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Abstract
We develop a framework for non-invasive volumetric indoor airflow estimation from a single
viewpoint using background-oriented schlieren (BOS) measurements and physics-informed
reconstruction. Our framework utilizes a light projector that projects a pattern onto a tar-
get back-wall and a camera that observes small distortions in the light pattern. While the
single-view BOS tomography problem is severely ill-posed, our proposed framework addresses
this using: (1) improved ray tracing, (2) a physics-based light rendering approach and loss
formulation, and (3) a physics-based regularization using a physics- informed neural network
(PINN) to ensure that the reconstructed airflow is consistent with the governing equations
for buoyancy-driven flows.
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Abstract—We develop a framework for non-invasive volumetric indoor
airflow estimation from a single viewpoint using background-oriented
schlieren (BOS) measurements and physics-informed reconstruction. Our
framework utilizes a light projector that projects a pattern onto a target
back-wall and a camera that observes small distortions in the light
pattern. While the single-view BOS tomography problem is severely
ill-posed, our proposed framework addresses this using: (1) improved
ray tracing, (2) a physics-based light rendering approach and loss
formulation, and (3) a physics-based regularization using a physics-
informed neural network (PINN) to ensure that the reconstructed airflow
is consistent with the governing equations for buoyancy-driven flows.

I. INTRODUCTION

Understanding the airflow in indoor spaces is crucial for improving
the comfort and efficiency of heating, ventilation, and air conditioning
(HVAC) systems [1, 2]. However, three-dimensional (3D) airflow
sensing is challenging since hardware sensors only measure localized
spatial regions around the sensors [3]. One promising imaging
technique is background-oriented schlieren (BOS) tomography, which
uses images of a patterned background to observe distortions due to
changes in the refractive index of a transparent medium [4–8]. While
BOS has been effective for quantitative measurement of gas flows
with high spatial resolution, the tomographic inverse problem is only
well-posed with a sufficient number of view angles [9–12].

In this work, we combine several recent advances in refractive
field tomography to achieve 3D airflow reconstructions for room-scale
scenes from a single camera view. First, we use a physics-informed
neural network (PINN) framework [13] as a regularizer to ensure
that the reconstructed field adheres to the partial differential equations
(PDEs) governing airflow. This approach is similar to those suggested
in [12, 14–17] but applied for the first time in a single view room-
scale setting. Additionally, we employ improved ray tracing and use a
physics-based rendering approach according to the refractive radiative
transfer equation (RRTE) [18, 19]. We also explore the use of a light
source projecting a pattern onto the wall [20], which may be more
practical than a fixed background. This extended abstract summarizes
our approach, with a comprehensive version of this work [21] set to
appear in the proceedings of ICASSP 2025.

II. BOS IMAGING FORMULATION

A. Airflow Imaging Setup
We consider a BOS imaging scenario comprising an air-filled room, a
camera, and either a patterned background wall or a light source that
can project a pattern on the back-wall, as shown in Fig. 1(a). When no
air is flowing, the camera captures a reference image Iref of the back-
wall pattern. When the inlet on the side wall blows the airflow into the
room, the captured image Iflow appears distorted due to the change in
density of the air which induces a gradient in its refractive index η,
as described by the Gladstone–Dale equation η = 1+Gρ, where G is
the Gladstone–Dale coefficient [22]. Assuming the pressure variation
of air in the room is small, then by the ideal gas law, the refractive
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index is related to temperature T as η(T ) = 1 + ρ0G
T0
T

, where ρ0
is the ambient density and T0 is the ambient temperature [12]. It
can be seen that changes in the air temperature cause changes in the
refractive index causing light rays passing through the air to bend.
B. Ray Tracing Formalism
The propagation of light inside a medium with continuously varying
refractive index can be described using the ray tracing ordinary
differential equations (ODEs) [23]

dx (t)

dt
= v (x (t)) ,

dv (t)

dt
= η (x (t))∇η (x (t)) . (1)

Due to the implicit dependence of the refractive index η on the ray
position x (t), the ODE system is fully coupled and its solution is
referred to as nonlinear ray tracing. The fully coupled nature of
this ODE system introduces significant computational complexity.
To address this, we employ a quasi-linear ray tracing approach
to decouple the velocity ODE from the position ODE, simplifying
the computation with little deviation from the original, true path.
Specifically, since the change in refractive index is small, we can
approximate the trajectory of the light ray as a straight line starting
from x0 along v0. The refractive index field is queried along this
linear path to compute an approximate velocity ṽ(t) that is then
used in the position ODE to obtain the updated ray path x̃(t).
C. Image Formation Model
We use a physics-based rendering approach – specifically, the path
integral expression of the RRTE [18, 19] – to compute the intensity
Ij for a given pixel j on the sensor plane as

Ij =

∫
A

∫
Ω

Wj(xs)Lwall(xw,vw)
⟨n̂w,vw⟩
∥rs↔w∥

dvsdxs, (2)

where Wj is a triangular camera filter function, (xw,vw) are the
wall position and velocity of a traced ray starting from (xs,vs) on
the sensor plane, Lwall is the luminance of the back-wall, ⟨n̂w,vw⟩
is the cosine of the angle between the back-wall normal n̂w and vw,
and ∥rs↔w∥ is the length of the ray path. The total intensity for
the pixel integrates over all starting ray velocities, vs ∈ Ω, and all
starting ray positions within the area of the sensor pixel, xs ∈ A. In
practice, we use Monte Carlo sampling to evaluate this integral.

To determine the luminance of the back-wall, we consider two
cases. In the case where the back-wall is a textured light source,
Lwall is known and can be queried directly. If we model the wall as
being illuminated by a pinhole projector, then a point on the back-
wall will be illuminated by a single point from the projector. Further
details regarding the back-wall-projector connection and the overall
image formation model for this case can be found in [21].
D. Physics-Informed BOS Tomography
Reconstructing the temperature T , pressure p, and velocity u fields
of the airflow can be formulated as a tomographic inverse problem
given BOS image measurements Iflow and boundary conditions
(T ∗, p∗,u∗)

∣∣
Γ

at a boundary region Γ. Single-view 3D BOS has
inherent ambiguities along the view direction [14]. Following the
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Fig. 1: Airflow reconstruction results using the projector and camera BOS acquisition setup. Top row from left to right shows the ground
truth and reconstructions of the temperature field (in K) using different combinations of the losses. Bottom left figure illustrates the BOS
image measurement. The remaining bottom row plots illustrate the absolute error of each reconstruction regime.

PINNs framework [13, 24], we propose to regularize the inversion
using a physics-informed loss. This is done by solving the following
optimization problem:

min
T,p,u

λ1LBOS(η) + λ2LΓ(T, p,u) + λ3LPDE(T, p,u)

subject to η = 1 + ρ0G
T0
T
,

(3)
This objective function includes the following loss components:

• The BOS image loss LBOS =
∑

j

∥∥∥Ijflow − Ij(η)
∥∥∥2

2
, where j

denotes the pixel index, Iflow is the BOS image measurement
intensity, and I(η) is the predicted intensity from (2).

• The boundary loss LΓ =
∥∥(T ∗

n , p
∗
n,u

∗
n)
∣∣
Γ
− (Tn, pn,un)

∣∣
Γ

∥∥2

2
,

where subscript n denotes the field divided by its maximum value.

• The physics-informed loss LPDE =
∑Nc

i=1 γ1r
2
mass (xi) +

γ2∥rmom (xi) ∥22 + γ3r
2
heat (xi), where γ1,2,3 are scalar multipliers

that balance the weight of each residual, and xi=1,...,Nc are
collocation points uniformly sampled in the computational domain.
rmass, rmom, and rheat are the nondimensional mass conservation,
momentum conservation, and heat transfer equation residuals de-
fined by the Boussinesq approximation for buoyancy-driven flows:

rmass (x) = ∇ · u ,

rmom (x) = (u · ∇)u+∇p− 1

Re
∇2u+RiTndeg ,

rheat (x) = (u · ∇)Tnd − 1

Pe
∇2Tnd .

Here, the nondimensional temperature fluctuation Tnd is obtained
from the inlet Tin and reference T0 temperatures as Tnd = T−T0

Tin−T0
.

Additional parameters include the acceleration due to gravity g and its
unit vector eg , kinematic viscosity ν, coefficient of thermal diffusivity
α, coefficient of thermal expansion β, and characteristic length L and
velocity U scales leading to the nondimensional Reynolds, Péclet, and
Richardson numbers: Re = UL

ν
, P e = UL

α
, Ri = gβ(Tin−T0)L

U2 .
We use an implicit neural representation to parameterize the T , p,

and u fields using a multiplayer perception (MLP), i.e. (T, p,u) =
MLP (x; θ) where x denotes the spatial location, and θ are the MLP
parameters to be determined by solving the optimization problem (3).

Our forward rendering and optimization framework is implemented
in JAX and uses the Equinox, Diffrax, and Optax libraries [25–28].
It is end-to-end differentiable where efficient gradient computation

is achieved using automatic differentiation and the adjoint state
method [14, 29].

III. EXPERIMENTAL SETUP AND RESULTS

A. Airflow simulation

We obtain the ground truth airflow by performing a Reynolds-
Averaged Navier-Stokes (RANS) simulation using OpenFOAM. The
room setup and ground truth temperature field are shown in Fig.1(a)
with an inlet pointing in the positive x direction. In order to image
the flow in the entire room, we simulate a hypothetical camera
and projector pointing in the positive y direction with a large focal
length that are located at (0.85,−29, 1.5)m and (1.85,−29, 1.5)m,
respectively. The projector illuminates the back-wall with a wavelet
noise pattern [30]. The BOS image measurement shown in Fig. 1(e)
is obtained using our physically-based renderer for a 100×100 sensor
resolution with 2 samples per pixel.

B. Airflow reconstruction

We evaluate the reconstruction performance on a 64 × 64 × 64
voxelized grid given the BOS image measurement and the boundary
T, p and u fields on the boundary y − z plane at x = −1.2m
containing the inlet/outlet. Note that there is a model and resolution
mismatch between the incompressible flow equations imposed by
the physics-informed loss and those of the OpenFOAM RANS
simulation. We run 80, 000 iterations of the Optax adabelief optimizer
with mini-batch updates using 8192 spatial points for the PDE loss,
5000 pixels for the BOS loss, and 4096 points for the boundary loss.

We compare the performance of reconstructing the airflow volume
using our proposed BOS+PDE+boundary losses with two alternative
reconstruction regimes: BOS+boundary and PDE+boundary. The
reconstruction results in Fig. 1 show that combining all three loss
terms significantly reduces artifacts and is essential for accurately
reconstructing the temperature field. We also show in [21] that
the root mean squared error is 2 order of magnitudes lower for
the p field and 1 order of magnitude lower for the u field in
the BOS+PDE+boundary reconstruction when compared with the
BOS+boundary results. These findings highlight the advantages of
our physics-informed and differentiable rendering framework in
achieving high-accuracy BOS reconstructions of turbulent airflow.
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