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Abstract— We propose E-UHTP, an enhanced task planner
for collaborative assembly in communication-free human-robot
environments. E-UHTP extends User-aware Hierarchical Task
Planning (UHTP) by supporting joint actions, failure recovery,
and online replanning. We introduce an automatic Hierarchical
Task Network (HTN) generation method from annotated video
demonstrations. Experimental simulations in multiple assembly
scenarios demonstrate the improved performance, flexibility,
and robustness of E-UHTP over baseline planners.

I. INTRODUCTION

Technological innovation has profoundly reshaped the
industrial landscape, integrating advanced automation and ar-
tificial intelligence into manufacturing processes. Among the
most promising developments is Human-Robot Collaboration
(HRC), a paradigm that combines the distinctive abilities
of human workers, such as dexterity and decision-making,
with the precision, strength, and repeatability of robots.
Unlike traditional industrial robots, collaborative robots, or
cobots, are designed to safely share workspaces with humans,
enhancing workflow efficiency without the need for physical
barriers.

A particularly significant area for HRC is collaborative as-
sembly. Assembly processes typically involve long sequences
of subtasks, alternating between heavy manipulations and
delicate operations. These processes demand efficient co-
ordination between humans and robots, continuous moni-
toring of actions, and dynamic task planning to manage
the sequential dependencies and constraints. However, most
existing frameworks rely on strict predefined plans [1]–[3]
or explicit communication between partners [4]–[6], which
can reduce naturalness, flexibility, and overall collaboration
efficiency. In real human teams, intentions are often inferred
by observing actions rather than through constant verbal
exchanges, and ideally, robots should exhibit similar adaptive
capabilities.

An important step in this direction is the User-aware
Hierarchical Task Planning (UHTP) framework [7], a com-
munication free solution for human-robot collaborative as-
sembly. UHTP enables the robot to observe the human
partner and autonomously plan its actions without relying on
predefined paths or explicit human models. By continuously
monitoring the state of the assembly and the human’s actions,
UHTP selects optimal actions that respect task constraints
while leaving the human free to act naturally. This improves
adaptability and interpretability, addressing the limitations of
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methods that force the human to follow prescribed plans or
require constant communication.

While UHTP represents a valuable advance, it does not
address two critical aspects of collaborative assembly: the
execution of joint actions and the management of failures.
Joint actions, where the human and robot perform simulta-
neous or interdependent tasks, frequently occur in realistic
assembly environments but are unsupported in the original
UHTP formulation. Additionally, UHTP assumes a flawless
execution of tasks, whereas in practice, unexpected events
and failures are inevitable and need to be handled effectively
to maintain workflow efficiency.

Moreover, UHTP relies on a Hierarchical Task Network
(HTN) [8] to represent and manage collaborative assem-
bly processes. HTNs organize actions to be executed in a
multi-level structure that encodes sequential or independent
relationships between subtasks. Due to their modularity,
clarity, and interpretability, they are particularly effective for
planning, in particular when generating and updating task
plans based on ongoing observations of the human partner’s
actions. Nonetheless, manually deriving HTNs remains a
laborious, expertise-dependent process, especially for com-
plex assemblies involving numerous actions and complex
dependencies.

This work proposes an extension of UHTP that overcomes
the aforementioned limitations. The first contribution is the
development of a novel algorithm for automatically deriv-
ing HTNs directly from annotated video demonstrations,
streamlining the creation of structured, hierarchical task
descriptions for complex assemblies. Building upon this, the
second and core contribution involves extending the UHTP
planner to handle joint actions, enabling the robot to perform
synchronized or complementary operations with the human
partner. Furthermore, a failure management mechanism is in-
tegrated into the planner, allowing the robot to autonomously
detect, manage, and replan around unexpected events without
requiring explicit communication.

The proposed system retains the optimization-based, in-
terpretable nature of UHTP while enhancing its flexibility
and robustness in dynamic collaborative settings. Simulated
assembly experiments confirm that the extended framework
improves task success rates, adaptability, and efficiency
compared to baseline approaches. Together with random toy
cases, we simulate the assembly of an IKEA chair as one
of the use cases for the proposed algorithm, whose HTM is
reported in Fig. 2.



II. BACKGROUND

Assembly problems can be seen as a hierarchical set
of actions, which must be executed in compliance with a
set of ordering constraints. We assume actions to be either
individual or joint actions. Individual actions can be executed
by a single agent, either the human or the robot. Joint actions
must be executed by both agents together. Moreover, we
assume the human to be an uncontrolled agent, to which
the robot should adapt.

A. Hierarchical Task Networks

Hierarchical Task Networks are a well-established for-
malism for representing procedural knowledge, particularly
suited for planning problems. An HTN decomposes a com-
plex assembly task into a hierarchy of simpler subtasks. The
network typically consists of non-primitive tasks, which need
further decomposition, and primitive tasks, which correspond
to executable actions. Subtasks can be ordered, imposing
sequential constraints, or unordered, allowing for parallel
execution or flexible ordering.

Fig. 1. Example HTN. Nodes represent tasks (internal nodes) or primitive
actions (leaves). Ordering constraints are expressed through Partially Ori-
ented (PO) or Fully Oriented (FO) nodes.

We represent HTNs as trees. A pictorial example of HTN
is reported in Figure 1. The root represents the overall
assembly goal. Internal nodes can be non-primitive tasks
requiring decomposition or control nodes specifying exe-
cution constraints. We utilize two primary control nodes:
Fully Ordered (FO) nodes, whose children must be executed
sequentially from left to right, and Partially Ordered (PO)
nodes, whose children can be executed in any order or
potentially in parallel, provided their individual preconditions
are met. Primitive actions form the leaves of the tree. An
assembly is considered completed when all the primitive
actions have been completed.

B. User-aware Hierarchical Task Planning (UHTP)

The UHTP framework [7] adapts HTN planning for
communication-free collaborative assembly. It extends the
standard HTN structure by assigning potential actors (human
or robot) and associated costs (e.g., execution time) to
primitive actions. If an action can be performed by either

agent, it is represented by a Decision (D) node (see Figure
2) with agent-specific primitive action nodes as children.

Fig. 2. Example HTN representing a chair assembly. Nodes represent
tasks (internal nodes) or primitive actions (leaves). Ordering constraints are
expressed through Partially Oriented (PO) or Fully Oriented (FO) nodes.

The core idea of UHTP is to enable the robot to plan
its actions by considering the current human’s actions and
all their possible future choices, without needing to predict
them accurately or rely on communication. The workflow of
UHTP is reported in Algorithm 1. The assembly HTN (H ) is
first extended by adding D-nodes and computing costs. Costs
are calculated recursively bottom-up. Primitive node cost is
its intrinsic cost (e.g. expected time duration). Decision node
cost is a probability-weighted sum of its children’s costs,
assuming the agents’ probabilities as known parameters. FO
node cost is the sum of its children’s costs. PO node cost
calculation requires considering bounds; the cost is typically
between the maximum child cost (perfect parallelism) and
the sum of child costs (sequential execution), often approx-
imated or calculated based on expected overlap.

When the human completes an action, the HTN is updated
by pruning branches corresponding to the completed action
and any now-invalid alternatives. When the robot becomes
idle, its next action is selected by evaluating all the currently
available robot actions, pruning the tree for each potential
choice, calculating the aggregated cost of the remaining sub-
tree, and finally selecting the action leading to the minimum
expected total cost.

Then, the robot keeps observing the human’s actions and
uses this information to prune the HTN, effectively updating
the current state of the assembly. Then, it calculates the
expected cost-to-go for completing the remaining tasks for
each possible sequence of actions. Finally, it selects the
action that minimizes this expected cost, thereby adapting
its strategy based on the human’s progress and choices. This
allows for mutual adaptation, where both agents influence the
task execution flow without explicit coordination signals.

The innovation of the UHTP framework is represented by
the combination of the Action Optimization and the HTN



tree pruning. Optimization over trees, indeed, could become
particularly expensive, in particular for long-lasting and com-
plex assemblies. Removing all the impossible sequences each
time an action is selected represents a simple yet effective
solution to maintain the complexity tractable. Due to space
constraints, we refer the interested reader to [7] for a detailed
description of the UHTP methods.

Algorithm 1 UHTP program flow
1: function UHTP(H )
2: H UHT P← ASSIGNACTIONS(H )
3: COMPUTECOSTS(H UHT P)
4: ah← idle
5: ar← idle
6: while H UHT P is not empty do
7: a′h← ACTIVITYRECOGNITION()
8: if a′h ̸= ah then
9: H UHT P.REMOVE(ah)

10: PRUNEBRANCHES(H UHT P), a′h)
11: ah← a′h
12: end if
13: if robot is idle then
14: H UHT P.REMOVE(ar)
15: ar← SELECTMINACTION(H UHT P)
16: PRUNEBRANCHES(H UHT P)
17: EXECUTE(ar)
18: end if
19: end while
20: end function

III. METHODOLOGY

In this Section, we present our contributions: an algorithm
for HTN construction from demonstrations and the E-UHTP.

A. HTN Construction from Annotated Videos

Automating HTN generation reduces manual effort and
can capture realistic task structures. Our approach takes as
input a dataset of annotated videos representing successful
assembly executions. Each video is represented as a sequence
of tuples, where each tuple contains the actions being per-
formed simultaneously by the human and the robot, or ‘idle’
if an agent is inactive. Each action is described by its name,
its duration in time units, and the agent performing it. Joint
actions are represented by identical action names for both
agents in a tuple. An example of a tuple regarding the chair
assembly example is reported below.

(["attach left leg",[3],["human"]],
["attach right leg",[2],["robot"]])

The algorithm proceeds in two main stages. First, it
extracts action requirements, that is, for each primitive action
observed in the dataset, the algorithm determines the set of
other actions that must be completed before it can start.
To this aim, for each video sequence, a list of actions
completed so far is maintained. When an action occurs,
the set of already completed actions represents the potential

set of preconditions. By analyzing multiple videos showing
different valid execution paths, the algorithm identifies the
necessary preconditions for each action as the intersection of
the sets of completed actions observed just before the action
starts. An example of the results returned by this process is
reported below for one of the actions of the chair example.
The list reports the action name, the nominal durations
extracted from the videos, the agents able to perform the
action, and the requirements.

["attach back to seat",
[5,7],
["human","robot"],
["attach right leg",
"attach left leg",
"attach back",
"flip seat"]]

Second, the algorithm constructs the HTN tree structure
based on the requirements. Note that, while the requirements
set derived from an HTN is unique, multiple valid HTN
structures might be possible from a given set of requirements,
depending on how subtasks are grouped. Our approach
constructs one of the possible HTNs. The construction pro-
ceeds bottom-up from the leaves (primitive actions). Actions
with no requirements can be placed first. Actions whose
requirements are fully met by the actions already placed
in a partially constructed subtree can then be added. If an
action has been seen to be performed by both a human and
a robot, a decision node is created. When multiple actions
become available simultaneously (i.e., their requirements are
met by the same set of completed actions), they are grouped
under a PO node if their requirements do not impose a se-
quence between them, signifying potential parallelism. If the
requirements dictate a specific order, instead, they are placed
sequentially under a FO node. This process recursively builds
the tree until the root node, representing the final assembly
goal, is reached.

B. Extended UHTP Framework Implementation

Our task planning implementation builds upon the UHTP
concepts, extending them with failure recovery and joint
action handling.

Failure Recovery is implemented to handle unexpected
action failures. We assume failures to be detected by the
monitoring system. Furthermore, for simplicity, we assume
that each primitive action has a corresponding recovery
action to be executed in case of failure. The problem of
making the robot autonomous in deciding how to handle
failures is an attractive yet very complex aspect, which is
left as possible future work. To handle failures, we introduce
a novel node type called Recovery (R) node. Upon failure
detection, the failed action node is temporarily removed from
the HTN, and an R-node is inserted into the HTN as a
child of the failed action’s parent. This R-node has its own
associated cost and duration and may represent tasks like
picking up a dropped part or correcting a misalignment.
The completion of the recovery task triggers the re-insertion



of the original failed action node into the HTN, allowing
it to be attempted again when its requirements are met.
The framework ensures that subsequent dependent actions
cannot proceed until the recovery and the original action
are successfully completed. The mechanism described above
makes the HTN vary dynamically, according to the outcomes
of the monitoring system, which introduces more flexibility
and robustness to the framework. Note that this mechanism
can be easily extended to handle any kind of unpredictable
event, such as human changes of mind or agents’ inabilities
to complete a task.

Joint Actions are incorporated to account for tasks requir-
ing simultaneous effort. In order to address joint actions, in
the E-UHTP framework, we enrich primitive actions with
an additional agent, hereafter denoted joint. We assume that
only the human agent can initiate a joint action. When the
human initiates a joint action, the system checks the robot’s
status. If the robot is idle, it immediately starts executing the
same joint action, synchronized with the human. If the robot
is busy with another task, it completes the ongoing task first
and then joins the human in to perform the joint action.
Failures during joint actions are handled by the standard
recovery mechanism, potentially requiring both agents to
perform the recovery together.

IV. EXPERIMENTAL EVALUATION

We conducted simulation experiments to validate the pro-
posed methods. To simulate the assembly tasks, we modeled
the human as a random agent. The duration of the actions is
modeled as a Gaussian distribution with nominal values of
the action duration as mean and a standard deviation set to
5 % of the nominal duration.

A. Failure Recovery Robustness Evaluation

To assess the robustness introduced by the failure recovery
mechanism, we simulated task executions under varying
conditions of uncertainty. We considered the chair assembly
task, systematically increasing the probability of failure
for each primitive action from 10% up to 50%. For each
probability level, 100 runs were performed, recording the
total task completion time. Table I reports the completion
times. As expected, the mean and variance of the completion
time increase with higher failure probabilities, reflecting the
time spent on recovery actions and re-attempts. Despite the
increased execution time, the extended UHTP framework
successfully completed the assembly task in all simulation
runs across all tested failure rates and task complexities. This
demonstrates that the implemented recovery process ensures
task completion, enhancing the framework’s robustness.

TABLE I
E-UHTP COMPLETION TIME AT DIFFERENT FAILURE PROBABILITIES

ON THE CHAIR EXAMPLE

Failure Probability [%] 10% 20% 30% 40% 50%
Task Completion Time [s] 27 28 34 40 46

B. Planning Policy Comparison

We evaluated the efficiency of the E-UHTP framework
against two baseline policies: a Greedy policy, where the
robot selects the available action with the lowest immediate
cost (duration), and a Random policy, where the robot
randomly selects among its currently available actions.

We ran 1000 simulations for each policy on three differ-
ent tasks: the chair assembly and two randomly generated
tasks with 16 and 32 actions, respectively, featuring varying
requirement complexities. Within the randomly generated
tasks, we also randomly included joint actions. Table II
presents the mean task completion times. Across all tested
scenarios, the E-UHTP policy consistently achieved the
lowest average completion time. While the Greedy policy
performed better than Random, it was often suboptimal, as
minimizing immediate cost does not guarantee minimizing
total assembly time. The E-UHTP policy’s ability to consider
the aggregated cost of the remaining task tree allowed for
making more globally efficient decisions, effectively coor-
dinating with the unpredictable human agent to minimize
overall duration. The standard deviation was also generally
comparable or lower for E-UHTP, suggesting consistent
robustness to randomization.

TABLE II
TASK COMPLETION TIME COMPARISON

Policy 16 Actions 32 Actions Chair
Greedy Policy 178.75 ± 11.10 340.71 ± 14.21 22.52 ± 0.65
Random Policy 187.38 ± 12.33 344.26 ± 14.60 22.95 ± 0.42
E-UHTP Policy 172.26 ± 7.08 331.10 ± 11.32 22.16 ± 0.26

V. CONCLUSIONS

This paper addressed key challenges in task representation
and planning for human-robot collaborative assembly within
a communication-free setting. We introduced two main con-
tributions to enhance the flexibility and robustness of such
systems. First, we developed and validated an algorithm
capable of automatically constructing Hierarchical Task Net-
work representations from annotated video demonstrations.
Second, we presented an extension of the state-of-the-art
UHTP framework, named E-UHTP. E-UHTP incorporates
mechanisms for handling joint actions and for recovering
from action failures. The framework maintains the core
UHTP principle of optimizing robot actions based on ag-
gregated costs while treating the human as an unpredictable
agent, thus avoiding restrictive human modeling or explicit
communication requirements.
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