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Abstract
To enable untethered volumetric services, one of the primary challenges lies in reconstruct-
ing a high-quality 3D point cloud for each user, despite variations in channel conditions and
bandwidth availability. Conventional digital point cloud coding approaches, such as tree-
based or graph-based methods, reduce transmission data effectively; however, they are prone
to quality degradation due to lossy compression and entropy coding, especially under fluc-
tuating channels and limited bandwidth. To address these limitations, we propose a novel
scheme inspired by deep joint source-channel coding (DJSCC). DJSCC compresses the 3D
point cloud into coded symbols, which are then decoded via a graph auto-encoder (GAE)
architecture. Additionally, the coded symbols are directly mapped to transmission symbols
through analog modulation, allowing the point cloud quality to adapt dynamically to each
user’s channel conditions. Unlike existing DJSCC schemes, our proposed scheme includes a
non-uniform dropout mechanism that provides a rateless feature, enabling the point cloud
quality to enhance based on the available bandwidth progressively. Experimental results
with a point cloud dataset demonstrate that the proposed scheme mitigates quality degra-
dation due to variations in channel quality and bandwidth better than the existing DJSCC
scheme. Moreover, the proposed scheme shows improved generalization performance, leading
to superior point cloud quality in narrow-band scenarios.

IEEE Access 2025

c© 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139





Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Rateless Deep Joint Source Channel
Coding for 3D Point Cloud
SHOICHI IBUKI1,(Non Member, IEEE), TSUBASA OKAMOTO1,(Non Member, IEEE), TAKUYA
FUJIHASHI1, (Member, IEEE), TOSHIAKI KOIKE-AKINO2, (Member, IEEE) TAKASHI
WATANABE1, (Member, IEEE),
1Graduate School of Information Science and Technology, Osaka University, Osaka 565–0871, Japan
2Mitsubishi Electric Research Laboratories (MERL), Cambridge, MA, USA

Corresponding author: Shoichi Ibuki (e-mail: ibuki.shoichi@ist.osaka-u.ac.jp).

S. Ibuki’s work was supported by JSPS KAKENHI Grant Number and JP22H03582.

ABSTRACT To enable untethered volumetric services, one of the primary challenges lies in reconstructing
a high-quality 3D point cloud for each user, despite variations in channel conditions and bandwidth availabil-
ity. Conventional digital point cloud coding approaches, such as tree-based or graph-based methods, reduce
transmission data effectively; however, they are prone to quality degradation due to lossy compression and
entropy coding, especially under fluctuating channels and limited bandwidth. To address these limitations,
we propose a novel scheme inspired by deep joint source-channel coding (DJSCC). DJSCC compresses the
3D point cloud into coded symbols, which are then decoded via a graph auto-encoder (GAE) architecture.
Additionally, the coded symbols are directly mapped to transmission symbols through analog modulation,
allowing the point cloud quality to adapt dynamically to each user’s channel conditions. Unlike existing
DJSCC schemes, our proposed scheme includes a non-uniform dropout mechanism that provides a rateless
feature, enabling the point cloud quality to enhance based on the available bandwidth progressively.
Experimental results with a point cloud dataset demonstrate that the proposed scheme mitigates quality
degradation due to variations in channel quality and bandwidth better than the existing DJSCC scheme.
Moreover, the proposed scheme shows improved generalization performance, leading to superior point
cloud quality in narrow-band scenarios.

INDEX TERMS Point cloud, Deep Joint Source-Channel Coding

I. INTRODUCTION

The integration of virtual and physical worlds facilitates more
precise simulations, supports informed decision-making, and
enhances interactivity, propelling advancements in areas
such as smart manufacturing and immersive experiences. To
achieve this, volumetric content, including three-dimensional
(3D) point clouds [1], plays a crucial role in replicating
virtual or physical environments on remote devices. The
3D point cloud format is commonly used to represent 3D
geometric information, comprising a collection of 3D points,
each defined by coordinates (X, Y, Z). Transmitting 3D point
clouds over wireless and mobile networks offers the capa-
bility to recreate these environments on multiple untethered
devices. However, as these devices are mobile and operate
in varied surroundings, they may encounter differing channel
conditions and bandwidth availability. The difficulty in wire-

less point cloud transmission lies in ensuring the delivery of
high-quality point clouds to multiple untethered users despite
variations in channel quality and bandwidth constraints.

A common approach employs digital joint source-channel
coding, where the point cloud undergoes sequential digital
compression and transmission. In this process, digital com-
pression encodes the 3D coordinates of the point cloud into a
bitstream in a lossy manner. Specifically, tree-based coding
like point cloud library (PCL) [2], [3] and Draco [4] are
commonly employed to compress the 3D coordinates. In
addition, the graph-based point cloud compression (PCC)
treats a point cloud as a graph signal and uses graph signal
processing (GSP) [5], [6] for compression [7]–[9]. In the
transmission phase, redundancy is added to the bitstream
through channel coding, followed by bit-to-symbol mapping
to enhance transmission resilience. Here, the transmitter ad-
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justs source and channel coding parameters based on the
channel quality observed across multiple users, ensuring that
the number of transmission symbols matches the lowest
available bandwidth among users.

While the combination of digital compression and trans-
mission is ideal for point-to-point communication [10], it
leads to quality degradation for each user due to bandwidth
variability and fluctuating channel conditions. Generally, the
encoding parameters for 3D coordinates are set to match the
transmission rate to the minimum available bandwidth across
users, preventing playback stalls. This approach, however,
restricts reconstruction quality since any extra bandwidth
available to certain users does not contribute to quality im-
provements. Moreover, unstable channel quality may drop
and even cap the reconstructed point cloud quality. Specifi-
cally, despite the use of channel coding, users do not decode
the point cloud if the signal-to-noise ratio (SNR) or signal-to-
interference-plus-noise ratio (SINR) falls below a required
threshold. Additionally, while some users may experience
better channel quality than others, it does not enhance the
point cloud quality, as quantization errors remain unrecover-
able on the user side.

Recently, DJSCC [11]–[14], also known as semantic com-
munication, has emerged as a method for overcoming the
limitations of digital-based schemes under fluctuating chan-
nel conditions. Inspired by analog joint source channel cod-
ing (JSCC) [15]–[19], these schemes aim to address the
challenges posed by wireless channel instability. Existing
DJSCC schemes use an auto-encoder (AE) architecture based
on deep convolutional neural networks (DCNN) [20]–[22].
This architecture encodes each image into a fixed number of
coded symbols, which are then mapped directly to in-phase
(I) and quadrature-phase (Q) modulation for transmission.
The AE architecture reconstructs the image, text, or video
content from the received symbols. We introduced a graph
auto-encoder (GAE) architecture [23] based on graph neural
networks (GNN) [24], [25] specifically for DJSCC in 3D
point cloud transmission, as illustrated in Fig. 1. These
DJSCC schemes combine lossy compression through the AE
architecture with direct symbol mapping, enabling adaptive
reconstruction quality that aligns with real-time channel con-
ditions and avoids decoding failures.

However, in conventional AE designs, all coded symbols
are treated equally, which can result in quality degradation,
especially in multi-user settings. When users have differing
bandwidth availability, the number of coded symbols from
the AE architecture is set to match the maximum bandwidth
among the users. Users with limited bandwidth then receive
fewer symbols, leading to significant quality degradation.

Existing schemes for wireless and mobile channels often
lead to quality degradation and saturation due to unstable
channel conditions and varying bandwidth among users. To
address these issues, this paper introduces a novel DJSCC
scheme for untethered point cloud transmission. To accom-
modate bandwidth diversity, the proposed scheme incorpo-
rates a rateless property within the GAE architecture, inspired

by the weighted dropout approach [26]. In the proposed
GAE architecture, weighted dropout is applied during model
training to adjust the relative importance of each coded
symbol. This weighted dropout introduces unequal signifi-
cance across the symbols, allowing the proposed scheme to
transmit symbols progressively to users. Consequently, each
user can gradually enhance the quality of the reconstructed
point cloud, depending on the available bandwidth.

Evaluations on a point cloud dataset demonstrate that the
rateless property in the proposed scheme enables a gradual
improvement in the reconstructed point cloud quality, tai-
lored to the bandwidth availability of each user. In contrast,
the existing GAE-based DJSCC scheme shows a substantial
quality loss for users who lack sufficient bandwidth to receive
all coded symbols.

The contributions of this study are as follows:

• We present the first GAE architecture specifically de-
signed to address channel quality fluctuations and band-
width variations among users.

• Our scheme incorporates a weighted dropout mecha-
nism based on the power function during the train-
ing phase, enabling the proposed GAE architecture to
achieve a rateless property.

• We enhance the point cloud quality by adding a random
feature [27] to each node in the GAE architecture,
thereby improving quality without increasing transmis-
sion traffic.

In our preliminary work [28], we evaluated the proposed
architecture using point clouds from a single category to
highlight its foundational performance. However, if the archi-
tecture performs effectively only within the trained category,
it would require a separate trained decoder for each point
cloud category.

In contrast, this paper examines the generalization capa-
bilities of the proposed GAE architecture. To this end, we
train with point clouds from all categories, demonstrating
that the rateless property reduces bandwidth requirements to
achieve consistent 3D reconstruction quality across various
categories. Moreover, the proposed scheme employs a uni-
fied decoder architecture to reconstruct multiple point cloud
categories, effectively reducing communication overhead for
point cloud reconstruction.

II. RELATED WORK
A. DEEP JOINT SOURCE CHANNEL CODING
Recent studies [11], [12] have developed DJSCC schemes
for wireless multimedia delivery. The DCNN-based AE ar-
chitecture presented in [11] represents a foundational work
in DJSCC. This architecture encodes images into latent vari-
ables through a series of two-dimensional (2D) convolution
layers with Leaky rectified linear unit (ReLU) activation.
These latent variables are then power-normalized for wireless
transmission. The received variables are processed through a
series of 2D deconvolution layers to reconstruct pixel values,
with the AE architecture trained using an mean squared
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FIGURE 1. Schematics of the proposed graph-based DJSCC scheme.

error (MSE) loss function. Various studies have since ex-
perimented with alternative encoder-decoder architectures,
including transformers [29], swin transformers [30], self-
attention [31], [32], cross-attention [33], pre-trained gen-
erative adversarial networks (GAN) generator [34], feed-
back mechanisms [35], layered decoders [36], and channel-
guided decoders [37]–[39] to enhance quality. Others have
introduced semantic loss functions like multi-scale structural
similarity index measure (MS-SSIM) [40] and learned per-
ceptual image patch similarity (LPIPS) [41] to improve the
perceptual quality of reconstructed images.

The proposed scheme contributes to the DJSCC frame-
work by targeting 3D point clouds. While existing stud-
ies [23], [42]–[44] have developed deep graph convolutional
networks (DGCN) and 2D/3D convolutional networks for
point cloud encoding and decoding, our study uniquely
integrates power function-based weighted dropout into the
DJSCC scheme. This integration enables a rateless prop-
erty in the coded symbols, enhancing generalization across
diverse point cloud categories, particularly in bandwidth-
constrained environments.

B. ANALOG JOINT SOURCE CHANNEL CODING
Analog JSCC schemes have been developed for wireless
multimedia delivery to counteract quality degradation from
fluctuating channel conditions [45]. A seminal work in
this area is SoftCast [15], designed specifically for video
transmission. SoftCast applies 3D-discrete cosine transform
(DCT) to video signals and scales the coefficients before ana-
log modulation, ensuring that the quality of the reconstructed
video adapts proportionally to real-time channel conditions.
Other studies [46]–[48] have refined these schemes with a
focus on human visual perception, such as optimizing scaling
operations in CV-Cast [48] to enhance accuracy for com-
puter vision tasks rather than minimizing pixel distortion.
Research [17], [49]–[52] has further extended analog JSCC
to immersive and volumetric content. For example, Holo-
Cast [50]–[52] employed graph Fourier transform (GFT)

for energy-efficient compression of 3D point clouds before
analog modulation.

In line with these developments, our goal is to enable
wireless 3D point cloud transmission that mitigates quality
degradation and saturation due to channel variability. To
achieve this, we propose a GAE architecture with a rateless
property, which converts 3D point clouds into coded sym-
bols. While both HoloCast and our scheme utilize GSP for
JSCC, the proposed GAE architecture minimizes communi-
cation overhead during point cloud decoding by eliminating
the need to share the graph basis matrix, a requirement that
imposes significant overhead in GFT-based JSCC.

III. SYSTEM MODEL
In the system model, the transmitter sends a point cloud
consisting of N 3D points, and the user reconstructs the same
point cloud, maintaining N 3D points. The main objectives of
this communication process are twofold: 1) to compress and
decompress the point cloud using either traditional or neural
networks (NN)-based encoding and decoding modules, and
2) to reconstruct the point cloud while addressing challenges
posed by wireless channels, including fluctuating channel
quality and varying bandwidth availability.

A. TRANSMITTER
The proposed system model is depicted in Figs. 2 (a) and
(b). At the transmitter, the input is treated as a graph signal,
where a 3D point cloud is represented as an unweighted,
undirected graph G = (P , E ,W ). In this graph, P and E
represent the sets of vertices and edges, respectively, with 3D
points serving as vertices, and each point’s 3D coordinates
p = [x, y, z]T ∈ R3 as vertex attributes. To define con-
nections among vertices, we employ a K-nearest neighbor
graph. The adjacency matrix W holds positive edge weights,
with a binary structure indicating either 1 (connection) or 0
(no connection).

The attribute of 3D coordinates for N points is given by
P = [p1,p2, . . . ,pN ]T ∈ RN×3, which is then mapped
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FIGURE 2. Proposed end-to-end transmitter and user in training and testing phases for wireless point cloud delivery.

into symbols, x, for transmission over physical channels.
The transmitter is composed of a point cloud encoder and
a rateless encoder. The point cloud encoder uses a graph
convolutional neural networks (GCNN), while the rateless
encoder is based on weighted dropout, applied only during
the training phase (Fig. 2 (a)). This setup provides a rateless
property to the point cloud encoder’s coded symbols in
the testing phase (Fig. 2 (b)). Let α represent the GCNN
parameters for the point cloud encoder and d the weighted
dropout distribution. The encoded symbol sequence, x, in the
training and testing phases can be defined as follows:

x =

{
T

(C)
d (T

(S)
α (P)), training phase

T
(S)
α (P), testing phase

(1)

where T
(S)
α (·) and T

(C)
d (·) denote the point cloud encoder

and rateless encoder with respect to parameters α and dis-
tribution d, respectively. Finally, the transmitted symbols
x ∈ Rk are normalized to satisfy the average transmit
power constraint P , where k is the length of the symbols.
Specifically, the normalization for the transmitted symbols x
is according to:

x̂ = x ·
√

kP∑
xi∈x x2

i

, (2)

such that the power-normalized symbols x̂ satisfy the average
transmit power constraint P . It ensures that the average
power of the transmitted symbols remains within a constraint
typically imposed by system design specifications or regula-
tory standards.

The power-normalized symbols, x̂, were transmitted di-
rectly over a physical channel, bypassing the traditional bit-
to-symbol mapping by mapping the symbols directly to I and
Q components for analog modulation. The wireless channel,
represented by η, processes the input x̂ and produces the
received signal y. If h is the channel coefficient, then the
channel transfer function from the transmitter to the receiver
can be modeled as:

y = η(x̂) =

{
hx̂+ n received

0 missed
(3)

where n ∼ CN (0, Iσ2) is a vector of additive white Gaus-
sian noise (AWGN) with mean zero and variance σ2, I is
the identity matrix, ∼ denotes “distributed as”, and CN (a, b)
represents a complex Gaussian distribution with mean a
and variance b. Symbols that are missed due to insufficient
bandwidth are treated as zeros by the receiver.
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FIGURE 3. Proposed GAE structure.

B. RECEIVER
The receiver is equipped with a point cloud decoder that
is responsible for reconstructing the point cloud from the
received symbols. Let β represent the NN parameters of the
point cloud decoder. The decoded point cloud, P̂, can be
derived from the received signal, y, as follows:

P̂ = R
(S)
β (y) (4)

where R
(S)
β (·) denotes the point cloud decoder with respect

to the parameters β.
The objective of the proposed scheme is to reconstruct the

3D coordinates of the point cloud as accurately as possible
relative to the original coordinates. This is treated as a signal
reconstruction task, aiming to minimize the errors between
the original point cloud P and the reconstructed point cloud
P̂. The chamfer distance (CD) LCD(α,β) is employed as
the loss function to measure the distance between P and P̂,
defined as:

LCD(α,β)

=
1

2

{
1

|P|
∑
p∈P

min
p̂∈P̂

∥p− p̂∥2 +
1

|P̂|

∑
p̂∈P̂

min
p∈P

∥p− p̂∥2
}
,

(5)

The term minp̂∈P̂ ||p− p̂||2 ensures that each 3D coordinate
p in the original point cloud P finds a close match in the
reconstructed point cloud P̂, while the term minp∈P ||p −
p̂||2 enforces the same matching condition in the reverse
direction.

IV. PROPOSED SCHEME
We designed a GAE architecture to address the challenges
posed by varying channel quality and bandwidth availability
among multiple users. Fig. 3 shows the detail of the proposed
GAE architecture. The architecture includes a set of GCNN
for the point cloud encoder, power function-based weighted
dropout for the rateless encoder, and a multi layer perceptron
(MLP) for the point cloud decoder. The weights of the
encoder and decoder architectures in the proposed system
are trained offline using a point cloud dataset and simulated

channels, such as AWGN. Once the proposed encoder and
decoder are fully trained, the trained decoder is shared with
the receiver to decode the received coded symbols transmit-
ted from the transmitter.

A. POINT CLOUD ENCODER
The input to the proposed point cloud encoder, denoted as
P ∈ RN×3, consists of the 3D coordinates of a point
cloud with N points. This point cloud is sampled from the
dataset D, which contains point clouds grouped into specific
categories, such as airplanes, bags, and chairs.

Additionally, the proposed scheme introduces random fea-
tures r ∈ RNr with Nr features generated from a uni-
form distribution. Previous work [27] has shown that adding
random features enhances the theoretical capacity of GNN
architectures for various tasks. Following these findings, ran-
dom features R = [r1, r2, . . . , rN ]T are concatenated with
the input P, forming CONCAT([P,R]) ∈ RN×Nr , where
CONCAT([·, ·]) represents concatenation along the feature
dimension.

The concatenated features were processed through the
GCNN-based point cloud encoder. This encoder comprises
three consecutive graph convolution layers, each followed by
a leaky ReLU (LReLU) activation function, with trainable
parameters α, where each layer aggregates neighboring node
features to sum up the features from the local neighborhood.
Using the adjacency matrix W , the graph convolution layers
extract graph signal features, while the nonlinear activation
function enables learning a nonlinear mapping from the
source signals to the coded symbols. The encoder produces
L channel features, b ∈ RN×L, from P, where L depends on
the configuration of the graph convolutions.

B. RATELESS ENCODER
The rateless encoder then transforms the features b into
coded symbols x ∈ RNL and normalizes these symbols to
satisfy the power constraint ∥x∥2 = P .

To achieve the rateless property, the rateless encoder
applies non-uniform dropout to the coded symbols during
training. This non-uniform dropout is applied across the
width of the coded symbols, with increasing dropout rates
assigned to each symbol. This approach prioritizes the up-
per coded symbols during testing, providing a progressive
quality enhancement. The dropout rates are controlled by
adjusting with a power function τγ , where τ represents the
compression rate, and γ is an order parameter. Specifically,
the rateless encoder first determines the dropout ratio as τγ ,
where τ follows a uniform distribution within the range [0,
1], with a pre-determined order parameter γ. For example,
a dropout ratio of 0.2 indicates that 80% of the last coded
symbols are dropped, whereas a ratio of 0.8 means that only
20% of the last coded symbols are dropped during training.
Based on the dropout ratio, the encoder generates a binary
mask for NL coded symbols to determine which symbols are
retained or dropped, applying the mask with a computational
complexity of O(NL). This complexity is equivalent to that
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of a simple (i.e., uniform) dropout. A previous study [26]
has shown that this power function performs effectively, and
thus, we adopt it for dropout configuration in the subsequent
evaluations.

The channel transfer function η takes the reshaped power-
normalized symbols x̂ as input and produces the received
signal y at the user, as defined in Eq. (3). During the training
phase, the proposed scheme synthetically simulates all poten-
tial distortions arising from channel coefficients and additive
noise to learn optimized weights that minimize the CD over
wireless channels.

C. POINT CLOUD DECODER
The received signal y ∈ RNL is processed by the point cloud
decoder, transforming it into b̂ ∈ RN×L. The decoder con-
sists of three consecutive fully connected (FC) layers: the first
two layers are followed by leaky ReLU (LReLU) activation
functions, while the final layer employs a hyperbolic tangent
(tanh) activation function, and a trainable parameter set β.

The point cloud decoder maps the received symbols b̂ into
an estimate of the 3D coordinates P̂ ∈ RN×3. The CD loss
function is computed at the user and back-propagated to the
transmitter, allowing simultaneous updates to the trainable
parameters of both the point cloud encoder and decoder.

V. PERFORMANCE EVALUATION
A. SIMULATION SETTINGS
Datasets: We use the ShapeNet benchmark dataset [54] for
our experiments. ShapeNet includes approximately 17,000
3D point clouds across 16 categories: Airplane, Bag, Cap,
Car, Chair, Earphone, Guitar, Knife, Lamp, Laptop, Motor-
bike, Mug, Pistol, Rocket, Skateboard, and Table. The dataset
is split into training and test sets at a 9:1 ratio. Training
data is used for network weight optimization, while test data
assesses reconstruction quality.
Quality Metric: The CD defined in Eq. 5 is used to evaluate
the quality of the reconstructed 3D coordinates.
Wireless Environment: Unless otherwise mentioned, we
simulate AWGN channels with noise power σ2 ranging from
0 dB to −30 dB. The point cloud encoder and decoder are
trained in deep graph joint source-channel coding schemes
under wireless channel signal-to-noise ratios (SNR) of 10 dB
or 20 dB. In Sec. VI-A, we consider Rayleigh fading chan-
nels. In such channels, the fading coefficient h follows a
zero-mean complex Gaussian distribution h ∼ CN (0, Iσ2).
GAE Architecture: Our GAE architecture is implemented
using PyTorch Geometric (PyG) [55]. Table 1 outlines the
parameter configurations for the point cloud encoder, rate-
less encoder, and point cloud decoder in the deep graph
joint source-channel coding schemes, including the proposed
scheme and GNNCast [23]. The number of random features
Nr is set to one. At the start of training, the trainable
parameters α and β of the encoder and decoder are initialized
by default setting of PyTorch and tuned to minimize Eq. (5).
We utilize the adaptive momentum (ADAM) optimizer for
training, with an initial learning rate of 0.0005, a batch size
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FIGURE 4. CD under the different user’s available bandwidth.

of 1, a momentum of 0.9, and a momentum2 of 0.999, and a
training duration of 200 epochs.

B. EFFECT OF BANDWIDTH AND CHANNEL QUALITY
HETEROGENEITY
To evaluate the impact of the rateless property, we compare
the reconstructed point cloud quality across users with vary-
ing available bandwidths. The baseline for comparison is the
DJSCC scheme, GNNCast [23], which utilizes a GCNN-
based point cloud encoder and an MLP-based point cloud
decoder. The quality improvement in the proposed scheme
primarily arises from the integration of the rateless encoder.
We assess two variants for training both GNNCast and the
proposed scheme: 1) training on point clouds from the “air-
plane” category only, and 2) training on point clouds from all
16 categories.

Figs. 4 (a) and (b) display the CD of the proposed and
baseline schemes under different user bandwidth constraints.
In these evaluations, the SNR of the wireless channel is fixed
at 10 dB and 20 dB for training and testing in Fig. 4 (a)
and (b), respectively. The results indicate that the proposed
scheme, trained on point clouds from all categories, con-
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TABLE 1. Parameter settings of the existing and proposed deep graph joint source-channel coding.

Point cloud encoder Rateless encoder Point cloud decoder

graph convolutions output channels
in each layer activation order γ output channels

in each layer activation

Proposed GraphConv [53] [48,48,48] Leaky ReLU 1.0 [48,48,48] Leaky ReLU
GNNCast GraphConv [53] [48,48,48] Leaky ReLU 0.0 [48,48,48] Leaky ReLU

(a) Original (b) GNNCast (Airplane)
Bandwidth: 60 KSymbols
CD: 0.00734

(c) GNNCast (All)
Bandwidth: 60 Ksymbols
CD: 0.01337

(d) Proposed (Airplane)
Bandwidth: 60 Ksymbols
CD: 0.00847

(e) Proposed (All)
Bandwidth: 60 Ksymbols
CD: 0.01076

(f) GNNCast (Airplane)
Bandwidth: 30 Ksymbols
CD: 0.06199

(g) GNNCast (All)
Bandwidth: 30 Ksymbols
CD: 0.11445

(h) Proposed (Airplane)
Bandwidth: 30 Ksymbols
CD: 0.00837

(i) Proposed (All)
Bandwidth: 30 Ksymbols
CD: 0.01079

(j) GNNCast (Airplane)
Bandwidth: 10 Ksymbols
CD: 0.11277

(k) GNNCast (All)
Bandwidth: 10 Ksymbols
CD: 0.18380

(l) Proposed (Airplane)
Bandwidth: 10 Ksymbols
CD: 0.05473

(m) Proposed (All)
Bandwidth: 10 Ksymbols
CD: 0.01545

FIGURE 5. Snapshots of reconstructed 3D point clouds under the different available bandwidths at wireless channel SNR of 10 dB.

TABLE 2. BD-CD values across proposed and baseline schemes

Method SNR (dB) BD-CD
Proposed (Train: All) vs.

GNNCast (Train: All)
10 -0.1560
20 -0.0891

Proposed (Train: All) vs.
GNNCast (Train: Airplane)

10 -0.0679
20 -0.0530

Proposed (Train: All) vs.
Proposed (Train: Airplane)

10 -0.0103
20 -0.0087

sistently maintains high reconstruction quality, even with
limited bandwidth, for both channel SNRs. In contrast, the

proposed scheme trained on “airplane” point clouds provides
optimal performance when the available bandwidth is up to
34.7% and 25.5% of the maximum bandwidth requirement
at channel SNRs of 10 dB and 20 dB, respectively. However,
the reconstruction quality sharply declines when bandwidth
availability drops further.

For GNNCast trained on the “airplane” category, the high-
est quality is achieved when the user receives all coded
symbols. However, as bandwidth limitations increase, recon-
struction quality diminishes due to the loss of essential coded
symbols necessary for accurate reconstruction.
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(a) Original (b) GNNCast (Airplane)
Bandwidth: 60 Ksymbols
CD: 0.00473

(c) GNNCast (All)
Bandwidth: 60 Ksymbols
CD: 0.00516

(d) Proposed (Airplane)
Bandwidth: 60 Ksymbols
CD: 0.00532

(e) Proposed (All)
Bandwidth: 60 Ksymbols
CD: 0.00728

(f) GNNCast (Airplane)
Bandwidth: 30 Ksymbols
CD: 0.08413

(g) GNNCast (All)
Bandwidth: 30 Ksymbols
CD: 0.18101

(h) Proposed (Airplane)
Bandwidth: 30 Ksymbols
CD: 0.00526

(i) Proposed (All)
Bandwidth: 30 Ksymbols
CD: 0.00738

(j) GNNCast (Airplane)
Bandwidth: 10 Ksymbols
CD: 0.14082

(k) GNNCast (All)
Bandwidth: 10 Ksymbols
CD: 0.24259

(l) Proposed (Airplane)
Bandwidth: 10 Ksymbols
CD: 0.01957

(m) Proposed (All)
Bandwidth: 10 Ksymbols
CD: 0.01088

FIGURE 6. Snapshots of reconstructed 3D point clouds under the different available bandwidths at wireless channel SNR of 20 dB.

For the rate-distortion (R-D) performance assessment, we
computed the Bjøntegaard delta Chamfer distance (BD-CD)
[56] in Figs.4 (a) and (b) to quantify the average difference
in CD between R-D curves over the same range of avail-
able bandwidth. Negative BD-CD values indicate quality
improvements achieved by the proposed scheme over the
baseline schemes within the evaluated bandwidth range. For
the calculation, we used R-D curves within the bandwidth
range of [618, 61,728] symbols.

Table 2 summarizes the BD-CD values for the proposed
scheme, trained on all categories, compared to baseline
schemes under channel SNRs of 10 and 20 dB. The results
demonstrate that the proposed scheme achieves the highest
3D reconstruction quality across both narrowband and broad-
band environments, outperforming the baseline schemes.

Figs. 5 and 6 present snapshots of the original and re-
constructed point clouds under varying user bandwidths at

channel SNRs of 10 dB and 20 dB, respectively. When
user bandwidth is sufficient, GNNCast achieves the high-
est performance. However, the proposed schemes exhibit
minimal visual quality degradation. When the bandwidth
is reduced to 30 Ksymbols, GNNCast experiences severe
degradation, resulting in reconstructed point clouds that no
longer resemble the airplane shape, whereas the proposed
schemes retain the shape at this bandwidth level. At a further
reduced bandwidth of 10 Ksymbols, the proposed scheme
trained on the airplane category suffers noticeable distor-
tion, while the scheme trained on all categories preserves
the visual quality, especially at a channel SNR of 20 dB.
In the proposed scheme trained on the airplane category,
the reconstructed 3D point clouds experience non-uniform
missing points, particularly in the tail and left wing, as shown
in Fig. 6 (l). Detailed evaluations reveal that the 3D points of
the tail are the first to be lost at a bandwidth of 15 Ksymbols,
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(c) Trained SNR: 10dB, User’s bandwidth: 10 Ksymbols
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(d) Trained SNR: 20dB, User’s bandwidth: 10 Ksymbols

FIGURE 7. CD as a function of wireless channel SNRs under the different available bandwidths.

followed by additional losses in the left wing at a bandwidth
of 13 Ksymbols.

In practical wireless settings, users encounter varying
channel quality. We evaluate how channel diversity impacts
reconstruction quality. Figs. 7 (a) through (d) show the CD
as a function of channel SNR across different bandwidth
conditions. Specifically, the available bandwidth is set to
60 Ksymbols in Figs. 7 (a) and (b), and 10 K symbols
in Figs. 7 (c) and (d), ensuring a fair comparison across
schemes. In Figs. 7 (a) and (c), each scheme is trained at a
channel SNR of 10 dB, while Figs. 7 (b) and (d) use a training
SNR of 20 dB. The key observations are:

• In broadband environments, GNNCast trained on “Air-
plane” point clouds performs best, indicating that the
rateless encoder in the proposed scheme may slightly
degrade quality for users who can receive all coded
symbols.

• When trained at the channel SNR of 20 dB, reconstruc-
tion quality is superior in high-SNR environments but
degrades at lower SNR regimes.

• Even in band-limited environments, the proposed

scheme gradually improves CD as channel quality in-
creases, while GNNCast suffers due to discarded critical
symbols.

• When trained at 10 dB, the proposed scheme trained
on all categories consistently achieves the best quality
across varying SNRs.

These results suggest that the proposed scheme trained on all
categories demonstrates resilience to both bandwidth limita-
tions and low-quality channels.

C. EFFECT OF CONTENT HETEROGENEITY
The previous evaluations assume that the user requests a
point cloud from the “airplane” category. In this section, we
analyze reconstruction quality across different categories of
3D point clouds, specifically “chair” and “bag.” For compar-
ison, we include a baseline, “Proposed (Fine-tune)”, where
the proposed scheme is initially trained on “airplane” point
clouds and then fine-tuned using “bag” or “chair” categories
to evaluate generalization performance.

Figs. 8 (a) and (b) show the CD results for the baseline
and proposed schemes across varying bandwidths and point
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FIGURE 8. CD under different available bandwidths and point cloud
categories: Bag and Chair. Here, the channel SNR in the training and testing
phases is fixed at 20 dB.

cloud categories, with the channel SNR fixed at 20 dB for
both training and testing. The key observations are:

• When the user’s requested point cloud belongs to a
different category (e.g., “chair” or “bag”), the proposed
scheme trained on all categories achieves the highest
reconstruction quality for users with limited bandwidth.

• While the fine-tuned model provides comparable re-
construction quality to the proposed scheme in broad-
band environments, it suffers from degraded quality in
narrow-band scenarios.

Finally, Figs. 9 and 10 present snapshots of the original and
reconstructed “bag” and “chair” point clouds under varying
bandwidth conditions at a channel SNR of 20 dB, respec-
tively. As seen in Figs. 5 and 6, GNNCast exhibits substan-
tial visual quality degradation for narrow-band users, while
the proposed scheme trained on all categories maintains
the shape of the reconstructed point cloud under the same
bandwidth constraints. The visual quality of the fine-tuned
model remains comparable at a bandwidth of 30 Ksymbols
but displays clear visual distortion at 10 Ksymbols for both
“bag” and “chair” point clouds.

D. ABLATION STUDY

Effect of Weighted/Unweighted Dropout Mechanism
Fig. 11 shows the performance of the proposed scheme with
unweighted, i.e., uniform, and weighted dropout mechanisms
under different available bandwidths. The proposed weighted
dropout prioritizes the upper encoded symbols, preserving
high 3D reconstruction quality in narrow-band environments.

Additionally, Fig. 12 discusses the effect of the order
parameter γ on 3D reconstruction quality as a function of
the available bandwidth. We consider γ values of 0.5, 1.0,
and 2.0. The proposed scheme with γ = 0.5 achieves the
highest 3D reconstruction quality when the number of coded
symbols exceeds 30,000, i.e., in a broadband environment.
However, the quality drops sharply when the number of
coded symbols falls below 15,000 in a narrow-band envi-
ronment. Conversely, with γ = 2.0, the 3D reconstruction
quality remains stable even when the available bandwidth
is reduced to 10,000 coded symbols. Nonetheless, when the
number of coded symbols exceeds 30,000, the reconstruction
quality at γ = 2.0 is lower than that of γ = 0.5.

VI. DISCUSSION
A. DISCUSSION ON FADING CHANNELS

In the above sections, the proposed scheme considered that
the coded symbols are transmitted over AWGN wireless
channels. However, the coded symbols are often transmitted
via fading channels, such as Rayleigh fading channels.

To reduce the impact of fading, the proposed scheme can
utilize two equalization techniques for the coded symbols:
pre-equalization at the transmitter and post-equalization at
the receiver. Let x̂i, hi, and ni be i-th power-normalized
symbol x̂ and corresponding fading coefficient h and effec-
tive noise n. In the pre-equalization, the power-normalized
symbol x̂i is pre-equalized as x̄i = wix̂i, where wi is the
pre-equalizer weight. Although there are many variants of
pre-equalizer, we consider a simple coherent: wi = h∗

i /|hi|,
where [·]∗ denotes the conjugate operation. With this ap-
proach, the channel transfer function becomes η(x̂i) =
|hi|x̂i + ni. In the post-equalization, the receiver takes zero-
forcing post-equalization to counteract fading attenuation.
Here, the received symbol yi is equalized as ŷi = yi/hi using
the estimated fading coefficient hi. In this case, the channel
transfer function is η(x̂i) = x̂i + ni/hi.

In addition, a precoding method can be integrated with the
equalization techniques. Specifically, it sorts the symbols x̂
according to the fading levels |hi| in ascending order. This
sorting may facilitate optimizing the best-coded symbols to
leverage diversity gain for quality enhancement.

Fig. 13 shows the effect of equalization and precoding
methods on the performance of the proposed and GNNCast
schemes in Rayleigh fading channels. Here, the channel SNR
is set to 20 dB. We can see the following observations:

• Post-equalization achieves better CD compared with the
pre-equalization.
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(a) Original (b) GNNCast (Bag)
Bandwidth: 60 Ksymbols
CD: 0.01478

(c) Proposed (Bag)
Bandwidth: 60 Ksymbols
CD: 0.02315

(d) Proposed (Fine-tune)
Bandwidth: 60 Ksymbols
CD: 0.01006

(e) Proposed (All)
Bandwidth: 60 Ksymbols
CD: 0.01012

(f) GNNCast (Bag)
Bandwidth: 30 Ksymbols
CD: 0.18089

(g) Proposed (Bag)
Bandwidth: 30 Ksymbols
CD: 0.02386

(h) Proposed (Fine-tune)
Bandwidth: 30 Ksymbols
CD: 0.00999

(i) Proposed (All)
Bandwidth: 30 Ksymbols
CD: 0.00998

(j) GNNCast (Bag)
Bandwidth: 10 Ksymbols
CD: 0.25703

(k) Proposed (Bag)
Bandwidth: 10 Ksymbols
CD: 0.12165

(l) Proposed (Fine-tune)
Bandwidth: 10 Ksymbols
CD: 0.02708

(m) Proposed (All)
Bandwidth: 10 Ksymbols
CD: 0.01416

FIGURE 9. Snapshots of reconstructed 3D point clouds of “bag” category under the different available bandwidths at wireless channel SNR of 20 dB.

• Precoding in ascending order maintains superior 3D
reconstruction quality, particularly in narrow-band en-
vironments.

These results highlight the effectiveness of post-equalization
in improving overall performance and demonstrate the uti-
lization of precoding for optimizing 3D reconstruction qual-
ity under challenging channel conditions.

B. DISCUSSION ON COMPUTATIONAL COSTS
The proposed scheme encodes and decodes the given point
clouds with a certain number of 3D point clouds. This section
evaluates the computational cost of the proposed scheme in
terms of encoding and decoding time, comparing it with ex-
isting digital-based and recent DJSCC schemes for different
scales of point clouds. For this purpose, we used point clouds
from the ShapeNet (airplane category), KITTI, and longdress
datasets, which contain an average of 2,572, approximately

51,000, and 858,000 3D points, respectively. We prepared
PCL, Draco, GNNCast, and the point cloud-based semantic
communication system (PCSC) [57] for comparison. PCL
and Draco are digital-based schemes. PCL provides three
compression profiles: “LOW”, “MED”, and “HIGH”. Draco
determines the degree of compression for 3D coordinates
using the “qp” parameter, where a larger qp value indicates
higher 3D reconstruction quality. The default setting is qp 11.
PCSC is a DJSCC scheme for point clouds based on 3D con-
volutional networks and voxelization. We set the voxelization
of PCSC to 64 × 64 × 64, following the default setting
in [57]. For GNNCast and the proposed scheme, we measure
the average encoding and decoding times when transmitting
coded symbols ranging from 100% to 1% to the decoder.

Table 3 shows the average encoding and decoding times
(in milliseconds) for different point clouds, measured as the
mean of ten independent runs. We can see the following key
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(a) Original (b) GNNCast (Chair)
Bandwidth: 60 Ksymbols
CD: 0.00774

(c) Proposed (Chair)
Bandwidth: 60 Ksymbols
CD: 0.00828

(d) Proposed (Fine-tune)
Bandwidth: 60 Ksymbols
CD: 0.00846

(e) Proposed (All)
Bandwidth: 60 Ksymbols
CD: 0.00894

(f) GNNCast (Chair)
Bandwidth: 30 Ksymbols
CD: 0.10376

(g) Proposed (Chair)
Bandwidth: 30 Ksymbols
CD: 0.00811

(h) Proposed (Fine-tune)
Bandwidth: 30 Ksymbols
CD: 0.00833

(i) Proposed (All)
Bandwidth: 30 Ksymbols
CD: 0.00896

(j) GNNCast (Chair)
Bandwidth: 10 Ksymbols
CD: 0.20714

(k) Proposed (Chair)
Bandwidth: 10 Ksymbols
CD: 0.03336

(l) Proposed (Fine-tune)
Bandwidth: 10 Ksymbols
CD: 0.01201

(m) Proposed (All)
Bandwidth: 10 Ksymbols
CD: 0.01282

FIGURE 10. Snapshots of reconstructed 3D point clouds of “chair” category under the different available bandwidths at wireless channel SNR of 20 dB.

TABLE 3. Encoding and decoding times for different point clouds.

Proposed GNNCast PCSC PCL Draco
LOW MED HIGH qp:7 qp:11

ShapeNet
Category: Airplane
(Avg. 2573 points)

Enc. time
(ms) 2.189 × 100 1.925 × 100 4.684 × 103 2.018 × 100 2.962 × 100 7.464 × 100 1.476 × 100 2.626 × 100

Dec. time
(ms) 1.259 × 101 1.906 × 101 3.779 × 105 8.839 × 10−1 1.631 × 100 6.248 × 100 6.831 × 10−1 1.307 × 100

KITTI
Seq:00-00

(51240 points)

Enc. time
(ms) 1.940 × 100 1.918 × 100 1.333 × 104 7.233 × 101 9.117 × 101 1.503 × 102 1.003 × 101 2.046 × 101

Dec. time
(ms) 3.828 × 102 3.719 × 102 6.925 × 105 5.764 × 101 6.960 × 101 1.466 × 102 7.407 × 100 1.669 × 101

KITTI
Seq:01-00

(50807 points)

Enc. time
(ms) 1.915 × 100 1.918 × 100 2.106 × 104 7.577 × 101 8.867 × 101 1.568 × 102 1.069 × 101 2.043 × 101

Dec. time
(ms) 3.895 × 102 3.538 × 102 1.229 × 106 6.026 × 101 7.430 × 101 1.539 × 102 8.963 × 100 1.808 × 101

KITTI
Seq:02-00

(51249 points)

Enc. time
(ms) 2.196 × 100 2.000 × 100 1.584 × 104 7.203 × 101 8.750 × 101 1.545 × 102 9.936 × 100 2.120 × 101

Dec. time
(ms) 2.466 × 102 2.894 × 102 8.677 × 105 5.666 × 101 6.925 × 101 1.442 × 102 9.026 × 100 1.627 × 101

8iVFB v2
longdress

(857966 points)

Enc. time
(ms) 3.333 × 100 3.259 × 100 8.063 × 104 1.762 × 103 1.944 × 103 3.140 × 103 1.834 × 102 3.611 × 102

Dec. time
(ms) 3.865 × 104 3.918 × 104 2.874 × 106 1.584 × 103 1.748 × 103 3.043 × 103 6.582 × 101 1.462 × 102

observations:

• When the 3D points were sampled from the ShapeNet
dataset, the encoding and decoding times of the pro-

posed scheme were on a similar scale, i.e., several mil-
liseconds, compared to the low-delay PCL and Draco
baselines.
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FIGURE 11. Effect of the unweighted and the proposed weighted dropout at
channel SNR of 20 dB.
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FIGURE 12. CD of the proposed scheme under different order parameter γ in
weighted dropout at channel SNR of 20 dB.

• The computational cost of the proposed scheme and
GNNCast is comparable since the computational com-
plexity of the simple dropout and the proposed weighted
dropout is equivalent.

• The encoding and decoding times of the PCSC are more
than 103 through 104 times longer than those of the
proposed scheme, respectively, when using the same
ShapeNet point clouds.

• For large-scale point clouds from KITTI and 8iVFB
v2, the encoding time of the proposed scheme is even
shorter than that of the PCL and Draco baselines. How-
ever, the decoding delay is approximately ten times
longer than the baselines, indicating that the proposed
scheme requires sufficient decoding capability on the
user’s device.

• Although the gap between the proposed and PCSC
schemes becomes smaller at a large-scale 3D point
cloud, both the encoding and decoding times of the
PCSC scheme remain significantly higher.
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FIGURE 13. CD as a function of available bandwidths in Rayleigh fading
channels. Here, channel SNR at 20 dB.
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FIGURE 14. CD of proposed scheme variants when the “airplane” category is
trained/untrained by proposed GAE architecture

C. DISCUSSION ON UNSEEN CATEGORY
This section examines the potential of the proposed scheme
for untrained categories of point clouds. To this end, we
introduced an additional baseline. Specifically, we trained the
proposed GAE architecture using 15 categories, excluding
the airplane point clouds, and then evaluated its performance
using the trained GAE architecture.

Fig. 14 shows the performance of the proposed scheme
variants when evaluated on airplane point clouds. When
trained with all categories, the proposed scheme achieves
superior 3D reconstruction quality in narrow-band environ-
ments. Interestingly, even when trained with only 15 cate-
gories, it still maintains acceptable 3D reconstruction quality
for the airplane point clouds, despite them being an unseen
category. These results demonstrate the robustness of the
proposed scheme and its potential to achieve acceptable
3D reconstruction quality for previously unseen point cloud
categories.

VII. CONCLUSION AND FUTURE WORK
We have introduced a novel graph-based DJSCC scheme
designed for future 3D applications. This scheme combines a
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GCNN-based point cloud encoder, a power function-based
rateless encoder, an MLP-based point cloud decoder, and
analog modulation to address challenges such as decod-
ing failures, quality saturation from quantization, and qual-
ity limitations due to bandwidth diversity. Our evaluations
demonstrate that the proposed scheme gradually enhances
point cloud quality with improvements in channel conditions
and available user bandwidth, enabled by the rateless prop-
erty. Furthermore, this rateless capability supports general-
ization across diverse point cloud categories, lowering the
bandwidth needed to achieve equivalent 3D reconstruction
quality compared to existing DJSCC schemes.

In future work, we will evaluate and train the proposed
scheme using alternative metrics, such as perceptual metrics.
For this purpose, we consider Wasserstein distance and sliced
Wasserstein distance [58], the latter being a low-cost approx-
imation of the former. These metrics are widely recognized
for their ability to quantify similarity between two point
clouds and have recently been adopted as perceptual quality
metrics [59]. Perception-aware metrics can effectively guide
the training of the proposed scheme, potentially addressing
the limitations of CD in penalizing global structure errors.
Further exploration and optimization of such quality metrics
to enhance 3D reconstruction quality remain as future work.

REFERENCES
[1] A. Xiao, J. Huang, D. Guan, X. Zhang, S. Lu, and L. Shao, “Unsupervised

point cloud representation learning with deep neural networks: A survey,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45,
no. 9, pp. 11 321–11 339, 2023.

[2] J. Kammerl, N. Blodow, R. B. Rusu, S. Gedikli, M. Beetz, and E. Stein-
bach, “Real-time compression of point cloud streams,” in IEEE Interna-
tional Conference on Robotics and Automation, 2012, pp. 778–785.

[3] D. Graziosi, O. Nakagami, S. Kuma, A. Zaghetto, T. Suzuki, and
A. Tabatabai, “An overview of ongoing point cloud compression stan-
dardization activities: Video-based (v-pcc) and geometry-based (g-pcc),”
APSIPA Transactions on Signal and Information Processing, vol. 9, 2020.

[4] “Draco 3D data compression,” 2022. [Online]. Available:
https://google.github.io/draco/

[5] A. Ortega, P. Frossard, J. Kovacevic, J. M. F. Moura, and P. Vandergheynst,
“Graph signal processing: Overview, challenges, and applications,” Pro-
ceedings of the IEEE, vol. 106, no. 5, pp. 808–828, 2018.

[6] T. Fujihashi and T. Koike-Akino, “Graph-based EEG signal compression
for human–machine interaction,” IEEE Access, vol. 12, pp. 1163–1171,
2024.

[7] P. de Oliveira Rente, C. Brites, J. Ascenso, and F. Pereira, “Graph-
based static 3D point clouds geometry coding,” IEEE Transactions on
Multimedia, vol. 21, no. 2, pp. 284–299, 2019.

[8] J. Zhang, Y. Chen, G. Liu, W. Gao, and G. Li, “Efficient point cloud
attribute compression framework using attribute-guided graph fourier
transform,” in IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2024, pp. 8426–8430.

[9] N. Miyata, T. Fujihashi, T. Takahashi, S. Saruwatari, and T. Watanabe,
“Point cloud geometry and attribute transmission over MIMO channels,”
in IEEE Vehicular Technology Conference, 2024, pp. 1–7.

[10] C. E. Shannon, “Channels with side information at the transmitter,” IBM
journal of Research and Development, vol. 2, no. 4, pp. 289–293, 1958.

[11] E. Bourtsoulatze, D. B. Kurka, and D. Gunduz, “Deep joint source-channel
coding for wireless image transmission,” IEEE Transactions on Cognitive
Communications and Networking, vol. 5, no. 3, pp. 567–579, 2019.

[12] H. Wu, A. Wang, J. Liang, S. Li, and P. Li, “DCSN-Cast: deep compressed
sensing network for wireless video multicast,” Signal Processing: Image
Communication, vol. 76, pp. 56–67, 2019.

[13] D. Gündüz, Z. Qin, I. E. Aguerri, H. S. Dhillon, Z. Yang, A. Yener, K. K.
Wong, and C.-B. Chae, “Beyond transmitting bits: Context, semantics,

and task-oriented communications,” IEEE Journal on Selected Areas in
Communications, vol. 41, no. 1, pp. 5–41, 2022.

[14] Z. Qin, X. Tao, J. Lu, W. Tong, and G. Y. Li, “Semantic communications:
Principles and challenges,” arXiv preprint arXiv:2201.01389, 2021.

[15] S. Jakubczak and D. Katabi, “A cross-layer design for scalable mobile
video,” in ACM Annual International Conference on Mobile Computing
and Networking, 2011, pp. 289–300.

[16] J. Shen, L. Yu, L. Li, and H. Li, “Foveation based wireless soft image
delivery,” IEEE Transactions on Multimedia, vol. 20, no. 10, pp. 2788–
2800, 2018.

[17] J. Zhao, R. Xiong, and J. Xu, “Omnicast: Wireless pseudo-analog trans-
mission for omnidirectional video,” IEEE Journal on Emerging and Se-
lected Topics in Circuits and Systems, vol. 9, no. 1, pp. 58–70, 2019.

[18] T. Fujihashi, T. Koike-Akino, T. Watanabe, and P. V. Orlik, “High-quality
soft video delivery with gmrf-based overhead reduction,” IEEE Transac-
tions on Multimedia, vol. 20, no. 2, pp. 473–483, 2018.

[19] ——, “FreeCast: Graceful free-viewpoint video delivery,” IEEE Transac-
tions on Multimedia, vol. 21, no. 4, pp. 1000–1010, 2019.

[20] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a gaussian
denoiser: Residual learning of deep CNN for image denoising,” IEEE
Transactions on Image Processing, vol. 26, no. 7, pp. 3142–3155, 2017.

[21] Y. Chen and T. Pock, “Trainable nonlinear reaction diffusion: A flexible
framework for fast and effective image restoration,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 39, no. 6, pp. 1256–1272,
2017.

[22] Y. Tai, J. Yang, X. Liu, and C. Xu, “Memnet: A persistent memory network
for image restoration,” in IEEE International Conference on Computer
Vision (ICCV), 2018, pp. 4549–4557.

[23] T. Fujihashi, T. K. Akino, S. Chen, and T. Watanabe, “Wireless 3D point
cloud delivery using deep graph neural networks,” in IEEE International
Conference on Communications, 2021, pp. 1–6.

[24] C. T. Duong, T. D. Hoang, H. H. Dang, Q. V. H. Nguyen, and K. Aberer,
“On node features for graph neural networks,” arXiv e-prints, pp. 1–6,
Nov. 2019.

[25] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A
comprehensive survey on graph neural networks,” IEEE transactions on
neural networks and learning systems, vol. 32, no. 1, pp. 4–24, 2020.

[26] T. Koike-Akino and Y. Wang, “Stochastic bottleneck: Rateless auto-
encoder for flexible dimensionality reduction,” in IEEE International
Symposium on Information Theory (ISIT), 2020, pp. 2735–2740.

[27] R. Sato, M. Yamada, and H. Kashima, “Random features strengthen graph
neural networks,” in Proceedings of the SIAM International Conference on
Data Mining, 2021, pp. 333–341.

[28] S. Ibuki, T. Okamoto, T. Fujihashi, T. Koike-Akino, and T. Watanabe,
“Rateless deep graph joint source channel coding for holographic-type
communication,” in IEEE Global Communications Conference, 2023, pp.
3330–3335.

[29] H. Wu, Y. Shao, C. Bian, K. Mikolajczyk, and D. Gündüz, “Deep joint
source-channel coding for adaptive image transmission over mimo chan-
nels,” IEEE Transactions on Wireless Communications, 2024.

[30] K. Yang, S. Wang, J. Dai, X. Qin, K. Niu, and P. Zhang, “SwinJSCC:
Taming swin transformer for deep joint source-channel coding,” IEEE
Transactions on Cognitive Communications and Networking, 2024.

[31] T.-Y. Tung, D. B. Kurka, M. Jankowski, and D. Gündüz, “DeepJSCC-
Q: Channel input constrained deep joint source-channel coding,” in IEEE
International Conference on Communications, 2022, pp. 3880–3885.

[32] J. Xu, B. Ai, W. Chen, A. Yang, P. Sun, and M. Rodrigues, “Wireless image
transmission using deep source channel coding with attention modules,”
IEEE Transactions on Circuits and Systems for Video Technology, vol. 32,
no. 4, pp. 2315–2328, 2021.

[33] S. Wang, K. Yang, J. Dai, and K. Niu, “Distributed image transmission us-
ing deep joint source-channel coding,” in IEEE International Conference
on Acoustics, Speech and Signal Processing, 2022, pp. 5208–5212.

[34] E. Erdemir, T.-Y. Tung, P. L. Dragotti, and D. Gündüz, “Generative joint
source-channel coding for semantic image transmission,” IEEE Journal on
Selected Areas in Communications, vol. 41, no. 8, pp. 2645–2657, 2023.

[35] D. B. Kurka and D. Gündüz, “DeepJSCC-f: Deep joint source-channel
coding of images with feedback,” IEEE Journal on Selected Areas in
Information Theory, vol. 1, no. 1, pp. 178–193, 2020.

[36] ——, “Bandwidth-agile image transmission with deep joint source-
channel coding,” IEEE Transactions on Wireless Communications, vol. 20,
no. 12, pp. 8081–8095, 2021.

14 VOLUME 4, 2016



Ibuki et al.: Rateless Deep Joint Source Channel Coding for 3D Point Cloud

[37] M. Yang, C. Bian, and H.-S. Kim, “Deep joint source channel coding for
wireless image transmission with ofdm,” in IEEE International Confer-
ence on Communications, 2021, pp. 1–6.

[38] ——, “OFDM-guided deep joint source channel coding for wireless mul-
tipath fading channels,” IEEE Transactions on Cognitive Communications
and Networking, vol. 8, no. 2, pp. 584–599, 2022.

[39] S. Inokuma, Y. Sasaki, D. Hisano, Y. Nakayama, and K. Maruta, “Per-
formance evaluation of mimo transmission in deep joint source-channel
coding,” in IEEE Vehicular Technology Conference, 2024, pp. 1–5.

[40] J. Xu, T.-Y. Tung, B. Ai, W. Chen, Y. Sun, and D. Gündüz, “Deep joint
source-channel coding for semantic communications,” IEEE Communica-
tions Magazine, vol. 61, no. 11, pp. 42–48, 2023.

[41] J. Wang, S. Wang, J. Dai, Z. Si, D. Zhou, and K. Niu, “Perceptual learned
source-channel coding for high-fidelity image semantic transmission,” in
IEEE Global Communications Conference, 2022, pp. 3959–3964.

[42] X. Liu, H. Liang, Z. Bao, C. Dong, and X. Xu, “A semantic communication
system for point cloud,” IEEE Transactions on Vehicular Technology, pp.
1–17, 2024.

[43] Y. Zhu, Y. Huang, X. Qiao, Z. Tan, B. Bai, H. Ma, and S. Dustdar, “A
semantic-aware transmission with adaptive control scheme for volumetric
video service,” IEEE Transactions on Multimedia, vol. 25, pp. 7160–7172,
2023.

[44] Y. Huang, B. Bai, Y. Zhu, X. Qiao, X. Su, L. Yang, and P. Zhang, “ISCom:
Interest-aware semantic communication scheme for point cloud video
streaming on metaverse xr devices,” IEEE Journal on Selected Areas in
Communications, vol. 42, no. 4, pp. 1003–1021, 2024.

[45] T. Fujihashi, T. Koike-Akino, and T. Watanabe, “Soft delivery: Survey
on a new paradigm for wireless and mobile multimedia streaming,” ACM
Computing Surveys, vol. 56, no. 2, 2023.

[46] J. Shen, L. Yu, L. Li, and H. Li, “Foveation-based wireless soft image
delivery,” IEEE Transactions on Multimedia, vol. 20, no. 10, pp. 2788–
2800, 2018.

[47] X.-W. Tang, X.-L. Huang, F. Hu, and Q. Shi, “Human-perception-oriented
pseudo analog video transmissions with deep learning,” IEEE Transac-
tions on Vehicular Technology, vol. 69, no. 9, pp. 9896–9909, 2020.

[48] J. Žádník, M. Kieffer, A. Trioux, M. Mäkitalo, and P. Jääskeläinen, “CV-
Cast: Computer vision-oriented linear coding and transmission,” IEEE
Transactions on Mobile Computing, pp. 1–14, 2024.

[49] T. Fujihashi, T. Koike-Akino, T. Watanabe, and P. V. Orlik, “FreeCast:
Graceful free-viewpoint video delivery,” IEEE Transactions on Multime-
dia, vol. PP, no. 99, pp. 1–11, 2019.

[50] T. Fujihashi, T. Koike-Akino, T. Watanabe, and P. Orlik, “HoloCast: Graph
signal processing for graceful point cloud delivery,” in IEEE International
Conference on Communications, 2019, pp. 1–7.

[51] T. Fujihashi, T. Koike-Akino, T. Watanabe, and P. V. Orlik, “HoloCast+:
hybrid digital-analog transmission for graceful point cloud delivery with
graph fourier transform,” IEEE Transactions on Multimedia, vol. 24, pp.
2179–2191, 2021.

[52] S. Ueno, T. Fujihashi, T. Koike-Akino, and T. Watanabe, “Point cloud soft
multicast for untethered XR users,” IEEE Transactions on Multimedia,
vol. 25, pp. 7185–7195, 2023.

[53] C. Morris, M. Ritzert, M. Fey, W. L. Hamilton, J. E. Lenssen, G. Rattan,
and M. Grohe, “Weisfeiler and leman go neural: Higher-order graph
neural networks,” in Proceedings of the AAAI conference on artificial
intelligence, vol. 33, no. 01, 2019, pp. 4602–4609.

[54] L. Yi, V. G. Kim, D. Ceylan, I.-C. Shen, M. Yan, H. Su, C. Lu, Q. Huang,
A. Sheffer, and L. Guibas, “A scalable active framework for region
annotation in 3d shape collections,” ACM Transactions on Graphics (ToG),
vol. 35, no. 6, pp. 1–12, 2016.

[55] M. Fey and J. E. Lenssen, “Fast graph representation learning with
PyTorch geometric,” arXiv e-prints, Mar. 2019.

[56] G. Bjøntegaard, “Calculation of average PSNR differences between RD-
curves,” ITU-T SG16/Q6 Input Doc-ument VCEG-M33, 2001.

[57] X. Liu, H. Liang, Z. Bao, C. Dong, and X. Xu, “A semantic communication
system for point cloud,” IEEE Transactions on Vehicular Technology,
vol. 74, no. 1, pp. 894–910, 2025.

[58] T. Nguyen, Q.-H. Pham, T. Le, T. Pham, N. Ho, and B.-S. Hua, “Point-set
distances for learning representations of 3D point clouds,” in Proceedings
of the IEEE/CVF International Conference on Computer Vision, 2021, pp.
10 478–10 487.

[59] P. L. Zeyu Yan, Fei Wen, “Optimally controllable perceptual lossy com-
pression,” in International Conference on Machine Learning, 2022.

SHOICHI IBUKI received the B.S. degree from
Osaka University, Osaka, Japan, in 2023. He is
now a M.S. student at the Graduate School of
Information Science and Technology, Osaka Uni-
versity.

TSUBASA OKAMOTO received the B.S. and
M.S. degrees from Osaka University, Osaka,
Japan, in 2022 and 2024.

TAKUYA FUJIHASHI received his B.E. degree in
2012 and his M.S. degree in 2013 from Shizuoka
University, Japan. In 2016, he received his Ph.D.
degree from the Graduate School of Information
Science and Technology, Osaka University, Japan.
He is currently an Assistant Professor at the Grad-
uate School of Information Science and Technol-
ogy, Osaka University since April 2019. He was
a research fellow (PD) of Japan Society for the
Promotion of Science in 2016. From 2014 to 2016,

he was a research fellow (DC1) of Japan Society for the Promotion of
Science. From 2014 to 2015, he was an intern at the Mitsubishi Electric
Research Labs. (MERL) working with the Electronics and Communications
group. He was selected as one of the Best Paper candidates in IEEE ICME
(International Conference on Multimedia and Expo) 2012. His research
interests are in the area of video compression and communications, with
a focus on multi-view video coding and streaming.

PLACE
PHOTO
HERE

TOSHIAKI KOIKE-AKINO (M’05–SM’11) re-
ceived the B.S. degree in electrical and electronics
engineering, M.S. and Ph.D. degrees in commu-
nications and computer engineering from Kyoto
University, Kyoto, Japan, in 2002, 2003, and 2005,
respectively. During 2006–2010 he was a Postdoc-
toral Researcher at Harvard University, and is cur-
rently a Distinguished Research Scientist at Mit-
subishi Electric Research Laboratories (MERL),
Cambridge, MA, USA. He received the YRP En-

couragement Award 2005, the 21st TELECOM System Technology Award,
the 2008 Ericsson Young Scientist Award, the IEEE GLOBECOM’08 Best
Paper Award in Wireless Communications Symposium, the 24th TELECOM
System Technology Encouragement Award, and the IEEE GLOBECOM’09
Best Paper Award in Wireless Communications Symposium. He is a Fellow
of Optica.

VOLUME 4, 2016 15



Ibuki et al.: Rateless Deep Joint Source Channel Coding for 3D Point Cloud

TAKASHI WATANABE (S’83–M’87) received
his B.E., M.E., and Ph.D. degrees from Osaka
University, Japan, in 1982, 1984, and 1987, re-
spectively. He joined the Faculty of Engineering,
Tokushima University, in 1987, and moved to the
Faculty of Engineering, Shizuoka University, in
1990. He was a Visiting Researcher with the Uni-
versity of California, Irvine, from 1995 to 1996.
He has been a Professor with the Graduate School
of Information Science and Technology, Osaka

University, Japan, since 2013. His research interests include mobile net-
working, ad hoc sensor networks, Internet of Things/M2M networks, and
intelligent transport systems, especially medium access control and routing.
He is a member of IPSJ and IEICE. He has served on program committees
of many networking conferences, such as the IEEE, ACM, IPSJ, and IEICE.

16 VOLUME 4, 2016


	Title Page
	page 2

	/projects/www/html/my/publications/docs/TR2025-069.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16


