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Despite progress towards achieving low error rates with superconducting qubits, error-prone two-
qubit gates remain a bottleneck for realizing large-scale quantum computers. Therefore, a systematic
framework to design high-fidelity gates becomes imperative. One type of two-qubit gate in super-
conducting qubits is the controlled-phase (CPHASE) gate, which utilizes a conditional interaction
between higher energy levels of the qubits controlled by a baseband flux pulse on one of the qubits
or a tunable coupler. In this work, we study an adiabatic implementation of CPHASE gates and
formulate the design of the control trajectory for the gate as a pulse-design problem. We show
in simulation that the Chebyshev-based trajectory can, in certain cases, enable gates with gate
infidelity lower by an average of 23.3% when compared to the widely used Slepian-based trajectory.

I. INTRODUCTION

High-fidelity entangling gates are one of the funda-
mental requirements in the pursuit of large-scale fault-
tolerant quantum computing [1–5]. Over the past
decades, superconducting qubits have emerged as a lead-
ing platform for quantum computing, with several ad-
vances in terms of gate fidelity, extensibility, and use-
case demonstrations [6–8]. These improvements have en-
abled superconducting quantum computing platforms to
begin tackling significant challenges, including the imple-
mentation of prototype quantum error correction (QEC)
protocols [9–12]. Numerous variants of superconducting
qubits and their architecture have been proposed and ex-
perimentally demonstrated [13–19], along with a variety
of different schemes for realizing entangling gates [20–
29]. Despite these significant advances, two-qubit gate
performance continues to limit the development of future
fault-tolerant quantum computing systems.

Two-qubit entangling gates employed in supercon-
ducting qubits can be broadly classified into two cate-
gories. The first category encompasses capacitively cou-
pled, fixed-frequency qubits, in some cases mediated by a
resonator, where the implementation of two-qubit gates
relies on all-microwave control [10, 23, 30–35]. Fixed-
frequency qubits typically have longer coherence times
and no baseband control lines. However, frequency
crowding and potential collisions become increasingly
challenging as the system size grows. The second cat-
egory involves frequency-tunable qubits, where the fre-
quency of the qubits can be adjusted using baseband
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magnetic flux [27, 36–39]. These qubits can be cou-
pled directly or through frequency-tunable coupling el-
ements. In this architecture, two-qubit gates are typi-
cally achieved by applying local baseband magnetic-flux
pulses to tune the frequencies of the qubits and/or cou-
plers. It is worth noting that this approach results in
increased hardware complexity and susceptibility to flux-
related noise, thereby exacerbating experimental calibra-
tion challenges. Nevertheless, it mitigates the frequency
collision issues, and gates relying on baseband flux con-
trol generally exhibit faster operation speed compared to
all-microwave-activated gates. Additionally, there exist
alternative architectural designs and gate schemes that
seek to amalgamate features from both of these cate-
gories [40]. In this work, we focus on baseband flux
control gates with tunable qubits. More specifically, we
study controlled-phase (CPHASE) gates and in particu-
lar the controlled-Z (CZ) gate, which corresponds to a
conditional phase accumulation of π.
The fidelity of CPHASE gates depends heavily on the

specific pulse shape of the baseband flux, as deviations
can cause phase errors and leakage to undesired states.
In this work, we first formulate the problem of baseband
flux control design as a pulse design problem. In this
way, we are able to design the gate by leveraging tools
from the signal processing community. Second, we pro-
pose a Chebyshev-based trajectory as an alternative to
the widely used Slepian-based trajectory. We analyti-
cally study the Chebyshev-based trajectory using a two-
level system abstraction. Finally, we compare the perfor-
mance of the Chebyshev-based and Slepian-based trajec-
tories by simulating a CZ gate applied to two capacitively
coupled transmon qubits. Simulation results show that
the Chebyshev-based trajectory can be designed to in-
duce lower leakage error while maintaining smaller pulse
duration, in certain cases. In addition, we show that
the proposed Chebyshev-based trajectory can be readily
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implemented in state-of-the-art hardware by considering
practical hardware constraints in simulation.

The manuscript is organized as follows. In Section II,
we formulate the pulse-design problem using a two-level
system abstraction and state explicitly the criterion to
be investigated. In Section III, we introduce the defini-
tion and examples of finite-length, discrete-time pulses
that will be exploited. Then, in Section IV, we propose
the Chebyshev-based trajectory as an alternative solu-
tion compared to the Slepian counterpart. In Section V,
we present time-domain simulation results and demon-
strate the advantage of the Chebyshev-based trajectory
when implementing a CZ gate in two directly coupled
transmon qubits. We also study the effect of realistic
hardware limitations on these trajectories. We conclude
and discuss outlook in Section VI.

II. PROBLEM FORMULATION

A. The CPHASE gate in tunable transmon qubits

The general approach to implementing a CPHASE
gate in tunable transmon qubits using baseband flux con-
trol is summarized in Appendix A.

Two important factors in this design are the leakage er-
ror and gate duration. Leakage error refers to unwanted
qubit population of the total qubit population outside of
the computational subspace after the gate operation. In
this case, the dominant leakage is from |11⟩ to |20⟩, since
they are intentionally brought into resonance. On reso-
nance, these states will hybridize and open an avoided
crossing. Therefore, a trajectory towards the avoided
crossing must be sufficiently slow in order for the leak-
age error to be sufficiently small in the adiabatic imple-
mentation of the CPHASE gate. On the other hand,
for coherence-limited qubits like superconducting qubits,
faster trajectories directly translate to higher fidelity. In
other words, the process should be “fast and adiabatic.”
Furthermore, as these two factors are intrinsically con-
tradictory, a design of the trajectory should be made to
achieve best performance. In this work, as we will explain
in more detail in Section IID, we refer to this problem
as the pulse design or control trajectory design problem.

Considerable efforts have been made to the develop-
ment and experimental validation of a high-fidelity base-
band flux-controlled CZ gate. The Slepian-based trajec-
tory is the current standard to implement an adiabatic
CZ gate [24]. The control trajectory is based on the
Slepian window from the use of optimal window func-
tions. This approach is experimentally demonstrated
to reach a CZ gate fidelity up to 99.4% [41]. Rol et
al. [42] appended two Slepian-based trajectories together
to form a bipolar flux pulse named the Net Zero (NZ)
pulse, which is more robust to long time distortions in
the control line compared to unipolar ones. The latter
is experimentally demonstrated to reach a CZ gate fi-
delity up to 99.7% [43]. Building upon the NZ pulse,

Neĝırneac et al. [44] develop a variation named the sud-
den net-zero (SNZ) CZ gates, which simplifies the pulse
calibration. The Slepian-based trajectory is also uti-
lized to implement a non-adiabatic CZ gate with fidelity
99.76 ± 0.07% in a more sophisticated system consist-
ing of two transmon qubits coupled with a tunable cou-
pler [27]. A flat-top Gaussian pulse has been employed
to implement CPHASE gates in a similar qubit-coupler-
qubit architecture [45]. Chu et al. [46] also study the
CZ gate in a system with a tunable coupler and pro-
pose a modified control trajectory by adding prefactor
weights to the Slepian-based trajectory. Another general
approach [25] is to perform repeated experiments using
closed-loop feedback to evaluate the current gate perfor-
mance according to some metrics, and then numerically
optimize the pulse, starting from a heuristically decent
Slepian-based trajectory [24].

B. Two-level system abstraction

The primary error channel is leakage from |11⟩ to |20⟩
during the gate. In this section, we therefore focus on a
simpler two-level abstraction of the problem that couples
the diabatic states |11⟩ and |20⟩ to form eigenstates |ψ−⟩
(“ground state”) and |ψ+⟩ (“excited state”).
Consider a two-level system whose Hamiltonian is

H =
ε(t)

2
σz +

∆

2
σx =

1

2

[
ε(t) ∆
∆ −ε(t)

]
, (1)

where ∆ is a constant denoting the coupling strength
that hybridizes the diabatic states |11⟩ and |20⟩, and ε(t)
is a function of time, which dictates the energy differ-
ence between the diabatic states. Of particular interest
are the two eigenstates |ψ−⟩, |ψ+⟩ and the correspond-
ing eigenenergies E−, E+ of this system. Solving the
eigen-problem for H yields

|ψ−⟩ =
[
− sin(θ(t)/2)
cos(θ(t)/2)

]
and |ψ+⟩ =

[
cos(θ(t)/2)
sin(θ(t)/2)

]
,

(2a)

E− = −1

2

√
ε(t)2 +∆2 and E+ =

1

2

√
ε(t)2 +∆2 , (2b)

where θ(t) is defined as

θ(t) = arctan
∆

ε(t)
. (3)

In Appendix B, we review the geometric interpretation
of θ(t) on the Bloch sphere. In Section IID, θ(t) is con-
sidered an intermediate control variable whose trajectory
is to be designed. Fig. 1 depicts the eigenenergies of the
two-level system with Hamiltonian H as a function of
ε ∈ [−∞,+∞].
In this abstracted two-level system, the CPHASE gate

problem is transformed into preparing the system in the
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FIG. 1. Eigenenergies of the two-level system with Hamil-
tonian H as a function of ε. In the upper plot, the thinner
dashed lines represent the diabatic states |11⟩ and |20⟩; the
solid lines represent the eigenstates |ψ−⟩ and |ψ+⟩ that re-
sult from the coupling strength ∆. The lower plot shows the
schematic of an example trajectory for ε(t) to implement a
CPHASE gate. The thicker dashed lines across the upper
and lower plots indicate the initial and middle points of ε(t).

initial state |ψ−⟩ and designing ε(t) to vary the instan-
taneous energy as depicted in the lower plot of Fig. 1.
In particular, ε(t) varies from ϵini to ϵmid and returns to
ϵini where ϵmid ≈ 0. Correspondingly, θ(t) varies from
θini = arctan(∆/ϵini) to θmid = arctan(∆/ϵmid) and re-
turns to θini.

C. Formula for leakage error

The formula for the leakage error Pe from |11⟩ to |20⟩
after the pulse is implemented is (see Appendix B for
details)

Pe =

∣∣∣∣ ∫ dθ

dt
e−i

∫ t ω(t′)dt′dt

∣∣∣∣2
4

, (4)

where ω(t′) is the time-dependent frequency difference
between eigenstates |ψ−⟩ and |ψ+⟩ due to the trajectory.
A nonlinear time-frame transformation is introduced (see
Appendix C), i.e., ωτdτ = ω(t)dt, which effectively ac-

counts for the time-dependence of ω(t′), making it a time-
independent frequency ωτ . We express the leakage error
Pe in this new time frame τ

Pe =

∣∣∣∣ ∫ dθ̃

dτ
e−iωττdτ

∣∣∣∣2
4

, (5)

where ωτ is a constant, τ = τ(t) is a nonlinear function of

t, and θ̃(τ) is the transformation of θ(t) in the new time
frame τ . In this time frame, we have obtained a simpler
form of the leakage error Pe, which can be interpreted as
a function of the Fourier transform of dθ̃/dτ evaluated

at ωτ . After designing dθ̃/dτ , we transform back to the
original time frame t and obtain the corresponding dθ/dt
using the technique described in Appendix C. We discuss
the validity of Eq. 5 along with the nonlinear time-frame
transformation in Appendix D. ωτ can take any constant
value, however, as explained in Appendix C, we set ωτ =
∆ for convenience.

D. Problem statement

We propose a problem statement with explicit require-
ment: we desire the shortest pulse given a specified allow-
able leakage error. Then, taking advantage of the time
and frequency scaling property of the Fourier transform,
we transform the problem into a requirement on fre-
quency. The novelty in our problem formulation enables
a straightforward comparison between different pulses.
Finally, we comment on the continuous time to discrete
time transformation.

1. Nomenclature

In this section, we more formally define the pulse de-
sign or control-trajectory design that is the focus of this
work. We consider the case where two qubits are ca-
pacitively coupled, one of which is flux-tunable (QB1).
Our ultimate goal is to design a baseband flux pulse that
changes the external magnetic flux Φext(t) that threads
the SQUID loop of QB1 to change its qubit frequency
ω1(t) so that a CPHASE gate with desired characteristics
is obtained. In the abstracted two-level system discussed
in Section II B, the goal is the design of ε(t). Then, an
intermediate control variable θ(t) is defined such that it
has a one-to-one correspondence to ε(t). Therefore, the
goal of designing ε(t) is equivalent to designing θ(t). Fi-
nally, in Eq. 5, the formula for the leakage error is written
in terms of the Fourier transform of dθ̃/dτ in the nonlin-
ear time frame τ . Designing a flux pulse further trans-
forms into finding a trajectory dθ̃/dτ , which we refer to
as “control trajectory design.” In the following sections,
we denote g̃(τ) := dθ̃/dτ for brevity. The discrete form
of g̃(τ) is denoted as g̃[n].
The design pipeline is presented below. We first design

g̃(τ) and obtain θ̃(τ). Second, we compute θ(t) through
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the inverse of the nonlinear time-frame transformation.
Third, we obtain ε(t) according to Eq. 3 with proper
values of ϵini(θini) and ϵmid(θmid). Then, we convert ε(t)
to ω1(t) and finally to Φext(t) according to Eq. A5:

g̃(τ) → θ̃(τ) → θ(t) → ε(t) → ω1(t) → Φext(t) . (6)

2. Constraint on duration

Denoting g̃(τ) = dθ̃/dτ , we can rewrite Eq. 5 as

Pe =

∣∣∣∣ ∫ g̃(τ)e−i∆τdτ

∣∣∣∣2
4

=

∣∣G(i∆)
∣∣2

4
. (7)

where G(i∆) is the Fourier transform of g̃(t) evaluated
at ωτ = ∆.

With the goal of implementing a high-fidelity CPHASE
gate, there are three key quantities: phase accumulation,
leakage error, and gate duration. Phase accumulation is
directly related to θ(t) and thus θ̃(τ), as discussed in Ap-

pendix E. Given a particular shape of θ̃(τ), we can always
obtain a desired phase accumulation by fine-tuning the
amplitude. For now we assume a normalized amplitude
as will be explained later in this section for the purpose
of analysis, and we will generalize in simulation. We thus
focus on the two remaining interrelated factors: leakage
error and gate duration. We are interested in designing
a g̃(τ) with as short a duration as possible, given some
acceptable leakage error threshold. Here the parameters
to be designed are the pulse shape and duration of g̃(τ).
In addition, in cases where g̃(τ) has the same shape but a
longer duration, we desire that the leakage error remain
below the threshold. This makes intuitive sense, because
a longer g̃(τ) corresponds to a slower evolution and there-
fore should induce no more (and often less) leakage error.

Let τd be the duration of g̃(τ). We consider time-

symmetric trajectories θ̃(τ) = θ̃(τd − τ) such that θ̃(τ)

starts from some initial value θ̃ini, evolves to some in-
termediate value θ̃mid, and then returns to the initial
value θ̃ini. As the derivative of θ̃(τ), g̃(τ) = dθ̃/dτ
is anti-symmetric in time τ , i.e., g̃(τ) = −g̃(τd − τ).

Since θ̃(τ) is symmetric, we have θ̃(τd/2) = θ̃mid, and∫ τd/2

0
g̃(τ)dτ = θ̃mid − θ̃ini = −

∫ τd
τd/2

g̃(τ)dτ . We further

impose a normalization constraint on the control trajec-

tory so that
∫ τd/2

0
g̃(τ)dτ = −

∫ τd
τd/2

g̃(τ)dτ = 1.

Now, g̃(τ) is time-limited to the interval [0, τd], i.e.,
g̃(τ) = 0 when τ < 0 or τ > τd. We consider the leak-
age error in Eq. 7, paying specific attention to |Gτd(i∆)|,
which is the magnitude of the Fourier transform of g̃(τ)
of duration τd evaluated at ∆. The problem can be stated
as follows:

Statement 1:
Given an error threshold Pe ≤ γ2/4, i.e.,
|G(i∆)| ≤ γ, find the g̃(τ) of duration τ∗d with
τ∗d = min(τdc), where τdc is defined such that for
any τd ≥ τdc, |Gτd(i∆)| ≤ γ is satisfied.

3. Time-frequency transformation: constraint on frequency

We transform the problem statement into one that
is more readily addressable, utilizing the time and fre-
quency scaling property of the Fourier transform. We
first introduce a set A with uncountably many elements
corresponding to an infinite number of control trajec-
tory shapes and use g̃a(τ) with a ∈ A to denote a con-
trol trajectory confined in time to the interval [0, 1], i.e.,
g̃a(τ) = 0,when τ < 0 or τ > 1. We further impose an
additional symmetry requirement on the pulse, such that

we have
∫ 1/2

0
g̃a(τ)dτ = −

∫ 1

1/2
g̃a(τ)dτ = 1. We refer to

g̃a(τ) as a normalized pulse shape labelled by a.
For any g̃(τ) of duration τd, there must exist some

a ∈ A such that g̃(τ) = g̃a(τ/τd)/τd. With the time
and frequency scaling property of the Fourier transform,
we have Gτd(i∆) = Ga(i∆τd), where Ga(i∆τd) is the
Fourier transform of g̃a(τ) evaluated at ∆τd. We denote
ω = ∆τd. Note that in the expression Ga(i∆τd), ∆ and
τd are nominally on an equivalent footing. Therefore,
it would be equivalent to construct the problem with τd
given and ∆ varied and to be minimized, instead of fixing
∆ and minimizing over τd. For convenience, we set τd = 1
without loss of generality. In this way, we reformulate
Statement 1 into:

Statement 2:
Given an error threshold Pe ≤ γ2/4, i.e.,
|Ga(iω)| ≤ γ, find a trajectory shape g̃a(τ) such
that ω∗ is minimized, where ω∗ is defined as the
minimum frequency such that for any ω ≥ ω∗,
|Ga(iω)| ≤ γ is satisfied.

4. Continuous time to discrete time transformation

The problem formulation so far has been stated in con-
tinuous time. However, the pulses are represented in dis-
crete time when we perform simulation. Also, in experi-
ments, a discrete-time pulse needs to be specified for the
digital controller of the pulse-generation hardware (e.g.,
arbitrary waveform generator), followed by a certain in-
terpolation scheme in order to output a continuous-time
pulse. Therefore, we consider the design in discrete time.
Let Fs = 1/Ts be the sampling frequency and Ts be
the sampling period. Then we have g̃[n] = g̃(nTs) for
n = 0, 1, . . . , N − 1 where N − 1 = ⌊τd/Ts⌋ with ⌊x⌋ de-
noting the greatest integer less than or equal to x. We
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refer to N as the length of g̃[n]. In this work, g̃(τ) is time-
limited by definition. Fortunately, as we show in the Sec-
tion IV, the frequency spectrum of g̃(τ) of interest tends
to zero relatively quickly as frequency increases. There-
fore, with high enough sampling frequency, the problem
of aliasing can be maintained at a minimal level.

We recast the problem formulation in discrete time in
a complete form as follows:

Statement 3:
Determine an anti-symmetric control trajectory
g̃[n] of length N , where g̃[n] is normalized:

1. g̃[n] = −g̃[N−n], specifically, g̃[(N−1)/2] =
0 for odd N ,

2. g̃[n] = 0 when n < 0 or n > N − 1,

3.
∑N/2−1

0 g̃[n] = 1 = −
∑N−1

N/2 g̃[n] for even

N , or
∑(N−1)/2

0 g̃[n] = 1 = −
∑N−1

(N−1)/2 g̃[n]

for odd N ,

such that ω∗ is minimized, where ω∗ is defined as
ω∗ = min(ωc) such that

for any ω ≥ ωc, |G(eiω)| ≤ γ,

where G(eiω) is the discrete time Fourier trans-
form of g̃[n] and γ is given.

III. FINITE-LENGTH, DISCRETE-TIME
PULSES

In order to establish some background information on
the pulse design problem, we introduce the definition and
notation of finite-length, discrete-time pulses. We first re-
view the Slepian pulses. We further introduce another set
of pulses designed using the weighted Chebyshev approx-
imation (WCA), which are referred to as the Chebyshev
pulses II.

A. Definition and notation

In this work, we focus on the design of finite-length,
discrete-time pulses, which we will refer to as pulses for
brevity going forward. The pulses take on certain values
over some chosen finite-length, discrete-time interval and
are zero-valued outside the interval, defined mathemati-
cally as

w[n] =

{
ŵ[n], 0 ≤ n ≤ N − 1

0, otherwise
, (8)

where ŵ[n] denotes the values over the interval [0, N −
1], and N is a finite positive integer. The discrete-time

Fourier transform of the pulse w[n] is

W (eiω) =

N−1∑
n=0

w[n]e−iωn . (9)

B. Examples of common finite-length,
discrete-time pulses

In this section, we briefly summarize two examples
of pulses—the Slepian pulses and the Chebyshev pulses
that we will compare. Appendix F contains more details
about the mathematical structure of these pulses.

The Slepian pulses are a set of orthogonal functions
that are optimized to have maximum energy concentra-
tion in the frequency or time domains. As we discussed
in Section IIA, Slepian-based pulses are commonly used
in superconducting circuits to perform high-fidelity base-
band flux controlled CZ gates [24]. We denote the Slepian

pulses by {v(k)n (N,W ), k = 0, 1, . . . , N − 1}, where
n = 0, 1, . . . , N−1 is the index of the pulse, k is the order
of each pulse, and N andW are parameters referred to as
the length and mainlobe width of the pulse, respectively.
In our problem formulation, we are especially interested
in the second Slepian pulse (k = 1), because it is an anti-
symmetric pulse by definition and has the largest energy
concentration among all anti-symmetric Slepian pulses.
We denote the second Slepian pulse (k = 1) as wNW

sl2 [n].
We omit NW going forward for brevity when it is given
in context.

Chebyshev pulses minimize the mainlobe width given
a specified sidelobe amplitude. They are characterized
by their ability to provide a trade-off between mainlobe
width and sidelobe amplitude, making them useful in
applications such as filter design and spectrum analysis.
Referred to as Chebyshev pulses I and denoted as wch1[n],
these pulses are symmetric in time. In our exploration,
we introduce a complementary, anti-symmetric variation

named Chebyshev pulses II, denoted as wβ
ch2[n]. This

variation is derived through weighted Chebyshev approx-
imation (WCA), a technique for optimizing a polynomial
approximation of a given function. Here, β serves as
the parameter input for this approximation process. For
brevity, we omit β going forward. Notably, Chebyshev
pulses II share the equiripple sidelobe amplitude char-
acteristic and exhibit only one ripple in the passband,
mirroring the traits of Chebyshev pulses I. Further in-
sights about the weighted Chebyshev approximation are
summarized in Appendix G. In the rest of the paper,
we focus on the second Slepian pulses (k = 1) and the
Chebyshev pulses II, and refer to them as the Slepian
pulses and the Chebyshev pulses respectively.
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(a) (b) (c)

FIG. 2. The (a) time-domain and (b) frequency-domain representations and (c) zoom-in version of the Slepian-based trajectory
for N = 1001 and NW = 2.9 and the Chebyshev-based trajectory for N = 1001 whose sidelobe amplitude γch is designed so
that γ2

ch/4 ≤ γ2/4 = 10−6.0, which is also the given error threshold. We find that ω∗
ch2 < ω∗

sl2.

IV. COMPARISON BETWEEN CHEBYSHEV-
AND SLEPIAN-BASED TRAJECTORIES

We have formulated the CPHASE gate design prob-
lem into a pulse design problem and further transformed
it into the design of a control trajectory g̃[n], where the
frequency-domain characteristics are emphasized. Spe-
cial attention is paid to the comparisons between the
Chebyshev-based trajectories and the Slepian-based tra-
jectories that will be defined in this section.

The control trajectory g̃[n] needs to satisfy a nor-
malization constraint, and also is specified to be anti-
symmetric according to our discussion in Statement 3.
The finite length constraint is naturally satisfied by finite-
length, discrete-time pulses. The anti-symmetry con-
straint g̃[n] = −g̃[N−n] is also satisfied using the Slepian
pulses wsl2[n] and the Chebyshev pulses wch2[n]. There-
fore, the control trajectories can be defined through a
straightforward normalization of wsl2[n] and wch2[n]. We
denote the corresponding control trajectories by g̃sl2[n]
and g̃ch2[n].

To obtain the shortest pulse given a specified allowable
leakage error, we need to minimize the frequency cutoff
ω∗ (see definition in Statement 3) while keeping am-
plitude of the frequency components beyond ω∗ below
some constant determined by the allowable leakage er-
ror. We propose the Chebyshev-based trajectory g̃ch2[n]
as an alternative to the Slepian-based trajectory g̃sl2[n].
While g̃sl2[n] can fulfill the desired features because it is
originally designed to obtain a maximized energy concen-
tration within some frequency band, it features a decreas-
ing amplitude envelop of sidelobe frequency components,
which diminishes its capability to push ω∗ even smaller.
On the other hand, g̃ch2[n], by design, features a flat am-
plitude envelop of sidelobe frequency components, which
allows ω∗ to be even smaller. The argument is that we
can allow higher sidelobe amplitudes in larger frequency
components as long as they stay below a specified thresh-
old, and therefore we can in turn decrease the concentra-
tion in smaller frequency components. In this way, g̃ch2[n]
can be designed to obtain a smaller ω∗ while maintain-
ing a sidelobe amplitude below some threshold. Here, ω∗

denotes the smallest attainable frequency under certain

constraints given some leakage threshold, as we specify
in Statement 3. This eventually leads to the fact that
the Chebyshev-based trajectory can be designed to be
shorter than the Slepian-based trajectory.
We show an example of designing the Chebyshev-based

trajectory and the Slepian-based trajectory according to
the given leakage error threshold. First, we determine the
length N = 1001 for both trajectories to be compared.
Then we choose a half bandwidth NW = 2.9 to deter-
mine the Slepian-based trajectory g̃sl2[n] as a benchmark
pulse. We then design g̃ch2[n] so that its sidelobe ampli-
tude γch is such that γch ≤ γ, where γ2/4 = 10−6.0 is the
given leakage error threshold. As depicted in Figs. 2(a)-
(b), we compare the time-domain and frequency-domain
representations of g̃ch2[n] and g̃sl2[n]. The dashed blue
box area in Fig. 2(b) (expanded in Fig. 2(c)) shows that
ω∗
ch2 < ω∗

sl2. While satisfying the restriction on side-
lobe amplitude, g̃ch2[n] outperforms g̃sl2[n] and features
a smaller ω∗. Note that there exist impulses at both end-
points of the g̃ch2[n] in Fig. 2(a), which is a feature that
contributes to the equiripple property in the frequency
domain. The effect of these impulses will be filtered
through numerical integration and interpolation when we
transform g̃ch2[n] to εch2(t).

V. SIMULATION RESULTS

We show time-domain simulation results of a CZ
gate, utilizing the Slepian-based trajectories and the
Chebyshev-based trajectories as defined in Section IV.

A. Setting and procedure

We consider two capacitively coupled transmon qubits,
one of which is flux-tunable (QB1) and the other having
a fixed frequency (QB2). The system Hamiltonian is

H =
∑
i=1,2

(
ωia

†
iai +

αi

2
a†ia

†
iaiai

)
+ g(a†1 + a1)(a

†
2 + a2) ,

(10)
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where a†i , ai are the raising (creation) and lowering (anni-
hilation) operators in the eigenbasis of the corresponding
qubit, ωi is the qubit frequency of QBi, and αi is the
anharmonicity of QBi.

In our simulation, we choose the parameters ω2/2π =
4.7 GHz, α1/2π = α2/2π = −300 MHz, and g/2π =

10
√
2 ≈ 14.142 MHz. We set ω1/2π = 5.8 GHz initially

and tune ω1 to perform a CZ gate. These parameters
form a typical parameter set for transmon qubits and the
operation of a CZ gate. In order to perform a CZ gate,
we detune ω1 so that ω1 + ω2 ≈ 2ω1 + α1. If we move
exactly to the degeneracy point of diabatic states |11⟩ and
|20⟩, then we have ω1/2π = 5.0 GHz. We vary ω1/2π
from 5.8 GHz to approximately 5.0 GHz depending on
the amplitude of the control pulse, and then back to 5.8
GHz.

The procedure of our simulation is as follows:

1. Determine a control trajectory g̃i[n].

2. For each desired amplitude of the pulse, compute
the corresponding control pulse εi[n] for g̃i[n] and
use an interpolation of εi[n] as a control pulse εi(t)
to detune ω1.

3. Simulate a CPHASE gate using QuTiP [47] for a
range of desired amplitude and duration of εi(t).
Calculate the phase accumulation and leakage error
as a function of pulse duration and amplitude.

4. Collect the duration and amplitude pairs that ob-
tain a phase accumulation ϕ = π. This is to en-
sure the implementation of a CZ gate. Determine
the corresponding leakage error Pe as a function of
pulse duration.

B. Simulation examples

In the following simulation examples, we define a nor-
malized amplitude A = |ϵmid − ϵini|/(5.8 − 5.0), where
A = 1 indicates that we go exactly to the degeneracy
point of diabatic states |11⟩ and |20⟩, while A = 0 indi-
cates that we stay at the starting point. Here, we take
0 ≤ A ≤ 1.

1. A comparison example

Figure 3 shows the leakage error Pe for a CZ gate as a
function of pulse duration td. Note that the amplitude A
of the control pulse is adjusted to ensure an exact phase
accumulation of ϕ = π. Figures of phase accumulation
and leakage error for a range of control pulse duration and
amplitude can be found in Appendix H. As we observe
in Fig. 3, the leakage error Pe corresponding to g̃ch2[n]
appears generally below that of g̃sl2[n] for td < ∼60 ns.
Since the general trend the latter decreases is faster than
the former as a function of pulse duration td, we observe

FIG. 3. A comparison example. Leakage error Pe as a func-
tion of pulse duration td for a CZ gate, using g̃sl2[n] and g̃ch2[n]
in Section IV. Potential operating points are marked in green
squares and purple dots (only four for each g̃[n] are shown).
The best operating points with shortest pulse duration are
indicated by the red circle.

the leakage error Pe corresponding to g̃sl2[n] begins to ap-
pear below that of g̃ch2[n] for td > ∼60 ns. This is true for
all the simulation examples shown in Appendix I. This
feature agrees with what we see in theoretical analysis
from Figs. 2(c)-(d), except that the general trend of the
leakage error Pe corresponding to g̃ch2[n] also decreases
slowly rather than remaining exactly flat. We attribute
this difference between simulation and analysis to the
numerical integration and interpolation in the process
of transforming g̃[n] into ε(t). This reduces the impact
of impulses at both ends of g̃ch2[n] within εch2(t), be-
cause the impulses significantly contribute to the equirip-
ple sidelobe characteristic of g̃ch2[n].

Potential operating points are considered to be the in-
sensitive points to pulse duration, i.e., the points of the
leakage error lobes as shown by the green squares and
purple dots in Fig. 3. In addition, if there is a slight
deviation in pulse duration at those points, we would
be almost surely have a lower leakage error regardless of
the direction of the deviation. We determine the best
operating point to be the one with the smallest pulse
duration, indicated by the red circle in Fig. 3. Since
g̃ch2[n] generally pushes the leakage error lower in the
range of relatively smaller pulse duration, we are able to
achieve an operating point with lower leakage error while
also maintaining a similar or even smaller pulse duration
compared to g̃sl2[n]. The operating points for g̃sl2[n] and
g̃ch2[n] are td = 47.0 ns with Pe = 10−4.66 and td = 46.1
ns with Pe = 10−4.72, respectively. We further compute
the average gate fidelity as described in Appendix J, and
find that the infidelity 1−Fg = 5.5×10−6 for g̃sl2[n] and
1−Fg = 6.8× 10−6 for g̃ch2[n] respectively. In this case,
the average gate infidelity of the Slepian-based trajectory
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is lower than that of the Chebyshev-based trajectory al-
though the leakage error of the former is greater than
that of the latter. This is mainly because the unwanted
population exchange between |01⟩ and |10⟩ within the
computational subspace contributes to the average gate
infidelity.

2. An aggregate of comparison examples

We conduct more comparisons between various pairs
of benchmark Slepian-based trajectories and designed
Chebyshev-based trajectories. The main difference is
that the leakage error threshold are specified differently
when designing the trajectories. We summarize the main
results in this section. More details about the additional
comparisons are shown in Appendix I.

We observe similar results in terms of leakage error
to that in Section VB1 for a majority of the compari-
son examples. We find that g̃ch2[n] can be designed to
achieve a lower leakage error than its counterpart g̃sl2[n]
by roughly 6.0% in certain cases, while also maintaining
smaller pulse duration by an average of 0.6 ns. In several
unusual cases, where there appears an unusually small
leakage lobe before the first main leakage lobe, g̃sl2[n]
in fact induces lower leakage error with smaller pulse
duration. This indicates that simulation verification is
important once a control trajectory is designed because
there can be discrepancies between analysis and simula-
tion due to some approximation. When it comes to gate
infidelity, for most of the comparison examples ((a)-(g)),
we find that the Chebyshev-based trajectories have lower
gate infidelity than the Slepian-based trajectories. In ex-
ample (h), the Slepian-based trajectory has lower gate in-
fidelity because the leakage error is significantly smaller,
due to the fact that there appears a significantly small
leakage lobe before the first main leakage lobe. On av-
erage, the Chebyshev-based trajectories achieve a 23.3%
reduction in gate infidelity. This can also be interpre-
tated as an increase in gate fidelity by 0.0009%. We note
that this small number in terms of increase in gate fidelity
results from the fact that the Slepian-based trajectories
have already reached a relatively high fidelity (close to
1). In other words, the percentage is almost identical to
the absolute increase in gate fidelity. To be more specific,
given that a Slepian-based trajectory achieves x% gate fi-
delity, the corresponding Chebyshev-based trajectory can
on average achieves approximately (x+0.0009)% gate fi-
delity. We note that this improvement can become more
prominent when the desired gate fidelity is higher (e.g.,
x > 99.999). This demonstrates that the Chebyshev-
based trajectories can potentially enhance overall gate
performance even when accounting for more than leak-
age error.

To determine scenarios where Chebyshev-based trajec-
tories might significantly outperform other standard ap-
proaches, we find that in the region where the Slepian-
based trajectory achieves a gate infidelity of ∼ 10−3 to

∼ 10−5, the Chebyshev-based trajectory appears to con-
sistently decrease the infidelity by roughly 40.7%. How-
ever, in the infidelity range below ∼ 5 × 10−6, we see
mixed behavior and it becomes hard to conclude for sure
which one is better. This indicates that the Chebyshev-
based trajectory might outperform other standard ap-
proaches in relatively moderate infidelity ranges, but may
not be as effective if the desired infidelity is very low.
We note that there can be different operating points,

and in our comparison, we further pick the one with the
shortest pulse duration to be the best operating point be-
cause this aligns with our definition of a desired pulse in
the first place. One could potentially pick any of these op-
erating points as their operating points if a longer pulse
duration is acceptable, and the comparison results will
change accordingly. However, our approach of best oper-
ating point aims to avoid any bias in the evaluation.

C. Hardware constraints

In this section, we study how hardware constraints,
most notably, the sampling frequency and bandwidth
of the arbitrary waveform generator (AWG), can affect
the performance of the CZ gate. The hardware limita-
tions are important, because the CZ gates we consider
are based on fast-flux control, and it is necessary that
current hardware be capable of implementing such fast
pulses. Let Fs denote the sampling frequency and bw
the bandwidth. Examples of state-of-the-art AWGs in-
clude QBLOX QCM with Fs = 1 GSa/s and bw = 400
MHz, Zurich Instrument SHFQC+ with specifications up
to Fs = 2 GSa/s and bw = 800 MHz, QBLOX QCM with
Fs = 2 GSa/s and bw = 800 MHz, Keysight M5300A
with baseband sampling frequency Fs = 4.8 GSa/s and
bw = 2 GHz, etc. Details on how we impose the hardware
constraints in simulation are summarized in Appendix K.

Fs (GSa/s) 1 2 5 10

bw (GHz) 0.4 0.8 2 4

TABLE I. Sampling frequency and bandwidth for simulation.

We utilize the same comparison example of g̃sl2[n] and
g̃ch2[n] as in Section VB1. Fig. 4 presents the simula-
tion results of the CZ gate using g̃sl2[n] and g̃ch2[n] with
different practical hardware parameters. The hardware
parameters are listed in Table I. When comparing Fig. 4
against Fig. 3, it becomes evident that there is an overall
increase in leakage error, regardless of the control tra-
jectories. The difference between both trajectories also
shrinks. As we enhance the hardware parameters, a bet-
ter resemblance in the performance of the CZ gate to that
without hardware constraints is observed. In Appendix I,
we show an aggregate of the best operating points using
g̃sl2[n] and g̃ch2[n] in Fig. 4 following the same argument
as in Section VB1. Comparing the best operating points,
we argue that the advantage of g̃ch2[n] over g̃sl2[n] can be
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(a) (b)

(c) (d)

FIG. 4. Comparison examples of the CZ gate performance
using g̃sl2[n] and g̃ch2[n] with hardware parameters (a) Fs = 1
GSa/s and bw = 400 MHz, (b) Fs = 2 GSa/s and bw = 800
MHz, (c) Fs = 5 GSa/s and bw = 2 GHz, (d) Fs = 10 GSa/s
and bw = 4 GHz.

mostly recovered with Fs = 5 GSa/s and bw = 2 GHz.
Thus, the proposal in this paper is readily implementable
using off-the-shelf state-of-the-art hardware.

VI. CONCLUSION AND OUTLOOK

In this work, we formulate the problem of baseband
flux control design of an adiabatic CPHASE gate in su-
perconducting circuits as a pulse-design problem, and
further as a control-trajectory-design problem. Build-
ing upon knowledge from other contexts of pulse-design
problems, we propose the Chebyshev-based trajectory as
an alternative to the widely used Slepian-based trajec-
tory. We then analytically show the advantage of the
Chebyshev-based trajectory by using a two-level system
abstraction. Furthermore, we compare the performance
of the two types of trajectories by numerically simu-
lating a CZ gate in two capacitively coupled transmon
qubits. Our simulation results show that the Chebyshev-
based trajectory can be designed to induce lower leak-
age error by roughly 6.0% in certain cases, while main-
taining similar or even smaller pulse duration. We note
that in several cases the Slepian-based trajectory induces
lower leakage error due to some unusual phenomenon
not existing in analysis. On average, we find that the
Chebyshev-based trajectory results in 23.3% lower gate
infidelity than its Slepian counterpart. From the per-
spective of quantum error correction, it is the reduction
in gate infidelity—rather than the absolute increase in
gate fidelity—that more directly impacts the efficacy of
error correction protocols. The 23.3% average reduction
in gate infidelity of the Chebyshev-based trajectories is

considerable, as physical error rates are exponentially
leveraged in the suppression of logical error rates [48].
This, in turn, can help reduce the required code distance
for achieving a target logical error rate. In addition, we
study how practical hardware constraints including sam-
pling frequency and bandwidth can influence the per-
formance of the theoretically derived control pulses and
affect the advantage of the Chebyshev-based trajectory
over the Slepian-based trajectory in simulation. We find
that the advantage can be mostly realized using state-of-
the-art hardware.
The design of the flux pulse plays a crucial role in

achieving high fidelity and fast speed for baseband flux-
based gates in superconducting circuits. The weighted
Chebyshev approximation, a versatile technique devised
for tailoring pulses based on specific requirements and
constraints, emerges as a valuable tool to design pulse
shapes. Future work could explore extending this frame-
work to other types of quantum gates, integrating these
pulse design techniques into closed-loop calibration and
optimal control pipelines, and studying the robustness of
the gate performance against control noise in experimen-
tal deployment.
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Appendix A: The CPHASE gate

We focus on the adiabatic implementation of CPHASE
gate in tunable transmon qubits and describe in detail a
common implementation using baseband flux pulses.

The CPHASE gate is a two-qubit gate whose operation
is represented by the unitary matrix

UCPHASE =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiϕ

 . (A1)

The CPHASE gate adds a term eiϕ to the qubits only
when both are in the excited state |11⟩. To be more
specific, if the original state of the qubits is |00⟩, |01⟩ or
|10⟩, the CPHASE gate effectively does nothing. If the
original state of the qubits is |11⟩, it will be transformed
into eiϕ |11⟩ after the CPHASE gate operation.
One implementation of the CPHASE gate relies on the

avoided crossing between states |11⟩ and |20⟩ that occurs
when two transmon qubits are coupled to each other.
Consider a system of two capacitively coupled qubits
as depicted in Fig. 5(a), where QB1 is a flux-tunable
transmon qubit while QB2 is a fixed-frequency transmon
qubit. The Hamiltonian - including states with two exci-
tations in addition to the four computational states - can
be written in the |00⟩ , |01⟩ , |10⟩ , |11⟩ , |02⟩ , |20⟩-basis as

H =


E00 0 0 0 0 0
0 E01 g 0 0 0
0 g E10 0 0 0

0 0 0 E11

√
2g

√
2g

0 0 0
√
2g E02 0

0 0 0
√
2g 0 E20

 , (A2)

where Eij is the energy of state |ij⟩ and g is the cou-
pling strength with a factor of

√
n corresponding to the

number of qubit excitations (n = 1, 2). Note that the fre-
quency of QB1, and therefore the energies Eij , depend
on the external magnetic flux threading the SQUID loop.
Fig. 5(c) shows an example of the energy spectrum of the
system described by the Hamiltonian in Eq. A2 as a func-
tion of the frequency detuning of QB1. We show energies
of states |01⟩ , |10⟩ , |02⟩ , |11⟩ , |20⟩.
The CPHASE gate is implemented by detuning the

frequency of QB1 such that the instantaneoues energy of
state |11⟩ follows the trajectory l(t) in Fig. 5(d). To be
more specific, we shift the frequency of QB1, thus in par-
ticular the energy of state |11⟩, bringing it into resonance
with state |20⟩, which opens an avoided crossing due to
the coupling. We then rewind the trajectory and return
to the starting point. The trajectory l(t) corresponds
to the change of the instantaneous frequency of QB1 as
time evolves as shown in Fig. 5(b). In the adiabatic im-
plementation of the process, we deliberately design l(t)
to detune the frequency of QB1 slowly enough so that
there is only small leakage from |11⟩ to |20⟩ throughout
the whole process. We note that due to the presence of

the avoided crossing, the energy of state |11⟩ is pushed
lower than would be expected in an uncoupled system.
This is the origin of an additional phase accumulation
that only occurs for state |11⟩, leading to the conditional
phase accumulation. This process can be represented by
a unitary matrix in the computational basis

Uraw =


1 0 0 0
0 eiϕ01 0 0
0 0 eiϕ10 0
0 0 0 eiϕ11

 , (A3)

where ϕij is the accumulated phase

ϕij =

∫ td

0

ωij(t)dt , (A4)

with td denoting the duration of the process.
The way we shift the frequency of QB1 is by chang-

ing the external magnetic flux Φext threading the SQUID
loop of QB1. The qubit frequency of QB1 ω1 as a func-
tion of Φext is given by [16]

ω1(Φext) =
1

ℏ

(√
8EJEC

4
√
d2 + (1− d2) cos2(π

Φext

Φ0
)−EC

)
,

(A5)
where EJ = EJ1 + EJ2 is the sum of the Josephson en-
ergies of the two junctions, namely EJ1, EJ2. EC is the
charging energy. Φ0 is the superconducting flux quan-
tum. d is the junction symmetry parameter defined as

d =
|EJ2 − EJ1|
EJ2 + EJ1

. (A6)

In order to obtain the CPHASE gate as in Eq. A1,
two single-qubit gates Rz(−ϕ01) and Rz(−ϕ10) need to
be implemented to each qubit to cancel the phase accu-
mulated by states |01⟩ and |10⟩. Therefore, the whole
operation can be represented by

U ′
CPHASE =


1 0 0 0
0 1 0 0
0 0 1 0

0 0 0 eiϕ
′

 , (A7)

where ϕ′ = ϕ11 − ϕ01 − ϕ10. If there were no coupling
between the two qubits, ϕ′ = 0. Because of the effect of
the coupling between the two qubits, a nonzero phase will
be acquired. The way the instantaneoues energy of state
|11⟩ is varied determines the value of ϕ′. By choosing a
suitable l(t) as depicted in Fig. 5(d), in principle we can
always have ϕ′ = ϕ for any arbitrary desired phase ϕ.
When ϕ = π, the operation is named a CZ gate.
There is an alternative way of implementing a

CPHASE as opposed to the adiabatic method, which we
refer to as a non-adiabatic implementation. Instead of
gradually detuning the frequency of QB1, this approach
involves making a sudden transition to the CPHASE op-
erating point near the avoided crossing of |11⟩ and |20⟩.
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QB1 QB2

(a) (b)

(c) (d)

FIG. 5. (a) Circuit diagram of a flux-tunable transmon capacitively coupled to a fixed-frequency transmon. The flux-tunable
transmon is referred to as QB1 and the fixed-frequency transmon is referred to as QB2. (b) An example of a pulse to vary ω1

from ω1 = 5.8 GHz to ω1 = 5.0 GHz and then back to ω1 = 5.8 GHz. (c) Energy spectrum diagram of two coupled transmons
as depicted in (a) as the frequency of QB1 is detuned by changing the local magnetic flux that threads its SQUID loop. The
avoided crossing between the states |11⟩ and |20⟩ is used to implement the CPHASE gate. (d) A zoom-in plot around the
avoided crossing of interest, where l(t) represents a typical trajectory of the instantaneoues energy of state |11⟩ during the
process of the CPHASE gate. l(t) can be described in terms of how the frequency of QB1 changes over time, as shown in (b).

After a waiting period of time t = π/
√
2g, the state un-

dergoes a single Larmor-type rotation from |11⟩ to |20⟩
and then back to |11⟩. During this process, an overall
conditional phase accumulation is obtained.

Appendix B: Derivation of formula for leakage error

Two approaches to calculating the leakage error are
presented based on the discussions in Ref. [24]. We first
take advantage of the Bloch sphere representation and
give an approximate but more intuitive solution from a
geometric perspective. Then we go through a mathemat-
ical derivation and provide an analytical formula. We will
comment on the efficacy of the formula by discussing the
relationship of this formula to the more general Landau-
Zener formulation [50, 51].

1. Geometric approach

Recall that in Eq. 3, θ(t) is defined as θ(t) =
arctan(∆/ε(t)). In Fig. 6(a) we introduce a control vector

θ⃗ representing the control variable θ(t) in terms of ∆ and
ε(t). Correspondingly, in Fig. 6(b) we show an instan-
taneous basis vector |11′⟩, which represents the ground
state of the instantaneous Hamiltonian H as θ(t) varies,

in parallel to the control vector θ⃗. As time progresses,
we change our frame reference to coincide with the frame
whose basis vectors are the eigenstates of the instanta-
neous Hamiltonian H.

We first show how the state evolves in an infinitesimal
time δt. Suppose the angle between the initial state |ψ⟩ at
time t0, represented by the gray Bloch vector in Fig. 6(b),
and the z-axis is θ0. Ideally, |ψ⟩ is aligned with the in-
stantaneous ground vector |11′⟩ at time t0. After δt, a δθ
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FIG. 6. The geometric definition of θ(t) and the Bloch sphere
picture of an infinitesimal step of evolution. (a) A control

vector θ⃗ representing the control variable θ(t) in a coordinate
in terms of ∆ and ε(t). (b) An instantaneous basis vector |11′⟩
parallel to the control vector θ⃗. In an infinitesimal time δt, the
state vector |ψ⟩ deviates from the instantaneous basis vector
|11′⟩ by −δθ and precesses around it. (c) A bird’s-eye plot
supposing we stare at and stay in a moving frame with the

control vector θ⃗. The accumulated deviation χ of the state

vector |ψ⟩ from the control vector θ⃗ as a function of time.
The vertical axis Imag(χ) coincides with the longitude axis
in the x-z plane, while the horizontal axis Real(χ) denotes
the latitude axis orthogonal to the x-z plane. The origin

represents the control vector θ⃗.

change in the angle between instantaneous ground vec-
tor |11′⟩ and the z-axis takes place. If we switch into the
new reference frame, the state vector |ψ⟩ deviates from
the basis vector by −δθ and therefore starts to precess
around the basis vector at frequency ω, where ω refers
to the eigenenergy difference of the instantaneous Hamil-
tonian. Therefore, during the infinitesimal time δt, the
state vector |ψ⟩ will pick up a deviation from the ground
vector |11′⟩ by δχ = −δθe−iωδt.

Next we consider a series of infinitesimal time δt’s. A
simple approach is to move into the reference frame along

with the control vector θ⃗ and correspondingly the instan-
taneous ground vector |11′⟩. Thus, the whole process can
be viewed as the state vector |ψ⟩ deviating from the ba-
sis vector by a series of −δθj ’s with an angle rotation
ϕj =

∑
i ωiδt, which is the accumulated phase up to the

j-th δt. Since the angle rotation is orthogonal to the −δθj
deviation, and both are sufficiently small in the adiabatic

limit, we can accumulate them independently, i.e.,

χ =
∑
j

−δθje−iϕj (B1)

Fig. 6(c) is a bird’s-eye view plot supposing we stare

at and stay in a moving frame with the control vector θ⃗.
The vertical axis Imag(χ) coincides with the longitude
axis in the x-z plane, while the horizontal axis Real(χ)
denotes the latitude axis orthogonal to the x-z plane.

The origin represents the control vector θ⃗. We plot the
accumulated deviation χ as a function of time according
to Eq. B1, using a Slepian-based control trajectory.
Change the

∑
symbol into the

∫
symbol and the δ

symbol into the d symbol, as in elementary calculus, and
we have

χ = −
∫

dθe−i
∫ t ω(t′)dt′ (B2)

= −
∫

dθ

dt
e−i

∫ t ω(t′)dt′dt . (B3)

Therefore, the leakage error rate Pe can be calculated
as 1 minus the probability of measuring the state |ψ⟩ in
the instantaneous ground state |11′⟩

Pe = 1−
(
cos

arcsin |χ|
2

)2

=

(
sin

arcsin |χ|
2

)2

≈ |χ|2/4 .

(B4)

where the approximation holds valid when χ is suffi-
ciently small. We plug the calculated χ as depicted in
Fig. 6(c) into Eq. B4 and find that the analytical leakage
error matches well with the simulation result throughout
the process.
Note that in this geometric derivation we assume that

the changes at different infinitesimal time δt’s can be
summed linearly. This approximation holds valid so long
as the net overall change χ is small. In fact, in this
research we concentrate on adiabatic control, and there-
fore, we are always interested in small leakage error rate
Pe incurred throughout the process. This small Pe cor-
responds to the fact that χ should be small.

2. Analytical approach

We continue to present an analytical approach to deriv-
ing the leakage error. Recall that in Section II B, the ab-
stracted two-level system can be described by the Hamil-
tonian in Eq. 1. We have also defined a control variable
θ(t) = arctan(∆/ε(t)). A pictorial representation of the
control variable θ(t) in terms of ∆ and ε(t) is shown in
Fig. 6(a).
Consider a state |ψ⟩ given by |ψ⟩ = α0 |11⟩ + β0 |20⟩,

where |11⟩ and |20⟩ denote the basis vectors of the σz-
basis (z-axis). Suppose there exists another basis which
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rotates around the y-axis by an angle θ relative to the
σz-basis (z-axis). In this new basis, the state |ψ⟩ can be
rewritten as

|ψ⟩ = α |11′⟩+ β |20′⟩ , (B5)

where

α = α0 cos
θ

2
+ β0 sin

θ

2
, (B6a)

β = β0 cos
θ

2
− α0 sin

θ

2
, (B6b)

and |11′⟩ and |20′⟩ are the basis vectors of the new basis,
which we now refer to as the θ-rotated basis. Correspond-
ingly, we refer to the Bloch sphere with the θ-rotated
basis as the θ-rotated Bloch sphere.

In the θ-rotated basis, we denote the eigenvalues of the
basis states as ±ω/2. In a static (non-rotating) frame,
the Bloch vector will precess around the θ-rotated basis
axis, which results in a phase induced time derivative

α̇ = −iω
2
α , (B7)

β̇ = i
ω

2
β . (B8)

However, if we let θ(t) varies as a function of time, we
will have an additional term in the time derivative of α
and β respectively

α̇ = −iω
2
α+ (−α0 sin

θ

2
+ β0 cos

θ

2
)(
1

2
θ̇) (B9)

=
−iωα+ βθ̇

2
, (B10)

β̇ = i
ω

2
β + (−α0 cos

θ

2
− β0 sin

θ

2
)(
1

2
θ̇) (B11)

=
iωβ − αθ̇

2
, (B12)

where we use the “dot” notation ẋ as a shorthand to
denote the time derivative of x.
Now let us denote α = cosΘ/2 and β = eiϕ sinΘ/2

where Θ and ϕ are the spherical coordinates on the θ-
rotated Bloch sphere. Here we have omitted an overall
phase. Note that

α∗β = cos
Θ

2
sin

Θ

2
eiϕ

=
sinΘeiϕ

2
.

(B13)

It is interesting to see how α∗β evolves over time. We
proceed by taking the time derivative of α∗β

d

dt
(α∗β) = α̇∗β + α∗β̇ (B14)

=

[
−iωα+ βθ̇

2

]∗
β + α∗ iωβ − αθ̇

2
(B15)

=
iωα∗ + β∗θ̇

2
β + α∗ iωβ − αθ̇

2
(B16)

= iωα∗β +
|β|2 − |α|2

2
θ̇ . (B17)

Since

(|β|2 − |α|2)2 = |β|4 + |α|4 − 2|β|2|α|2

= |β|4 + |α|4 + 2|β|2|α|2 − 4|α∗β|2

= 1− 4|α∗β|2 ,
(B18)

we then have

|β|2 − |α|2 = ±
√
1− 4|α∗β|2 . (B19)

Substituting Eq. B19 into Eq. B17, we have

d

dt
(α∗β) = iωα∗β ± θ̇

2

√
1− 4|α∗β|2 . (B20)

If we substitute α∗β = eiϕ sinΘ/2 as in Eq. B13, we will
have

d

dt
(sinΘeiϕ) = iω sinΘeiϕ ± θ̇ cosΘ . (B21)

Substituting ϕ = ϕ′+
∫ t
ω(t′)dt′, where ϕ′ is some initial

reference phase, in Eq. B21, we have

LHS =
d

dt
(sinΘeiϕ

′
)ei

∫ t ω(t′)dt′ + iω sinΘeiϕ , (B22)

RHS = iω sinΘeiϕ ± θ̇ cosΘ . (B23)

Therefore, we can derive

d

dt
(sinΘeiϕ

′
)ei

∫ t ω(t′)dt′ = ±θ̇ cosΘ . (B24)

which can be rewritten as

d(sinΘeiϕ
′
) = ±θ̇ cosΘe−i

∫ t ω(t′)dt′dt . (B25)

If we integrate both sides of Eq. B25, we will have

sinΘeiϕ
′
= ±

∫
cosΘ

dθ

dt
e−i

∫ t ω(t′)dt′dt . (B26)

Now we can write the leakage error Pe throughout the
whole dynamic process as

Pe = |β|2 =

∣∣∣∣ sin Θ

2

∣∣∣∣2
≈

∣∣∣∣ sinΘeiϕ′

2

∣∣∣∣2

=

∣∣∣∣ ∫ cosΘ
dθ

dt
e−i

∫ t ω(t′)dt′dt

∣∣∣∣2
4

≈

∣∣∣∣ ∫ dθ

dt
e−i

∫ t ω(t′)dt′dt

∣∣∣∣2
4

.

(B27)

Note that Eq. B26 and Eq. B3 differ by a factor of cosΘ.
Here, the term cosΘ is due to the geometry of the θ-
rotated Bloch sphere relative to the original Bloch sphere
whose basis vectors are |11⟩ and |20⟩. Since the whole
process is performed adiabatically, the error is sufficiently
small and hence Θ is sufficiently small, and therefore, the
approximations in Eq. B27 are valid.
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3. Relationship to the Landau-Zener formula

Consider a two-level system described by the Hamilto-
nian in Eq. 1 and the energy diagram shown in Fig. 1.
Consider that the system is initially prepared in state
|ψ−⟩ with ε(t) → −∞. Then ε(t) increases in time
and sweeps through the avoided crossing and eventually
ε(t) → +∞. According to the Landau-Zener probability
of transition [52], we can derive the probability that the
system will undergo a transition to |20⟩ for the simple
case where ε(t) = αt with α being a positive constant

PLZ = e−π∆2/2α . (B28)

In Eq. B27, we do not assume that ε(t) = αt increases
linearly with time. However, if we were to make this
assumption, we could compute the transition probability
PeLZ from Eq. B27 and compare it to PLZ in Eq. B28.
We further let that ω(t) = ∆ to simplify the comparison,
i.e.,

Pe =

∣∣∣∣ ∫ dθ

dt
e−i∆tdt

∣∣∣∣2
4

. (B29)

First we compute the time derivative of θ(t)

dθ

dt
=

1

1 + (∆/αt)2
× −∆

αt2

=
−∆

αt2 +∆2/α

=
−∆/α

t2 + (∆/α)2
.

(B30)

Then we compute the integral within | · | in Eq. B29 and
substitute ∆ = ∆/ℏ (let ℏ = 1)∫

dθ

dt
e−i∆tdt =

∫
−∆/α

t2 + (∆/α)2
e−i∆tdt

= −πe−∆∆/α

= −πe−∆2/α .

(B31)

Therefore, we have

PeLZ =
π2

4
e−2∆2/α . (B32)

The relationship between PLZ in Eq. B28 and PeLZ in
Eq. B32 can be written as

logPLZ =
π

4
(logPeLZ − C) . (B33)

where C = log(π2/4) is some constant.

Appendix C: Nonlinear time frame transformation

We review a technique as proposed in Ref. [24], which
we term as nonlinear time-frame transformation. We

note that in Ref. [53], the authors did not consider a
time frame transformation.
Recall that in Eq. B27 we have landed on the leakage

error with valid approximations

Pe =

∣∣∣∣ ∫ dθ

dt
e−i

∫ t ω(t′)dt′dt

∣∣∣∣2
4

. (C1)

This formula for leakage error is quite complicated as
there exists another integral within an integral and one of
the integrals is itself an imaginary exponent. However, in
the event that ε(t) only changes slightly, i.e., max

t
|ε(t)|−

min
t

|ε(t)| ≈ 0, ω(t′) ≈ ωx with ωx a constant. We can

therefore make a further approximation

Pe =

∣∣∣∣ ∫ dθ

dt
e−iωxtdt

∣∣∣∣2
4

. (C2)

The term inside | · | in Eq. C2 is nothing but the Fourier
transform of dθ/dt evaluated at ωx. This is great because
we have now a very simple evaluation of the leakage er-
ror in terms of the control trajectory dθ/dt during the
process. In order to generalize the simple form to an
arbitrary ε(t), a nonlinear time frame τ is introduced,
where at any time t

ωτdτ = ω(t)dt , (C3)

with ωτ a constant. Clearly, τ = τ(t) is some nonlinear
function of t. Plug Eq. C3 into Eq. C1 and we have

Pe =

∣∣∣∣ ∫ dθ̃

dτ
e−i

∫ τ ωτdτ
′
dτ

∣∣∣∣2
4

=

∣∣∣∣ ∫ dθ̃

dτ
e−iωττdτ

∣∣∣∣2
4

.

(C4)

In this way, we achieve a simple form of the leakage error
as in Eq. C2, and can design dθ̃/dτ and hence θ̃(τ) in
the nonlinear time frame τ using approaches proposed in
Section II and IV. In Eq. C3, if we rearrange the terms
by dividing both sides by ω(t), we have

dt =
ωτ

ω(t)
dτ =

ωτ

ω(τ)
dτ , (C5)

where we change the variable of ω(·) from t to τ . Inte-
grate both sides and we have

t(τ) =

∫ τ

0

dt =

∫ τ

0

ωτ

ω(τ ′)
dτ ′ . (C6)

If we further set ωτ = ∆, we will have

ωτ

ω(τ ′)
=

∆

ω(τ ′)
= sin θ̃(τ ′) , (C7)
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FIG. 7. Comparison of analytically calculated leakage error
Pe−ana by Eq. 5 with the nonlinear time-frame transforma-
tion and leakage error Pe−sim by simulating a two-level sys-
tem. (a) Time-domain representation of an example of the
Slepian-based trajectory. (b) Time-domain representation of
an example of the Chebyshev-based trajectory. (c) Pe−ana v.s.
Pe−sim as a function of pulse duration using (a). (d) Pe−ana

v.s. Pe−sim as a function of pulse duration using (b).

where θ̃(τ) is already known by design. Then we compute

t(τ) =

∫ τ

0

sin θ̃(τ ′)dτ ′ . (C8)

Now that we have θ̃(τ) and t(τ), we can numerically solve
for θ(t) in the original time frame t.

Appendix D: Validity of Eq. 5

We evaluate the validity of using Eq. 5 with the non-
linear time-frame transformation as discussed in Ap-
pendix C for the leakage error. We proceed by comparing
the analytically calculated leakage error Pe−ana and the
leakage error Pe−sim by simulating a two-level system,
using examples of the Slepian-based trajectory and the
Chebyshev-based trajectory.

In Figs. 7(a)-(b), we show the time-domain represen-
tations of two control trajectories, namely an example
of the Slepian-based trajectory and an example of the
Chebyshev-based trajectory. We first calculate the ana-
lytical Pe−ana using Eq. 5 considering the nonlinear time-
frame transformation. The calculation is performed for
a range of pulse duration. Then we perform a CZ gate
type simulation (except that we do not consider the ac-
cumulation of a certain phase) using a two-level system
and keep track of the leakage error throughout the pro-
cess. The simulation is also performed for a range of
pulse duration. In Figs. 7(c)-(d), we show the comparison
of the analytically calculated leakage error Pe−ana and
simulated leakage error Pe−sim for the two control tra-
jectories in Figs. 7(a)-(b) respectively. We observe that

Pe−sim (Slepian) manifests a feature of monotonously de-
creasing sidelobes as predicted by Pe−ana (Slepian), while
Pe−sim (Chebyshev) characterizes relatively flat (slightly
decreasing) sidelobes which should be exactly equirip-
ple as predicted by Pe−ana (Chebyshev). In addition, the
sidelobes of Pe−ana and Pe−sim of both examples oscillate
at a very close, if not exactly the same, frequency, which
indicates the validity of Eq. 5 in the sidelobe region.
However, the validity of Eq. 5 in the mainlobe region ap-
pears compromised. This is because we set ∆ = 50 MHz,
and when the pulse duration is less than approximately
1/∆ = 20 ns, the whole process is essentially not in the
adiabatic limit. This feature is not of too much concern
since what we really care about is the sidelobe character-
istic when designing and comparing the Slepian and the
Chebyhsev trajectories so that we can push for a faster
gate while keeping the process in the adiabatic regime.
Also, we should note that the absolute value of Pe−ana

is not meaningful since it is calculated using a normal-
ized control trajectory. We require control trajectories
to be subject to the same normalization as discussed in
Seciton IID to make sure the comparison is valid.

Appendix E: Formula for accumulated phase

As discussed in Section IIA, the primary characteristic
of the CPHASE gate is to accumulate some phase ϕ.
We derive a formula for the accumulated phase ϕ in the
abstracted two-level system.

Recall the Hamiltonian defined in Eq. 1 and the
eigenenergies defined in Eq. 2. Now let ∆ = 0 such that
no coupling exists between the two levels. The eigenen-
ergies are E′

11 = −ε(t)/2 and E′
20 = ε(t)/2, as depicted

by the dashed lines in Fig. 1. The difference between
the eigenenergies of the ground state ∆E = E11 − E′

11

with and without coupling is what determines the phase
accumulation in the CPHASE gate. We can recast the
eigenenergy difference in terms of θ(t)

∆E = E11 − E′
11 =

1

2
(ε(t)−

√
ε(t)2 +∆2)

= −∆

2
tan

θ(t)

2
.

(E1)

The accumulated phase ϕ is the integral of the energy
difference ∆E through the trajectory

ϕ =

∫
∆Edt = −

∫
∆

2
tan

θ(t)

2
dt . (E2)

By designing the shape of the control trajectory for
θ(t), we can in principle apply an arbitrary CPHASE
gate.
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Appendix F: The Slepian pulses and the Chebyshev
pulses I and II

1. The Slepian pulses

The Slepian pulses, also known as discrete prolate
spheroidal sequences (DPSSs), are a set of orthogonal
pulses intended for the problem of maximal concentra-
tion in both the time domain and the frequency do-
main. Heisenberg’s uncertainty principle implies that
pulses cannot be confined in both the time domain and
the frequency domain. It is then natural to ask: how
to optimally concentrate the energy in one domain if the
pulse is strictly confined in the other domain. This prob-
lem, both in continuous time and in discrete time, was
pursued and solved by Slepian, Landau, and Pollack [54–
59]. Here we briefly review the development and analysis
of the Slepian pulses for the discrete-time case.

Consider a finite-length, discrete-time pulse x[n], n =
0, 1, . . . , N − 1, which is specified to have finite energy,
i.e.,

E =

N−1∑
n=0

|x[n]|2 <∞ , (F1)

where E denotes the energy of the pulse x[n].
The discrete-time Fourier transform of the pulse x[n]

is given by

X(eiω) =

N−1∑
n=0

x[n]e−iωn . (F2)

Let 0 < W < π. The ratio λ ∈ [0, 1] that measures
the percentage of the energy contained in the frequency
band [−W,W ] over the total energy is defined as

λ =

∫ W

−W

|X(eiω)|2dω∫ π

−π

|X(eiω)|2dω
. (F3)

The goal is to find the pulse x[n] that maximizes λ for
all pulses x[n], n = 0, 1, . . . , N − 1 of length N .

The Slepian pulses {v(k)n (N,W ), k = 0, 1, . . . , N − 1}
are the solutions to the optimization problem stated
above [58], where n = 0, 1, . . . , N − 1 is the index of the
pulse, k is the order of each pulse, and N and W are pa-
rameters referred to as the length and mainlobe width of
the pulse, respectively. The Slepian pulses can be derived
from the real solutions to the system of equations

N−1∑
m=0

sin 2πW (n−m)

π(n−m)
v(k)m (N,W ) = λk(N,W )v(k)n (N,W ) ,

(F4)
for n,m = 0, 1, . . . , N − 1 and k = 0, 1, . . . , N − 1. When
n = m, this simplifies to

sin 2πW (n−m)

π(n−m)
= 2W . (F5)

Eqs. F4 can also be written in the matrix form

Av(k) = λkv
(k) , (F6)

where

An,m =
sin 2πW (n−m)

π(n−m)
, (F7a)

v(k) = [v
(k)
0 (N,W ), v

(k)
1 (N,W ), . . . , v

(k)
N−1(N,W )]T .

(F7b)
Eq. F6 is an eigenvalue problem, where λk’s are the

N distinct eigenvalues and v(k)’s are the corresponding
eigenvectors. By convention the eigenvalues are ranked as
1 > λ0 > λ1 > · · · > λN−1 > 0. Therefore, the sequence

v
(0)
n (N,W ) that corresponds to the largest eigenvalue λ0
is referred to as the first Slepian pulse. Each successive
Slepian pulse maximizes λ while being orthogonal to the
Slepian pulses preceding it.
The time and frequency-domain representations of the

first and second Slepian pulses for N = 25 and NW = 3
are shown in Figs. 8(a)-(b). The magnitude of the Fourier
transform is normalized to be 1 at ω = 0 for the first
Slepian pulse, while for the second Slepian pulse, it is
normalized so that the peak magnitude of the mainlobe
is 1. Compared to the rectangular pulse and raised co-
sine pulses, we find that the Slepian pulses have a rela-
tively low sidelobe amplitude and small mainlobe width,
which makes them a good candidate when a compromise
between the sidelobe amplitude and mainlobe width is
required.
To maintain consistent notation, we denote the first

Slepian pulse (k = 0) as

wNW
sl1 [n] =

{
v
(0)
n (N,W ), 0 ≤ n ≤ N − 1

0, otherwise
, (F8)

and the second Slepian pulse (k = 1) as

wNW
sl2 [n] =

{
v
(1)
n (N,W ), 0 ≤ n ≤ N − 1

0, otherwise
, (F9)

where the superscript NW may be omitted when it is
given in context.

2. The Chebyshev pulses

Dolph formulated and solved the problem of finding a
pulse that minimizes the mainlobe width given a speci-
fied sidelobe amplitude (or vice versa), in the context of
antenna array design [60]. The optimal solution to this
problem is known as the Chebyshev pulse.
The Chebyshev pulse is based on the Chebyshev poly-

nomials of the first kind defined as

Tn(x) =


cos(n arccos (x)) |x| ≤ 1

cosh(n arccosh (x)) x ≥ 1

(−1)n cosh(n arccosh (−x)) x ≤ −1

,

(F10)
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FIG. 8. (a)(b) Time-domain and frequency-domain represen-
tations of the first and second Slepian pulses for N = 25
and NW = 3. (c)(d) Time-domain and frequency-domain
representations of the Chebyshev pulses I for N = 25 and
sidelobe amplitudes specified to be 10−3 and 10−4. (e)(f)
Time-domain and frequency-domain representations of a Case
3 pulse for N = 25 using weighted Chebyshev approximation,
an example of what we refer to as the Chebyshev pulses II.

where n denotes the order of the Chebyshev polynomials.
Plugging in the values n = 0 and n = 1, we have T0(x) =
1 and T1(x) = x. Using the double angle trigonometric
identity, i.e., cos 2θ = 2 cos2 θ−1 or cosh 2θ = 2 cosh2 θ−
1, the following recurrence relation can be verified

Tn(x) = 2xTn−1(x)− Tn−2(x), n ≥ 2 . (F11)

It can be further shown that Tn(x) is an nth-order poly-
nomial in x, i.e., Tn(x) can be equivalently written as the
ordinary polynomial

Tn(x) =

n∑
k=0

b[k]xk , (F12)

for some coefficients b[k], k = 0, 1, . . . , n. Tn(x) is even
or odd according to whether n is even or odd. Tn(x)
oscillates between −1 and 1 when −1 ≤ x ≤ 1 and is
monotonic when x ≥ 1 or x ≤ −1.

The Chebyshev pulse wch1[n] can be defined through
its Fourier transform

Wch1(e
iω) = e−iωN−1

2
TN−1(x0 cos (ω/2))

TN−1(x0)
, (F13)

where N denotes the length of the pulse, and x0 > 1
is a parameter related to the sidelobe amplitude of

Wch1(e
iω). Let ωs be such that x0 cos (ωs/2) = 1. As

ω increases from 0 to ωs, the argument of the numerator
in Eq. F13, i.e., x0 cos (ω/2), decreases from x0 to 1, and
thus Wch1(e

iω) decreases from 1 to 1
TN−1(x0)

:= r. As ω

increases from ωs to π, Wch1(e
iω) will oscillate between

−r and r.
Utilizing trigonometric identities and considering that

Tn(x) is an nth-order polynomial in x, it can be shown
that Eq. F13 can further be written in a more structured
form

Wch1(e
iω) =

N−1∑
n=0

wch1[n]e
−iωn , (F14)

where wch1[n], n = 0, 1, . . . , N − 1 are the coefficients of
the Chebyshev pulse. The Chebyshev pulse coefficients
can also be evaluated from the inverse Fourier transform
of Eq. F13. The explicit analytical formula is given by

wch1[n] =
1

N

[
1 + 2r

Ns∑
k=0

(−1)kTN−1

(
x0 cos

πk

N

)
cos

(2πk
L

(n+
1

2
)
)]
, n = 0, 1, . . . , N − 1 ,

(F15)

where r = 1
TN−1(x0)

is as defined earlier, and

Ns =

{
N−1
2 N odd

N
2 − 1 N even

. (F16)

The time-domain and frequency-domain representa-
tions of the Chebyshev pulses for N = 25 and different
specified sidelobe amplitudes (10−3 for Chebyshev I, #1
and 10−4 for Chebyshev I, #2) are shown in Fig. 8(c)-
(d). The magnitude of the Fourier transform is normal-
ized to be 1 at ω = 0. One important characteristic of
the Chebyshev pulse is the equiripple sidelobe amplitude
for all sidelobes. From Fig. 8(d), we can observe that as
the sidelobe amplitude of the Chebyshev pulse is spec-
ified to be lower, its mainlobe width will be larger. In
Appendix G, we will show that the Chebyshev pulse is
a special case of the result of the weighted Chebyshev
approximation. In the following sections, when it is nec-
essary to discriminate between the Chebyshev pulse dis-
cussed in this section and the Chebyshev pulse II to be
introduced in Section F 3, we will refer to the Chebyshev
pulse as the Chebyshev pulse I to avoid confusion.

3. The Chebyshev pulses II

We define an anti-symmetric counterpart of the Cheby-
shev pulse I wch1[n] which we refer to as the Chebyshev

pulse II wβ
ch2[n], using the weighted Chebyshev approx-

imation, a method for finding a polynomial that best
approximates a given function in a weighted sense. Here,
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(a) (b)

FIG. 9. Time-domain and frequency-domain representations
of a Case 1 pulse for N = 25 using weighted Chebyshev ap-
proximation (WCA) to coincide with the Chebyshev pulse I
for N = 25 with sidelobe amplitude specified to be 10−3.

β denotes the parameters that we feed into the weighted
Chebyshev approximation problem. See Appendix G for
more details. For simplicity, we will omit β. The Cheby-
shev pulse II shares the same characteristics of equiripple
sidelobe amplitude and only one ripple in the passband as
the Chebyshev pulse I. The time-domain and frequency-
domain representations of an example of the Chebyshev
pulse II for N = 25 are shown in Figs. 8(e)-(f). The mag-
nitude of the Fourier transform is normalized so that the
peak magnitude of the mainlobe is 1.

We note a special feature of the Chebyshev pulses I
and II. The equiripple property in the frequency domain
is enforced by the specifications of the Chebyshev pulses.
Nonetheless, it carries the potential drawback of intro-
ducing “impulses” at the window endpoints. For exam-
ple, in Figs. 8(c), 8(e), both endpoints of each of the
Chebyshev pulses I and II are not approaching zero. The
same is true for the first and second Slepian pulses, i.e.,
their endpoints are not zero either. In other cases, such
as what we show in Section IV, this feature can be more
notable. For analysis purposes, it is an important fea-
ture because this is the primary reason for the equirip-
ple property. However, as we transform the Chebyshev
pulses II into the change of qubit frequency in simulation,
the effect of these “impulses” will diminish due to in-
terpolation and integration. For example, Figs. 9(a)-(b)
show a Chebyshev-based trajectory and its corresponding
εch2[n], which is the control pulse for the CPHASE gate.
The “impulses” do not manifest in εch2[n]. This is good
because we cannot implement sharp jumps in frequency
changes of qubits.

Appendix G: Weighted Chebyshev approximation

We review the basics of the weighted Chebyshev
approximation (WCA) in the context of finite-length,
discrete-time pulse design.

Let h[n], n = 0, 1, . . . , N − 1, be a real-valued finite-
length, discrete-time pulse of length N defined over the
discrete-time interval 0 ≤ n ≤ N − 1. The Fourier trans-

form of h[n] is

H(eiω) =

N−1∑
n=0

h[n]e−iωn . (G1)

H(eiω) can also be written in terms of its amplitude and
phase

H(eiω) = A(ω)eiϕ(ω) , (G2)

where A(ω) and ϕ(ω) are real-valued functions of ω.
We further require that h[n] be symmetric or anti-

symmetric. Here, when h[n] is referred to as being sym-
metric, it means

h[n] = h[N − 1− n], n = 0, 1, . . . , N − 1 . (G3)

Similarly, when h[n] is referred to as being anti-
symmetric, it means

h[n] = −h[N − 1− n], n = 0, 1, . . . , N − 1 . (G4)

Depending on the value of N being odd or even and
h[n] being symmetric or anti-symmetric, there exist four
cases of pulses h[n]. With the symmetry constraints, it
can be shown that ϕ(ω) can be written in the form of
ϕ(ω) = C +Bω, which is a linear function of ω, where C
and B = −N−1

2 are real-valued. Therefore, the Fourier
transform of the four cases of pulses can be written in
the form

H(eiω) = A(ω)eiCeiBω . (G5)

Values of C and forms of A(ω) are given in Table II.

C A(ω)

Case 1:
N odd, h[n] symmetric

0

N−1
2∑

n=0

a[n] cos (ωn)

Case 2:
N even, h[n] symmetric

0

N
2∑

n=0

b[n] cos (ω(n− 1/2))

Case 3:
N odd, h[n] anti-symmetric

1

N−1
2∑

n=0

c[n] sin (ωn)

Case 4:
N even, h[n] anti-symmetric

1

N
2∑

n=0

d[n] sin (ω(n− 1/2))

TABLE II. Values of C and forms of A(ω) for the four cases
of pulses. Here, a[n], b[n], c[n], d[n] are coefficients that can
be determined given h[n].

Note that the forms of A(ω) are either a sum of cosines
or sines, with the argument being either ωn or ω(n−1/2).
Utilizing basic trigonometric identities, the forms of A(ω)
for all four cases can be rewritten in the form A(ω) =
Q(ω)P (ω), where Q(ω) is specific to each case and P (ω)
is always a sum of cosines. Forms of Q(ω) and P (ω) are
given in Table III.
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Q(ω) P (ω)

Case 1:
N odd, h[n] symmetric

1

N−1
2∑

n=0

ā[n] cos (ωn)

Case 2:
N even, h[n] symmetric

cos (ω/2)

N
2
−1∑

n=0

b̄[n] cos (ωn)

Case 3:
N odd, h[n] anti-symmetric

sin (ω)

N−3
2∑

n=0

c̄[n] cos (ωn)

Case 4:
N even, h[n] anti-symmetric

sin (ω/2)

N
2
−1∑

n=0

d̄[n] cos (ωn)

TABLE III. Forms of Q(ω) and P (ω) for the four cases of
pulses. Here, ā[n], b̄[n], c̄[n], d̄[n] are coefficients that can be
determined given h[n]. For Case 1, we have ā[n] = a[n].

Having established the notations, the Chebyshev ap-
proximation problem may be stated as follows. Given a
disjoint union of frequency bands of interest F ⊂ [0, π],
a desired function D(ω) defined and continuous on F , a
positive weighting functionW (ω) defined and continuous
on F , and a desired choice of one of the four cases of h[n],
the minimum of the following quantity

||E(ω)|| := max
ω∈F

W (ω)|D(ω)−A(ω)| , (G6)

and the corresponding h[n] are desired. Here, E(ω) :=
W (ω)|D(ω)−A(ω)| is referred to as the weighted approx-
imation error and the optimization problem is a minimax
problem of E(ω).

Considering we have the form A(ω) = Q(ω)P (ω), we
can rewrite the weighted approximation error as

E(ω) =W (ω)|D(ω)−A(ω)| (G7)

=W (ω)|D(ω)−Q(ω)P (ω)| (G8)

=W (ω)Q(ω)

∣∣∣∣D(ω)

Q(ω)
− P (ω)

∣∣∣∣ . (G9)

Note that Eq. G9 is valid except possibly at ω = 0 or π.
To avoid those scenarios where Q(ω) = 0, it suffices to
restrict that F ⊂ [0, π) for Case 2 problems, F ⊂ (0, π)
for Case 3 problems, and F ⊂ (0, π] for Case 4 problems.

Let Ŵ (ω) = W (ω)Q(ω) and D̂(ω) = D(ω)/Q(ω), and
we have

E(ω) = Ŵ (ω)|D̂(ω)− P (ω)| . (G10)

With the form of weighted approximation error in
Eq. G10, one algorithmic solution to the above mentioned
problem makes use of the alternation theorem, the Re-
mez exchange algorithm, and/or the Parks-McClellan al-
gorithm [61–63]. Other solutions make use of linear pro-
gramming with additional constraints [64, 65]. We refer
the readers to the included references for more details.
The solution for designing pulses in the minimax sense

as in Eq. G6 is often in a numerical form without explicit
analytical form. However, with a special set of F ⊂ [0, π],
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FIG. 10. Time-domain and frequency-domain representations
of a Case 1 pulse for N = 25 using weighted Chebyshev ap-
proximation (WCA) to coincide with the Chebyshev pulse I
for N = 25 with sidelobe amplitude specified to be 10−3.

D(ω) and W (ω), and with h[n] specified to be Case 1
or 2, the solution coincides with the Chebyshev pulse
I discussed in Section F 2. In other words, the Cheby-
shev pulse I is a special case in the weighted Chebyshev
approximation problem. We refer the readers to Chap-
ter 3 of Ref. [66] for more details. Figs. 10(a)-(b) show
the time-domain and frequency-domain representations
of an example of using the weighted Chebyshev approx-
imation (WCA) to design a pulse, which coincides with
the Chebyshev pulse I with sidelobe amplitude specified
to be 10−3 in Fig. 8(c). Note that there is only one rip-
ple in the passband, which is otherwise referred to as the
mainlobe. This is also one of the reasons why we name
the Chebyshev pulses II, since they are an anti-symmetric
counterpart of the Chebyshev pulses I, and both can be
considered as a special result of the weighted Chebyshev
approximation problem.
If we provide an appropriate set of F ⊂ [0, π], D(ω)

andW (ω), but specify h[n] to be Case 3 or 4, the optimal
solution to the weighted Chebyshev approximation prob-
lem will be an anti-symmetric counterpart of the Cheby-
shev pulse I wch1[n], which we refer to as the Chebyshev

pulse II wβ
ch2[n], where β = [F , D(ω),W (ω)]. Note that

it is not necessarily true that the solution given by the
weighted Chebyshev approximation will always be an in-
stance of the Chebyshev pulse II, for any set of F ⊂ [0, π],
D(ω) and W (ω). In order to find an appropriate Cheby-
shev pulse II wch2[n], the parameters need to be properly
chosen. In Ref. [67], the authors demonstrate the design
process of wch2[n] through an illustrative example.

Appendix H: Phase accumulation and leakage error
of the example in Section VB1

Figures 11(a), 11(c) present the phase accumulation
and leakage error for a range of control pulse duration
td and amplitude A using the g̃sl2[n] shown in Fig. 2(a).
As a comparison, Figs. 11(b), 11(d) present the phase
accumulation and leakage error for a range of control
pulse duration td and amplitude A using the same g̃ch2[n]
as shown in Fig. 2(a). Following the procedure in Sec-
tion VA, we first find all the amplitude and duration
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pairs that result in the phase accumulation ϕ = π, de-
scribed by the red dashed curve in Figs. 11(a)-(b). Then
we determine the corresponding leakage error data points
described by the yellow dashed curve in Figs. 11(c)-(d).

Appendix I: Additional simulation results

We present additional simulation comparison results
between different pairs of benchmark Slepian-based tra-
jectories g̃sl2[n] and Chebyshev-based trajectories g̃ch2[n]
in Fig. 12. We follow the simulation and analysis pro-
cedure as discussed in Section V. In all these examples,
we can see that g̃ch2[n] pushes the leakage lower in the
range of smaller pulse duration while sacrificing a higher
leakage error in the range of larger pulse duration. The
best operating points with shortest pulse duration are
indicated by green squares and purple dots. Note that
in Figs. 12(g)-(h), we observe an unusually small lobe
appearing before the first main leakage error lobe. Ta-
ble IV shows an aggregate of comparisons of best op-
erating points following the same argument as in Sec-
tion VB1.

We also present additional simulation comparison re-
sults under certain hardware constraints. Table V shows
an aggregation of the best operating points using g̃sl2[n]
and g̃ch2[n] in Fig. 4 following the same argument as in
Section VB1.

Appendix J: Average gate fidelity

We compute the average gate fidelity Fg follow-
ing Refs. [27, 68, 69]. We first compute the aver-
age process fidelity Fp by numerically simulating quan-
tum process tomography. We prepare 16 input states
{|0⟩ , |1⟩ , |+⟩ , |−⟩} ⊗ {|0⟩ , |1⟩ , |+⟩ , |−⟩} and construct
the process matrix (chi matrix representation) χ from
the output states. We then compute the average process
fidelity Fp = Tr(χidealχ) by comparing it to the ideal
process matrix χideal. To quantify leakage error in aver-
age gate fidelity, we partition the Hilbert space H into
two disjoint subspaces H = H1 ⊕ H2. Here, H1 is the
d1-dimensional subspace whose bases are computational
states, while H2 is the d2-dimensional subspace where
leakage to additional noncomputational states occurs.
The state leakage term L1 is defined as L1 = 1−Tr(11ρ),
where 11 denotes the projector ontoH1 and ρ denotes the
state. L1 is mainly determined by Pe in our case. The
average gate fidelity Fg can then be computed through
the relationship between Fg and Fp introduced in [68],

Fg =
d1Fp + 1− L1

d1 + 1
. (J1)

We define gate infidelity to be 1− Fg.

Appendix K: Details on simulating hardware
limitations

In Eq. 6 we present the design pipeline from g̃(τ) to
ω1(t) and finally to Φext(t). In experiments, Φext(t) is
induced by passing an electric current through a flux line,
which is connected to an antenna positioned in proximity
to the target qubit and linked inductively to its SQUID
loop. The current is generated at room temperature,
employing either an active current source or a voltage
source that applies a voltage across a series resistance. In
either case, Φext(t) can be modeled as a linear function
of physical control parameter P (t), i.e., Φext(t) = kP (t).
P (t) can be the output current of the current source or
the output voltage of the voltage source.
We consider the sampling frequency Fs and bandwidth

bw as the hardware limitations. For a designed Φext(t),
we have a corresponding P (t). We first sample P (t)
with the sampling frequency Fs and interpolate the sam-
ples with zero holdings to simulate the function of the
digital-to-analog converter (DAC). We then put the in-
terpolated pulse into a lowpass filter with bandwidth bw
and obtain P̂ (t). In our simulation, we use a first-order

Butterworth filter. In order to convert P̂ (t) to ω̂1(t),
we numerically compute the inverse function of Eq. A5
to obtain f1 : Φext → ω1 and feed Φ̂ext(t) = kP̂ (t) as
the input. Finally we follow the same simulation pro-
cedure as discussed in Section VA with ω̂1(t). Fig. 13
shows the comparison of ω1(t) and ω̂1(t) before and af-
ter imposing the hardware limitation for td = 50 ns
based on g̃sl2[n] and g̃ch2[n] as in Section VB1, with
different Fs and bw. The difference between the two
pulses in Figs. 13(d1), 13(e1), 13(d2), 13(e2) are shown
in Figs. 14(a), 14(b), 14(c), 14(d), respectively. As the
sampling frequency and bandwidth of the hardware en-
hance, the distinction between the control pulses prior to
and following the AWG diminishes.
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(a) (b)

(c) (d)

FIG. 11. Phase accumulation and leakage error of the example in Section VB1. (a)(c) The phase accumulation and leakage
error for a range of control pulse duration td and amplitude A using g̃sl2[n] as shown in Fig. 2(a). The red dashed curve
describes all the amplitude and duration pairs that result in the phase accumulation ϕ = π. (b)(d) The phase accumulation
and leakage error for a range of control pulse duration td and amplitude A using g̃ch2[n] as shown in Fig. 2(a). The yellow
dashed curve describes the corresponding leakage error data points to those amplitude and duration pairs.

Index
Slepian Chebyshev

td (ns) log(Pe) 1− Fg td (ns) log(Pe) 1− Fg

(a) 46.8 −3.09 1.8× 10−4 46.0 −3.13 1.5× 10−4

(b) 46.5 −3.46 8.4× 10−5 46.0 −3.49 6.8× 10−5

(c) 46.6 −3.83 3.7× 10−5 46.0 −3.85 1.8× 10−5

(d) 46.7 −4.18 1.7× 10−5 46.0 −4.22 9.5× 10−6

(e) 47.0 −4.51 7.3× 10−6 46.5 −4.52 4.0× 10−6

(f) 47.0 −4.80 4.2× 10−6 46.5 −4.82 2.9× 10−6

(g) 41.5 −5.75 6.8× 10−6 46.7 −5.01 2.2× 10−6

(h) 42.0 −7.16 1.2× 10−6 47.0 −5.15 1.7× 10−6

TABLE IV. An aggregate of comparisons between various pairs of benchmark second Slepian-based trajectories and Chebyshev-
based trajectories, designed with different leakage error thresholds. The index corresponds to that in Fig. 12.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 12. Additional simulation results comparing different pairs of the Slepian-based trajectories and Chebyshev-based trajec-
tories. The best operating points with shortest pulse duration are indicated by green squares and purple dots. (a) through (h)
are arranged in a descending order of leakage error of best operating points.
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Index
Slepian Chebyshev

td (ns) log(Pe) 1− Fg td (ns) log(Pe) 1− Fg

(a) 51.9 −3.14 1.5× 10−4 51.5 −3.15 1.4× 10−4

(b) 48.5 −3.91 2.5× 10−5 47.6 −3.96 1.8× 10−5

(c) 47.0 −4.47 7.9× 10−6 46.0 −4.55 9.5× 10−6

(d) 47.0 −4.62 5.9× 10−6 46.0 −4.69 7.5× 10−6

TABLE V. Best operating points using g̃sl2[n] and g̃ch2[n] under certain hardware constraints in Fig. 4. The index corresponds
to that in Fig. 4.

(a1) (b1) (c1)

(a2) (a2) (c2)

(d1)

(d2)

(e1)

(e2)

FIG. 13. ω1(t) and ω̂1(t) before and after imposing the hardware limitation for td = 50 ns based on g̃sl2[n] and g̃ch2[n] as in
Section VB1. (a1)(a2) Fs = 0.5 GSa/s and bw = 200 MHz, (b1)(b2) Fs = 1 GSa/s and bw = 400 MHz, (c1)(c2) Fs = 2 GSa/s
and bw = 800 MHz, (d1)(d2) Fs = 5 GSa/s and bw = 2 GHz, (e1)(e2) Fs = 10 GSa/s and bw = 4 GHz.
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(a) (b)

(c) (d)

FIG. 14. Difference between ω̂1(t) and ω1(t) after and before imposing the hardware limitation. (a)(b)(c)(d) correspond to
Fig. 13(d1)(e1)(d2)(e2) respectively. The difference shrinks as we improve the hardware parameters.
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