where α ̸= 0, the optimal control is BB with at most one switching: α > 0 only allows the switching from −umax to

+umax; α < 0 only allows the switching from +umax to −umax (see Chapter 2.9 of Ref. [3]). α = 0 defines a “singular
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arc” which is the only trajectory that allows a singular control. Moreover the allowed singular control u∗sing is shown

to be a Hamiltonian-dependent constant for a qubit of unitary dynamics [68].

For the qubit system specified by Eq. (5), u∗sing = 0 and α = 2 cot θ
sinϕ [see Appendix A]. The singular arc α = 0

corresponds to θ = π
2 , the equator of Bloch sphere [Fig. 1(a)]. α changes sign when crossing the singular arc and

the arcs specified by ϕ = 0,±π. In the θ-ϕ plane, the sign of α defines four quadrants as illustrated in Fig. 1(b). If

the optimal protocol involves a singular part, during that period u∗(t) has to be zero (i.e., H = σz) and the qubit

has to stay on the singular arc where only ϕ is increasing (subject to a modulo of 2π) whereas θ is fixed at π
2 . This

implies that if the initial and/or target state is at one of two poles of Bloch sphere where ϕ is irrelevant for the state

specification, the time-optimal control cannot involve the singular part. According to Eq. (4), u∗(t) for these problems

has to be BB which can be parametrized by Eq. (12). Although not generic, qubit states at two poles are crucial in

quantum gates and will be discussed in Section IV.

D. Summary of OCT analysis

Three general constraints from OCT for the unitary qubit system described by Eq. (5) are summarized below.

� (C1) If the optimal control is BB and involves two switchings or more, it can be rigorously parameterized by

the two-parameter form of Eq. (12). In particular the durations of all middle bangs are identical.

� (C2) Sign of α divides the Bloch sphere into four quadrants of alternate signs [Fig. 1]. When the optimal

trajectory is in the region of the same sign of α(̸= 0), the optimal control is BB with at most one switching.

� (C3) The optimal trajectory of singular control can only happen along α = 0 [θ = π
2 for Eq. (5)], which is

referred to as the singular arc. When it happens, u∗sing = 0 and the trajectory satisfies ϕ̇ = 2.

Because along the singular arc only the azimuthal ϕ is changing, S control cannot be part of time-optimal

protocol if the initial and/or target states are at the poles of Bloch sphere where ϕ is irrelevant for state

specification; in these cases the optimal protocol is BB.

To significantly change the quantum state with a weak umax, the oscillation frequency u(t) has to match the natural

frequency ω0. This is known as the resonance condition (see for example Ref. [76]). The oscillatory behavior is encoded

in constraints (C1) and (C2) as the BB protocol is only consistent with the trajectory that swings between quadrants

of opposite signs. When umax is comparable to the natural frequency, a non-resonant solution including the singular

control can emerge and is constrained by the constraint(C3). In the next two sections we provide examples to illustrate

these behaviors.

Combining constraints (C2) and (C3), we conclude that the optimal control u∗(t) has to be piece-wise constant with

u∗ = ±umax for the bang control or u∗ = 0 for the singular control. This allows us to parametrize u∗(t) using a set of

u values and switching times. Consider an optimal control composed of {ui}Ni=1 = (u1, u2, · · · , uN ) (ui ∈ [0,±umax])

segments of N − 1 switchings at (t1, t2, · · · , tN−1). Denoting t0 = 0 and tN = T , the total evolution operator is given

by

U(u(t)) = U({ti}N−1
i=1 ; {ui}Ni=1) = ΠN−1

i=1 U(ti+1 − ti, ui). (14)

where ΠN
i=1Oi = ON · · ·O2O1 and U(t, u) is the evolution operator for a constant u:

U(t, u) = e−i(σz+uσx)t = cos(Ω0(u) t)σ0 − i sin(Ω0(u) t)
σz + uσx
Ω0(u)

, (15)

with Ω0(u) =
√
1 + u2. The number of switching N − 1 is roughly determined by the resonance condition: N − 1 ≈

T
π/ω0

= ω0T
π . Once the control system is beyond planar [such as the damped qubit or multiple qubits], the value of

singular control cannot be pre-determined anymore but the condition of vanishing Φ̈ can still be used to construct

the optimal control involving the singular part [62, 63, 68].
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III. STATE PREPARATION

In this section we analyze a state preparation problem. The main purpose is to examine how umax affects the

optimal protocol. In particular we show that there exists a critical uc above which the time-optimal control allows a

singular part. Similar problems have been investigated in Refs. [64, 67] and more recently in the context of charging

quantum battery [35], and we provide a sharper picture by (i) showing the existence of a meta-stable solution around

uc; and (ii) examining the subtle relationship between the bang duration and Eqs. (8) and (9).

A. Overview and problem statement

For the generic state preparation, the terminal cost is given by Eq. (2). For a concrete problem we choose the

initial and target states to be |ψinit⟩ = |ψ(θinit, ϕinit)⟩, |ψtarget⟩ = |ψ(θtarget, ϕtarget)⟩ with (θinit, ϕinit) = (0.7π, 0),

(θtarget, ϕtarget) = (0.35π, π) [see Eq. (13)]. This choice is very close to the problem considered in Ref. [68]: the

rationale is that two states are sufficiently far from each other to allow for the potential non-trivial control. We shall

vary umax to obtain the time-optimal solution and the optimal time T ∗(umax).

The optimization procedure is done as follows. To minimize Eq. (2) we first choose a set of {ui} in Eq. (14) and

use switching times as independent variables, i.e.,

Cterm
SP ({ti}N−1

i=1 ; {ui}Ni=1) = −
∣∣⟨ψtarget|U({ti}N−1

i=1 ; {ui}Ni=1)|ψinit⟩
∣∣2. (16)

For a given {ui}, we first minimize Eq. (16) using Nelder-Mead algorithm [77] to obtain switching times {ti}N−1
i=1 and

then apply two optimality conditions (u∗(t) = −umaxSgn[Φ(t)] and constant Hoc(t)) to examine if the resulting control

is a local optimum. The similar procedure has been used previously in Refs. [61, 68]. The time-optimal solution is

obtained by gradually increasing the total evolution time T until both Hoc(T
∗) = 0 and Cterm

SP = −1 are satisfied.

B. Results and discussion

The main result is summarized in Fig. 2(a) which shows T ∗(umax) and the structures of the corresponding optimal

controls. As expected, the larger the maximum amplitude umax the shorter the optimal time T ∗. For umax ∈ [0.1, 1]

there are four plateaus of T ∗; they are labeled as (1) to (4) and correspond to controls of different number of

switchings. When umax > uc ∼ 0.6 [plateau (1)], the optimal control is BSB. Three BSB optimal trajectories are

shown in Fig. 2(b). At the singular control the trajectory indeed stays on the singular arc defined by θ = π/2 [see

the discussion in Section IIC and (C3) in Section IID]. Upon reducing umax the portion of optimal trajectory on

the singular arc becomes shorter and eventually disappears at umax = uc. We point out that uc depends on initial

and target states: if we change the initial state to (θinit, ϕinit) = (0.65π, 0), uc = 0.51. From Fig. 2(b) it is clear that

uc happens when the trajectories starting from initial and target points under one of allowed bang controls (can be

±umax) intersect at the singular arc. It is worth noting that the optimal BSB control found in Ref. [35] (an effective

qubit system with dynamics similar to Eq. (5) in the context of quantum battery) shares a great similarity with our

analysis in two aspects. First Ref. [35] considers the system of large umax (umax

ω0
≥ 1.25 in our convention) which is

larger than uc and could favor the S control. Second the singular portion of optimal trajectory also decreases upon

reducing umax. The key difference is that in Ref. [35] the global phase of the effective qubit state is relevant in the

original system and cannot be neglected . The effective qubit in Ref. [35] is therefore not planar anymore but involves

three real-valued variables; for this reason the u∗sing and the singular arc derived in Section IIC cannot be directly

applied.

Once umax < uc ∼ 0.6 the optimal control are found to be BB with different number of switchings. Only BB with

even number of switchings are found to be optimal; this is not general but specific to the choice of initial/target states.

We use BB-n to indicate the BB controls with n number of switchings. When 0.2 < umax < 0.6 [plateau (2)], the

optimal control is BB with two switchings (BB-2). The optimal trajectory of umax = 0.5 is given in Fig. 2(c). Around

umax ≲ uc, the BSB solution is still a local minimum and its trajectory is also shown Fig. 2(c). The time-optimal

solution is obtained by picking the one with a shorter gate time. We are not aware of a rigorous selection rule, but

empirically the time-optimal trajectory tends to avoid staying on the singular arc for too long as the singular control

does not (fully) utilize the control to move the state variables.
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(a) (b) 

(1)

 (2)

   (3)

(4)

(d) (c) 

T*
/π

FIG. 2: (a) The optimal time T ∗ as a function of maximum amplitude umax. Four plateaus of T
∗ appear in this range and they

correspond to (1) BSB, (2) BB-2, (3) BB-4, (4) BB-6 where the number denotes the number of switchings. (b) The optimal

trajectories for BSB. The segment on singular arc decreases upon reducing umax. (c) For umax = 0.5, the optimal protocol is

BB-2. Both BSB and BB-2 are local minima and their trajectories are shown. Arrows in (b) and (c) indicate the direction

of the trajectory. Notice that ϕ = ±π are the same point, and at the vertical segment where θ ≈ 0.4π, ϕ goes from π to −π

in BB-2 trajectory instantaneously. (d) The optimal control for umax = 0.11 where T ∗ =3.4285 π; both optimality conditions

(u∗(t) = −umaxSgn[Φ(t)] and a constant Hoc(t)) are examined. The duration of middle bangs is about 0.56 π.

The plateaus of T ∗ reflect the number of switchings of BB controls. There is a jump in T ∗ when the number of

switchings increases; within the same number of switchings T ∗ only varies gradually. Fig. 2(d) shows the optimal

control u∗(t) for umax = 0.11 that has 6 switchings. Both switching function Φ(t) and control-Hamiltonian Hoc are

plotted to illustrate the numerical accuracy to which the optimal conditions are satisfied. Two important features

related to constraint (C1) in Section IID are highlighted. First, the time durations of middle bangs are identical

which is consistent with (C1). The duration is numerically found to be around 0.56π, unambiguously larger than
π

2(1+u2
max)

≈ 0.497π obtained by simply taking |λ0|(= −Hoc) = 0 in Eq. (10). Second, upon approaching the time-

optimal solution T → T ∗, both |Hoc| and Φ vanish, consistent with the discussion below Eq. (12).

Overall, when umax exceeds a state-dependent critical value, a shortcut can emerge and the optimal protocol includes

a singular control. In the other limit where umax is small compared to the natural frequency ω0(= 2), a fidelity one

state preparation requires a control of multiple BB which resembles a resonant behavior. The state preparation

between generic initial/target states can be relevant in some effective qubit systems [35, 61, 78, 79]. For a physical

qubit system, the initial/target states are typically easily prepared states or Hamiltonian-specific eigenstates; this will

be considered in Section IV.
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IV. X-GATE OF QUBIT

A. Overview

In this section we apply OCT to the X-gate of qubit. Compared to the state preparation, the qubit gate operation

is more complicated in that the global phase matters, and this additional requirement is reflected in the terminal cost

function. Following Ref. [69] the cost function of X-gate operation is chosen to be

CX[u(t);T ] = −1

4

∣∣⟨1|U(u(t))|0⟩+ ⟨0|U(u(t))|1⟩
∣∣2 (17)

Here |0⟩ ≡ [1, 0]T and |1⟩ ≡ [0, 1]T are two eigenstates of H0 = σz. At the global minimum, Eq. (17) demands the

phase from |0⟩ → |1⟩ is identical to that from |1⟩ → |0⟩; the coefficient 1
4 is chosen such that the global minimum of

CX is -1. We shall use CX + 1, whose global minimum is zero, to characterize the gate performance.

  

FIG. 3: 1 + CX as a function of umax using uRabi(t) given Eq. (18). 1 + CX approaches zero only when umax is small as the

resonant Rabi protocol is based on RWA but 1 + CX is computed without any approximation.

The widely used resonant Rabi π-pulse [69] is used as the reference:

uRabi(t) = umax cos
(
ω0(t−

T

2
)
)
for 0 ≤ t ≤ T = TRabi

π =
π

umax
. (18)

uRabi(t) is even with respect to t = T/2 as required by the X-gate (see next subsection for a detailed explanation). Its

gate time TRabi
π will serve as the baseline for comparison. The resonant Rabi oscillation is based on the Rotating Wave

Approximation (RWA) that neglects the high-frequency components and is valid when ω0 ≫ umax. We point out that

using Eq. (18) within RWA, the X-gate is of fidelity one, but in the full calculation there is a small deviation due to

the high-frequency components and therefore the gate is never complete. To explicitly show this we compute CX + 1

(zero when the gate is complete) for umax ∈ [0.01, 0.5] using the “resonant Rabi protocol” Eq. (18). As shown in

Fig. 3, CX +1 approaches zero only when umax → 0. The resonant Rabi protocol only involves the resonant frequency

during the evolution. We shall see that the time-optimal solution utilizes the high-frequency components even in the

ω0 ≫ umax limit and can reduce the total gate time by 20% with respect to TRabi
π .

B. Parametrization of control and optimization

Given the cost function Eq. (17), one can deduce a few conditions that further constrain the optimal control. First,

because the initial/target states have no ϕ dependence u∗ is expected to be strictly BB [see the discussion (C3)
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in Section IIC]. Using constraint (C1), the optimal evolution operator at final time T is BB of equal middle-bang

duration:

UX,bb(T ) = U(t̃1, (−1)Numax)

[
ΠN−1

i=2 U(t̃, (−1)iumax)

]
U(t̃0,−umax) (19)

with t̃0 + t̃1 + (N − 2)t̃ = T , t̃0, t̃1 < t̃, and U(t, u) given by Eq. (15). Knowing BB being the time-optimal protocol,

two general features can be derived. UX,bb(T ) being an ideal X-gate implies UX,bb(T ) = eiϕσx (arbitrary ϕ) and

σzUX,bb(T )σz is also a perfect X-gate as

UX,bb(T ) = eiϕσx ⇒ σzUX,bb(T )σz = −eiϕσx = ei(ϕ+π)σx. (20)

Using σzσzσz = σz and σzσxσz = −σx, we get σzU(t, u)σz = U(t,−u) and

σzUX,bb(T )σz = σzU(t̃1, (−1)Numax)σz

[
ΠN−1

i=2 σzU(t̃, (−1)iumax)σz

]
σzU(t̃0,−umax)σz

= U(t̃1, (−1)N+1umax)

[
ΠN−1

i=2 U(t̃, (−1)i+1umax)

]
U(t̃0,+umax).

(21)

Since Eqs. (19) and (21) correspond to BB protocols of opposite signs, ±u∗(t) are degenerate optimal solutions. Also,

UX,bb equals to its transpose (UX,bb)
T . Using U(t, u) = UT (t, u) one gets

(
UX,bb

)t
= U(t̃0,−umax)

[
Π2

i=N−1U(t̃, (−1)iumax)

]
U(t̃1, (−1)Numax). (22)

Equating Eq. (22) with Eq. (19), we conclude N is an odd integer and t̃1 = t̃0 (the first and last bangs have the same

time durations). These two conditions are equivalent to u∗(t − T
2 ) = +u∗(T2 − t), i.e., the optimal protocol is even

with respect to t = T
2 .

The analysis above indicates that the optimal protocol can be parametrized rigorously by

u∗(t;ωeff(T, umax)) = ±umax × Sgn

[
cos

(
ωeff(T, umax) · (t−

T

2
)

)]
. (23)

This form, depending only on one single parameter ωeff(T, umax), is valid for any T ≤ T ∗(umax). The optimization is

done by expressing Eq. (17) as a function of ωeff; because it is now a one-dimension problem one can use bisection

method to find the global minimum. With Eq. (23), the duration of middle bangs is given by T = π
ωeff

which

is determined numerically. From the discussion in Section IIA, the switching function Φ(t) can be parametrized

analytically as

Φ(t) =

{
A cos

(
Ω(t− T

2 )
)
+ 4umax|λ0|

Ω2 , (2n− 1
2 )T < t− T

2 < (2n+ 1
2 )T

A cos
(
Ω(t− T

2 )
)
− 4umax|λ0|

Ω2 , (2n+ 1
2 )T < t− T

2 < (2n+ 3
2 )T

(24)

Here A > 0, n is any integer, and 0 ≤ t ≤ T . Notice that T and |λ0|
A are not independent but related by Eq. (10); the

latter is non-zero when |λ0| → 0.

For completeness we mention that the cost functions for the Y-gate and for the population transfer between |0⟩/|1⟩
can be chosen as

CY[u(t);T ] = −1

4

∣∣⟨1|U(u(t))|0⟩ − ⟨0|U(u(t))|1⟩
∣∣2,

CPT[u(t);T ] = −1

2

(∣∣⟨1|U(u(t))|0⟩∣∣2 + ∣∣⟨0|U(u(t))|1⟩∣∣2). (25)

For the Y-gate, the rigorous one-parameter parametrization is obtained by replacing cos
(
ωeff(t−T/2)

)
by sin

(
ωeff(t−

T/2)
)
in Eq. (23) so that u∗ is odd with respect to t = T

2 [i.e., u∗(t− T
2 ) = −u∗(T2 − t)]. This conclusion is obtained

by recognizing UY,bb = eiϕσy and utilizing (UY,bb)
T = −UY,bb = +σxUY,bbσx. For population transfer, the global

phase does not matter so both forms are legitimate and have to be considered.
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(a) (b) 

(d) (c) 

BB-2

BB-4

BB-8 BB-6

FIG. 4: (a) The ratio between the optimal-time and the Rabi π-pulse T ∗/TRabi
π as a function of maximum amplitude umax; this

ratio approaches π/4 when umax → 0. Boundaries between BB-2, BB-4, BB-6, BB-8 are indicated as vertical dashed lines. Only

even number of switchings are allowed for the X-gate because u∗(t) is even with respect to t = T/2. Time-optimal solutions for

the three crosses are given in (b), (c), (d). (b) umax = 0.5 where u∗ is BB-4 and ωeff = 2.0435. (c) umax = 0.2 where BB-8 and

ωeff = 1.9899. (d) umax = 0.1 where BB-16 and ωeff = 1.9979. In (b)-(d), two optimality conditions, a constant Hoc(t) = −|λ0|
and Φ and u∗(t) being opposite in sign, are well satisfied. We purposely choose a gate time slightly shorter than T ∗ so that

|λ0| is small but non-zero [80].

C. Time-optimal solution

In this subsection we present the time-optimal solutions for different values of umax, emphasizing (i) the time

reduction with respect to the Rabi protocol and (ii) the optimality of the one-parameter control Eq. (23). Fig. 4(a)

summarizes the overall behavior: the ratio between the optimal gate time and Rabi π-pulse T ∗/TRabi
π is about 0.8

and approaches π/4 in the umax → 0 limit (proven in next subsection); the optimal protocol is BB with an increasing

number of bangs upon reducing umax. To quantitatively examine the optimal solution, u∗(t) for umax =0.5, 0.2,

0.1 at T ⪅ T ∗(umax) are respectively given in Fig. 4(b), (c), (d) [80]. The optimal control does obey Eq. (23) as

the optimality conditions given in Section IIA are well satisfied. Numerical optimization gives ωeff = 2.0435 for

umax = 0.5; ωeff = 1.9899 for umax = 0.2; ωeff = 1.9979 for umax = 0.1. These values are clearly smaller than their

respective Ω = 2
√

1 + u2max which are respectively 2.236 (umax = 0.5), 2.040 (umax = 0.2) and 2.010 (umax = 0.1).

We further verify the switching function Eq. (24) by determining A from Eq. (11) with |λ0| and ωeff obtained from the

optimal solution. Substituting A and λ0 into Eq. (24) results in a switching function that agrees with that obtained

by a direct evaluation using Eq. (3d) [Fig. 4(b)-(d)].
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D. Small umax limit

We now consider T ∗/TRabi
π in the umax → 0 limit which serves two purposes: first it grants an analytical expression;

second it is the limit where RWA becomes exact so one can convincingly see the necessity of the full calculation for the

time-optimal control. In this limit both T ∗ and TRabi
π diverge but their ratio can be obtained by counting the number

of oscillations over the gate time. Given the natural frequency ω0(= 2), one oscillation in u(t) takes t0 = 2π/ω0(= π).

This period holds for the Rabi π-pulse with arbitrary umax values, but for the BB protocol only when umax → 0. Over

the duration of TRabi
π = π

umax
, the number of oscillations is NRabi =

TRabi
π

t0
= ω0

2umax
= 1

umax
.

To obtain the number of oscillation for the BB protocol Nbb, we consider the following evolution operator over an

oscillation period t0:

UbbX = U(
t0
4
, umax)U(

t0
2
,−umax)U(

t0
4
, umax). (26)

(UbbX)
N represents a BB protocol of the evolution time Nt0. The order of Eq. (26) ensures that (i) the durations of

all middle bangs of (UbbX)
N are identically t0/2 as required by constraint (C1), and (ii) (UbbX)

N is even with respect

to the middle evolution time as required by X-gate. Using Eq. (15) and keeping only the linear order in umax, Eq. (26)

is reduced to

UbbX ≈ −σ0 + 2iumaxσx −→
umax→0

−e−i2umaxσx . (27)

Requiring (UbbX)
Nbb ∼ e−i2umaxNbbσx = cos(2umaxNbb)σ0 − i sin(2umaxNbb)σx ∼ σx up to a phase factor, we get

2umaxNbb = π
2 so that Nbb = π

4
1

umax
= π

4NRabi. The asymptotic ratio is determined by

T ∗

TRabi
π

=
Nbbt0
NRabit0

−→
umax→0

π

4
. (28)

The same ratio is obtained for the Y-gate by considering UbbY = U( t02 , umax)U( t02 ,−umax) ∼ e−i2umaxσy and then

requiring (UbbY)
Nbb ∼ σy.

The constant in Eq. (28) being independent of model parameters indicates that TRabi
π is also an intrinsic charac-

teristic time scale. Indeed TRabi
π is the shortest gate time using a single (resonant) frequency in umax → 0 limit. The

small umax calculation also highlights the importance of the full calculation. As RWA ignores the high frequency

components, it can never obtain the true quantum limit even in the umax → 0 limit.

To sum up, we establish that BB control is the time-optimal protocol for X-gate and the obtained T ∗(umax) is

the shortest gate time given the amplitude constraint umax. This result cannot be obtained using RWA as the high

frequency components are essential in the optimal control. When umax’s are small, the obtained ωeff are close to

ω0 = 2, which is consistent with the resonance behavior. However, BB protocol requires sudden jumps in control at

specific times which may not be realistic, and in Section V we consider a few methods to relax this requirement.

V. SMOOTHING BANG-BANG PROTOCOL

A. Overview

We have established that BB is the time-optimal control for X-gate, and obtain the theoretical minimum gate time

T ∗(umax) for a given amplitude constraint umax. In practice, however, the control amplitude is not the only relevant

constraint. In this Section we address one apparent issue of BB protocol, namely, the high-frequency components

caused by the discontinuities of BB control. We shall consider a few schemes to smooth BB protocol while maintaining

the perfect gate fidelity (i.e., CX + 1 = 0) so that the resulting protocol becomes more feasible.

Let us first describe the role of gate time T . When T < T ∗(umax), CX + 1 is always greater than zero because the

evolution time is too short to complete the gate. At T = T ∗(umax), BB is the only protocol that can complete the

gate. When T > T ∗(umax), there are infinitely many solutions that satisfy CX + 1 = 0, and it is in this time regime

that one can promote the solution based on additional criteria without compromising the gate fidelity.

We propose three methods to smooth the BB protocol for T > T ∗(umax). The first approach is to smooth the

discontinuity in BB protocol in time domain; the second to shorten the gate time of the resonant Rabi protocol
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by introducing higher-frequency components. Numerically, these two approaches are based on optimization in the

restricted functional space; they are less computationally expensive but also harder to generalize. The third one is to

define a cost function that quantifies the smoothness and minimizes it. This method requires solving a constrained

optimization problem; it is more computationally costly but can be straightforwardly generalized to other realistic

considerations.

B. Smoothing BB protocol in time-domain

  (b) (c) (a) 

FIG. 5: (a) 1 + CX(> 0) as a function of normalized time T/TRabi
π with the smoothing parameter β = 4. umax = 0.1 to 0.5

are shown. For umax = 0.1, the cusp around T/TRabi
π = 0.84 comes from an increase in the number switchings. (b) Fourier

transform of u∗(t)/umax with umax = 0.2 [Fig. 4(c)]. T = T ∗ ≈ 3.958π. (c) Fourier transform for the optimal smoothed BB

control where β = 4, T/TRabi
π = 0.88 (T = 4.4π). Insets of (b), (c) provide the wave form of normalized control u(t)/umax.

Our first approach is to replace step function Θ(t) in BB control by hyperbolic tangent function tanh(βt). Specifi-

cally the control protocol is

u(t; {ti}N1 , β) = umax

[ 2N∑
i=1

(−1)i tanh(β(t− ti))− 1

]
with ti = T − t2N+1−i.

(29)

β is the smoothing parameter characterizing the smoothness of the switching: smaller β corresponds to the smoother

switching. The constraint ti = T − t2N+1−i ensures u(t − T
2 ) = u(T2 − t). The number of switchings 2N is fixed by

the resonance condition 2N ≈ T
π/ω0

≈ 2T
π ; (t1, t2, · · · , tN ) and the first N switching times are independent variables

for optimization. The optimization is done using the Nelder-Mead algorithm.

The quantity 1 + CX (zero for the perfect gate) using the smoothing parameter β = 4 as a function of T/TRabi
π for

umax = 0.1 to 0.5 are shown in Fig. 5(a). The minimum times to achieve the perfect gate are all shorter than the

Rabi π-pulse; the change of T/TRabi
π with respect to umax is not monotonic in our calculation. Fig. 5(b) and (c) show

the Fourier transforms of the normalized pure and smoothed BB control protocol at umax = 0.2. The convention of

Fourier transform is chosen as

ũ(fn) =

∫ T

0

dt
u(t)

umax
e−i2πfnt where fn ≡ n

T
. (30)

From Fig. 5(b), one observes that only odd harmonics of ω0 have significant contributions. This is a direct consequence

of constraint (C1), and a heuristic argument based on perturbation calculation is given in Appendix B. With β = 4,

a perfect gate can be achieved when T/TRabi
π ≈ 0.88 where the frequency components higher than 5ω0 are strongly

suppressed.
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  (b) (a) 

FIG. 6: Protocol using only fundamental and third harmonics [Eq. (31)]. (a) The gate time T in TRabi
π (blue, left axis) and the

optimized ratio R (red, right axis) as a function of umax ∈ [0.05, 0.5]. (b) The corresponding optimized control for umax = 0.2

(blue solid curve). The control using only the fundamental frequency, i.e., u(t) = umax cos(ω(t− T
2
)) (orange dashed curve) is

provided as the reference; their difference in absolute value is given by the green dotted curve.

C. Including the third harmonic

As discussed in Appendix B, only odd harmonics of the fundamental frequency have significant contributions to

the evolution when umax is small, we thus consider the protocol that contains first and third harmonic with proper

symmetry:

u(t;ω,R) ≡ umax

[
(1−R) cos

(
ω(t− T

2
)
)
+R cos

(
3ω(t− T

2
)
)]
, where − 1

8
≤ R ≤ 1. (31)

The constraint of R ensures that the maximum amplitude is umax. We minimize CX with respect to both R and ω at

given T and umax, and then scan T to find the evolution time such that CX + 1 = 0. The optimization over R and ω

is done using Nelder-Mead algorithm. As shown in Fig. 6(a), the time reduction is about 5-10% when including the

third harmonic. For umax ∈ [0.05, 0.5], all optimized ω’s are very close to ω0 = 2 (not shown); all optimized R are

negative [right y-axis in Fig. 6(a)], resulting in a flatter profile around the extrema of u(t) compared to that using

single frequency. As an illustration, the controls with and without third harmonic, and their difference, for umax = 0.2

are given in Fig. 6(b). One can see that the third harmonic indeed brings the control closer to BB.

D. Promoting the smoothness by optimization

Our third approach to promote the smoothness is by solving a constrained optimization problem. The starting point

is to select a cost function that quantifies the smoothness; we use Csmooth[u(t)] = 1
2

∫ T

0
dt u̇2(t) which is zero when

u(t) is a constant. Its gradient is δCsmooth

δu(t) = −dt ü if we choose the boundary condition such that u(t)u̇(t)|t=0,T = 0;

we adopt the Neumann boundary condition u̇(0) = u̇(T ) = 0. Because the gate fidelity cannot be compromised, we

consider a constrained optimization problem

min Csmooth[u(t)]
s.t. CX [u(t)]=−1,|u(t)|≤umax

. (32)

The constraint ensures a perfect gate at a given umax. As mentioned in Section VA, this problem is only meaningful

for the evolution time T > T ∗: among the infinitely many u’s that satisfy CX[u(t)] + 1 = 0, |u(t)| ≤ umax, the

optimization promotes the one that minimizes Csmooth[u(t)]. To numerically solve Eq. (32), u(t) is parametrized by a

piece-wise constant function

u(t; {ui}Nt
i=1) ≡

Nt∑
i=1

uiΘ(t− (i− 1)∆t)Θ(i∆t− t) with ∆t =
T

Nt
. (33)
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  (a) (b)

uniform

sinusoidal

FIG. 7: Promoting the smooth solution by solving Eq. (32). Results of umax = 0.2 using Nt = 1000 [Eq. (33)] are shown. (a)

The converged Csmooth[u(t)] for T/TRabi
π ∈ [0.8, 1.0]. The inset shows the convergence for T/TRabi

π = 0.9 starting from two

different initial protocols. (b) The resulting controls for T/TRabi
π = 0.8, 0.9, 1.0 following the procedure outlined in Table I. At

T = TRabi
π = 5π, the converged control matches u(t) = umax cos(ωeff(t− T/2)) (ωeff ≈ 1.995 here).

Using OCT, we have a gradient-based algorithm [68, 72] that efficiently solves CX[u] = −1. In the T > T ∗ regime, the

solution depends on the initial uinit and we use the subscript of uuinit
(t) to indicate that the solution of CX[uuinit

(t)] =

−1 is obtained from the initial control uinit.

Step Description

1 Start with an arbitrary control ũ(0)(t)

update u(n)(t), ũ(n)(t) (n ̸= 1) by the following procedure:

2a Update u(n)(t) by solving CX[u
(n)] = −1 using a gradient-based algorithm

with the initial guess of ũ(n−1)(t); gradient δCX
δu(t)

is computed using Eq. (3d).

2b Update ũ(n) using ũ(n) = u
(n)

ũ(n−1) − du(n) δCsmooth

δu(t)
, where

du(n) is chosen such that max
[
du(n) δCsmooth

δu(t)

]
= umax

5

3. Repeat steps 2a, 2b until |u(n+1)(t)− u(n)(t)| ≤ ε ≡ umax
4000

for all t.

4. Output the converged u(t).

TABLE I: Step-by-step description of the iterative procedure to solve Eq. (32).

We now describe the iterative procedure to solve Eq. (32). At each iteration we introduce u(n) and ũ(n); the former

(without tilde) satisfies the equality constraint whereas the latter (with tilde) does not. At nth iteration, u(n−1),

ũ(n−1) are updated by

CX[u
(n)

ũ(n−1) ] = −1, (34a)

ũ(n) = u
(n)

ũ(n−1) − du(n)
δCsmooth

δu(t)
. (34b)

In Eq. (34), step (34a) imposes the equality constraint and thus gate fidelity whereas (34b) aims to minimize Csmooth.

In Eq. (34a), u
(n)

ũ(n−1) is updated by minimizing CX[u(t)] using a gradient-based algorithm with ũ(n−1) as the initial

control; δCX

δu(t) is computed using Eq. (3d). In Eq. (34b), ũ(n) is updated by moving u
(n)

ũ(n−1) along the − δCsmooth

δu(t) to

minimize Csmooth; the stepsize du(n) is chosen so that the maximum amplitude of du(n) δCsmooth

δu(t) equals to umax

5 . The

iteration starts with an initial ũ(0), and continues until |u(n+1) − u(n)| is smaller than a tolerance (chosen to be
umax

4000 ). Once converged, the optimized control is u(n)(t), not ũ(n), because u(n)(t) is the one that satisfies the equality

constraint and maintains the gate fidelity. The complete procedure is summarized in Table I. The solution from the
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proposed procedure can depend on the hyper-parameters of the iterative solver (mainly the updating rates), but our

numerical tests show the differences are very small for the converged results. It also turns out that Sequential Least

Squares Programming algorithm (SLSQP) [81], a version of sequential quadratic programming [82] implemented in

SciPy (an open-source Python library), gives very similar results.

Results of umax = 0.2, whose T ∗ ≈ 0.78TRabi
π , are shown in Fig. 7. The simulations are done using Nt = 1000 in

Eq. (33) and we have tested the convergence upon increasing Nt. The converged Csmooth for T/TRabi
π ∈ [0.8, 1.0] is

given in Fig. 7(a). The inset shows how Csmooth decreases upon iterating Eq. (34) [step 2 in Table I] starting from

two different initial u(t)’s for T/TRabi
π = 0.9. Fig. 7(b) shows the resulting controls for T/TRabi

π = 0.8, 0.9, 1.0. It is

clearly seen that the longer gate time T leads to the smoother protocol. At T = TRabi
π , the converged protocol well

matches u(t) = umax cos(ωeff(t − T/2)) (ωeff ≈ 1.995), indicating the single-frequency Rabi protocol minimizes the

smoothness cost Csmooth. Once T > TRabi
π = π/umax, the amplitude constraint becomes inactive as the gate can now

be complete with a smaller maximum amplitude.

The formalism provided here can be directly applied to any user-defined cost function. For example, one can use

Cpower = 1
2

∫
dt u2 if the goal is to minimize the total power consumption, or a weighted sum over Cpower and Csmooth if

both smoothness and power consumption are important. Typically the cost function is chosen to have nice properties

such as being differentiable and/or convex. From the practical point of view, OCT provides an efficient evaluation

of the gradient with respect to the cost function which makes the optimization over the free-form parametrization

[Eq. (33)] feasible.

VI. CONCLUSION

We apply OCT to analyze the time-optimal control of pure qubit systems, focusing particularly on the impact of

the amplitude constraint umax on the time-optimal solution. OCT proves to be highly effective in constructing the

time-optimal protocol for qubit because the underlying dynamics is control-affine and time-invariant, and moreover

the qubit only has two real-valued degrees of freedom. By utilizing the general optimality conditions and constraints

specific to the planar control system, the optimal control u∗(t) is shown to be piece-wise constant with 0 (singular

control) and ±umax (bang control) being the only three permitted values. These constraints allow us to use switching

times as the independent variables to parametrize the optimal protocol which greatly reduces the degrees of freedom

for optimization.

Two classes of problems have been considered. We first consider the generic state preparation problem, where the

objective is to guide the qubit from the initial state to the target state in the shortest time. We find that there exists

a state-dependent critical amplitude uc above which the singular control emerges. Below uc the optimal protocol is

BB with the number of switchings increases upon decreasing umax. We then consider the X-gate of a qubit, where

the objective is to complete a state-independent operation in the shortest time. For this task the global phase plays

a crucial role in the sense that the X-gate requires the global phase generated upon steering |0⟩ to |1⟩ to be identical

to that |1⟩ to |0⟩. The time-optimal protocol is found to be BB; no singular control is allowed. Moreover, based on

some symmetry considerations the time-optimal protocol can be rigorously parameterized by a single-variable form.

The minimum gate time T ∗ is approximately 20% shorter than the widely used Rabi π-pulse TRabi
π ; as the sinusoidal

waveform of the Rabi protocol is replaced by square pulses.. When the maximum control amplitude approaches zero,
T∗

TRabi
π

→ π
4 . Since BB protocols contain abrupt discontinuities that may be challenging to implement experimentally,

three exemplary methods are provided to suppress the high-frequency components while maintaining perfect gate

fidelity so that the resulting protocol is more plausible. Considering these factors, the gate time T must be longer

than T ∗, or the gate cannot be completed. The first method is based on smoothing the BB protocol, and the second is

based on adding third harmonic component to the Rabi π-pulse. These two methods are relatively easy to implement

but hard to generalize. The third method is based on a constrained optimization, where the objective is the control

smoothness and the constraint is the perfect gate operation. We developed and numerically tested a procedure to solve

this problem, demonstrating its flexibility in optimizing other user-defined features, such as low power consumption.

Finally, we emphasize that the time-optimal solution extends beyond the Rotating Wave Approximation (RWA).

Even in the limit umax ≪ ω0, obtaining the time-optimal solution requires a full calculation, indicating that the

high-frequency components are essential for accelerating quantum tasks.
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Appendix A: Control field on Bloch sphere

To analyze the dynamics in (θ, ϕ) manifold, we need to map the Hamiltonian in the Schrödinger equation to a

vector field. Any 2× 2 Hermitian matrix is a linear combination of three Pauli matrices and the identity matrix with

the corresponding vector fields [61]:

σz → Vz = 2∂ϕ

σx → Vx = −2 sinϕ∂θ − 2 cosϕ cot θ ∂ϕ

σy → Vy = 2 cosϕ∂θ − 2 sinϕ cot θ ∂ϕ.

(A1)

{∂θ, ∂ϕ} is the basis on the tangent space of (θ, ϕ) manifold. Note that the following commutation relations hold:

[Vz, Vx] = −2Vy, [Vy, Vz] = −2Vx, and [Vx, Vy] = −2Vz. The commutator of two vector fields a = ai∂i and b = bi∂i,

known as Lie bracket, is given by [a, b] = ai∂i(bj∂j)−bi∂i(aj∂j) where repeated indices are summed over. The identity

matrix that generates a global phase has no effect on the dynamical variables (θ, ϕ).

The equation of motion on Bloch sphere for Eq. (5) with a constant u(t) = u is[
θ̇

ϕ̇

]
= Vz + u(t)Vx =

[
−2u sinϕ

2− 2u cosϕ cot θ

]
(A2)

Define [Vz, Vx] = α(θ, ϕ)Vz + β(θ, ϕ)Vx = −2Vy, we get

−2Vy =

[
−4 cosϕ

4 sinϕ cot θ

]
= α

[
0

2

]
+ β

[
−2 sinϕ

−2 cosϕ cot θ

]
⇒ α =

2 cot θ

sinϕ
(A3)

α = 0 implies θ = π/2, the equator of the Bloch sphere. α changes sign at ϕ = 0,±π.
For the planar dynamics introduced in Section IIC, we identify f = 2∂ϕ and g = −2 sinϕ∂θ−2 cosϕ cot θ ∂ϕ. Using

Eq. (41) of Ref. [61] one gets u∗sing = 0. Define X = f − umaxg and Y = f + umaxg, one gets LX(α) = −4umax < 0 and

LY(α) = +4umax > 0. Following the discussion in Section IV.B in Ref. [61] [see also Chapter 2.9.2 in Ref. [3]], α = 0

is indeed the “fast singular arc” that is allowed in the time-optimal protocol.

Appendix B: Heuristics of odd harmonics

Schrödinger’s equation for Eq. (5) in the rotating frame |ψ(t)⟩ = e−iω0t
σz
2 |ψ̃(t)⟩ is

i∂t

[
C̃1

C̃2

]
=

[
0 u(t)e+iω0t

u(t)e−iω0t 0

][
C̃1

C̃2

]
. (B1)

where [C̃1, C̃2]
T = |ψ̃(t)⟩. We consider u(t) = V1 cos(ωt) +

∑
N=2 VN cos(Nωt) with the initial condition C̃1(0) = 0,

C̃2(0) = 1. When t is small, i∂tC̃1 = u(t)e+iω0tC̃2 ≈
[
V1 cos(ωt) +

∑
N=2 VN cos(Nωt)

]
e+iω0t; a direct integration

gives

C̃1(t) ≈
V1
2

[
1− ei(ω0−ω)t

ω0 − ω
+

1− ei(ω0+ω)t

ω0 + ω

]
+
∑
N

VN
2

[
1− ei(ω0−Nω)t

ω0 −Nω
+

1− ei(ω0+Nω)t

ω0 +Nω

] (B2)

Near resonance ω0 ∼ ω, the dominant contribution is the first term. As terms in the square bracket always come in

pair, to have any effect on the second term (∼ (ω0 +ω)−1), we need to add N = 3 terms. Similarly to have any effect
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on the ∼ (ω0 + 3ω)−1 term, we need to add N = 5 terms. For this reason the odd harmonics of the fundamental

frequencies are expected to be dominant. It is reminded that the OCT analysis leading to Eq. (12) consistently implies

the dominant contributions are from odd harmonics of ωeff whose value is close to ω0.
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