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Abstract

We propose a new framework to convert a large foundation
model such as large language models (LLMs)/large multi-
modal models (LMMs) into a reduced-dimension latent
structure. Our method uses a global attention-aware joint
tensor decomposition to significantly improve the model ef-
ficiency. We show the benefit on several benchmark includ-
ing multi-modal reasoning tasks.

1. Introduction
Large language models (LLMs) [1, 27] and large multi-
modal models (LMMs) [19] have shown excellent per-
formance across a variety of general tasks [4, 14, 29].
Nonetheless, these models having billions of parameters de-
mand significant computational resources [25]. Towards
increasing the accessibility of LLMs/LMMs for limited
resource devices, extensive efforts have been devoted to
model compression [2, 30, 34]: e.g., partial activation [13,
16], pruning [3, 8, 10, 26], quantization [9, 17, 28], distilla-
tion [6, 11, 12], and low-rank factorization [12, 18, 32].

Recently DeepSeek-V3 [18] has attracted much attention
for its high efficiency with latent reduction. It employs a
multi-head latent attention (MLA) to compress the multi-
head attention (MHA), realizing an efficient KV cache [5].
In this paper, we provide a novel solution to convert a
pretrained LLM/LMM built with MHA into a compressed
LLM/LMM with MLA. Our approach is motivated by a
global compression framework [3, 28], while we adopt it
for tensor rank reduction not for pruning or quantization.
Our derived solution is based on a high-order tensor-rank
decomposition to jointly factorize multiple layers.

The contributions of our paper are summarized below.
• We propose a novel low-rank decomposition approach

called LatentLLM to compress LLMs/LMMs.
• We discuss an optimal pre-conditioning for activation-

aware SVD.
• We reveal that a choice of junction matrix can signifi-

cantly reduce the model size.
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Figure 1. Reduced-dimension LLM/LMM with low-rank tensor
decomposition. (a) each module is locally compressed. (b) multi-
ple modules are globally compressed.

• We then introduce an attention-aware joint SVD frame-
work to compress multiple weights at the same time.

• Our experiments validate that our LatentLLM approach
can improve the efficiency of LLM/LMM.

• The latent LLaVA with our method offers a significant
advantage in multi-modal reasoning capability.

2. LatentLLM: Tensor compression
2.1. Reduced-dimension LLM/LMM
Fig. 1 illustrates the basic transformer architecture consist-
ing of MHA and MLP, used in typical LLMs/LMMs. For
MLP, there are up and down projections, whereas MHA
has query/key/value/output projections. By transforming
those dense weight matrices into low-rank decompositions,
we can realize an efficient latent LLM/LMM having po-
tential benefits: (i) fewer-parameter model size; (ii) KV
cache reduction; (iii) accelerated processing; (iv) lower-
power consumption. In fact, some recent LLM models such
as DeepSeek-V3 [18] demonstrated efficiency and high-
performance with MLA. We focus on compressing a pre-
trained LLM/LMM by converting MHA into MLA in a



Table 1. Variants of pre-conditioning matrices P .

Conditioning P Expression

Identity (Plain SVD) [7, 24] I

Diagonal Hessian [8–10] diag[(XX⊤ + λI)−1]
−1
2

Diagonal ℓ1-norm [17, 32] diag
[∑

j |X1,j |, . . . ,
∑

j |Xd,j |
]α

Diagonal ℓ2-norm [26] diag[XX⊤]
1
2

Covariance [31] XX⊤ + λI

Root-Covariance (Ours) (XX⊤ + λI)
1
2

zero-shot fashion, i.e., without any fine-tuning.
Most existing methods are based on a local optimiza-

tion to approximate each weight individually. Motivated by
recent global optimization [3, 28], we propose a joint ten-
sor compression method that we call “LatentLLM.” Before
describing our solution, we first address activation-aware
compression to provide some new insights below.

2.2. Activation-aware SVD: Pre-conditioning
A pioneering work by ASVD [32] introduced a way to com-
press a layer depending on the activation statistics. Con-
sider a pretrained-weight W ∈ Rd′×d to compress with a
lower-rank decomposition Ŵ = BA for compression ma-
trix A ∈ Rr×d and decompression matrix B ∈ Rd′×r. Us-
ing the input activation X ∈ Rd×l (l is the calibration sam-
ple length), ASVD aims to minimize the activation loss:

L1 = EX

∥∥WX − ŴX
∥∥2 = EX

∥∥WX −BAX
∥∥2, (1)

instead of the naı̈ve weight-based loss: L0 =
∥∥W − Ŵ

∥∥2.
While the optimal solution to minimize L0 can be given by
the plain SVD of W , to minimize L1, ASVD introduced a
pre-conditioning matrix P ∈ Rd×d to whiten the statistical
impact of the activation X . Specifically, ASVD uses the
low-rank matrices given by whitened SVD:

BAP = svdr[WP ], (2)

where svdr[·] denotes the rank-r truncated SVD.
The optimal pre-conditioning matrix P can be given by

reformulating L1 as follows:

L1 = tr
[
(W −BA)EX [XX⊤](W −BA)⊤

]
(3)

=
∥∥(W −BA)C

1
2

∥∥2 =
∥∥WC

1
2 −BAC

1
2

∥∥2, (4)

where C = EX [XX⊤] ∈ Rd×d is a covariance of input
activation. Hence, the above loss can be minimized by the
SVD: BAC

1
2 = svdr[WC

1
2 ]. Accordingly, it is found that

the optimal pre-conditioner is the square-root covariance:
P = C

1
2 . Given the finite calibration data X , we can esti-

mate the covariance as C = XX⊤+λI , where the damping
factor λ ∈ R+ corresponds to the shrunk estimator [15].

Remark 1 Different pre-conditioning was introduced for
pruning and quantization, as listed in Tab. 1.
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Figure 2. Activation-aware compression with pre-conditioning
and junction matrix. The junction matrix J can be adjusted to
save the number of parameters and inference computation.

2.3. Junction matrix for model compression
The solution of Eq. (2) has non-unique decomposition for
matrices B and A. Consider the truncated SVD written as
USV = svdr[WP ], where U ∈ Rd′×r, S ∈ Rr×r, and
V ∈ Rr×d are the left singular unitary matrix, singular-
value diagonal matrix, and right singular unitary matrix, re-
spectively. Hence, the matrices B and A can be expressed:

B = USJ, A = J+V P+, (5)

where J ∈ Rr×r is a junction matrix and [·]+ denotes the
pseudo inverse. Choosing any junction matrix that satisfies
SJJ+ = S has no impact on the loss. Hence, there is few
literature discussing the choice of J .

However, a certain choice of J has a noticeable ad-
vantage to reduce the number of parameters and floating-
point operations (FLOPs). We can write the whitened
right-singular matrix V P+ as two sub-blocks: V P+ =[
V1 V2

]
, for V1 ∈ Rr×r and V2 ∈ Rr×(d−r). When we

use J = V1, the compression matrix A will contain an iden-
tity block as long as V1 is non-singular:

A = J+V P+ = V +
1

[
V1 V2

]
=

[
I V +

1 V2

]
. (6)

This can greatly reduce the number of parameters from
r(d′+d) to r(d′+d)−r2, as well as the FLOPs, because no
computation is needed for the identity projection. Fig. 2 de-
picts the role of the pre-conditionning and junction matrices
for the activation-aware compression, showing the flexibil-
ity of tensor mapping with the tensor diagrams.

Remark 2 Pivoting columns solves the case when V1 is
singular, without additional FLOPs in inference.

3. LatentLLM: Joint tensor compression
The SVD described above is optimal in the sense that the
local error is minimized for the single tensor compression,
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whereas it does not guarantee global optimality. Motivated
by SparseLLM [3], we propose a joint tensor compression
technique which factorizes multiple tensors concurrently.

3.1. Multi-head latent attention: Joint QK SVD
First, we consider a joint compression of query (Q) and key
(K) projections in MHA to convert into MLA. The attention
map is the dot product of query and key features: Mi =
X⊤W⊤

q,iWk,iX , where Mi ∈ Rl×l is the ith head attention
map before softmax operation, Wq,i ∈ Rdh×d is the ith
head query projection matrix, and Wk,i ∈ Rdh×d is the ith
head key projection matrix. Here, dh is the head dimension,
which is often dh = d/h for the number of heads h.

We consider minimizing the attention map error:

L2 =
∑h

i=1

∥∥Mi −X⊤A⊤
q B

⊤
q,iBk,iAkX

∥∥2, (7)

where Aq ∈ Rrq×d is for the Q compression, Ak ∈ Rrk×d

is for the K compression, Bq,i ∈ Rdh×rq is for the ith head
Q decompression, and Bk,i ∈ Rdh×rk is for the ith head K
decompression, respectively. Here, rq and rk are the latent
dimensions for Q and K. Similar to Eq. (4), we can rewrite:

L2 =
∑h

i=1

∥∥Gi −A′⊤
q HiA

′
k

∥∥2, (8)

where Gi = C
1
2W⊤

q,iWk,C
1
2 , A′

q = AqC
1
2 , A′

k = AkC
1
2 ,

and Hi = B⊤
q,iBk,i This is known as a high-order SVD

(HOSVD) problem to decompose for the 3-mode tensor
G ∈ Rh×d×d, whose ith slice is Gi. A′

q corresponds
to the 2nd tensor plane, A′

k is the 3rd tensor plane, and
H ∈ Rh×rq×rk , whose ith slice is Hi, is the tensor core.

This is illustrated in Fig. 3. This Tucker tensor decom-
position is typically solved by alternating SVD over each
slice sequentially. Algorithm 1 shows the pseudo-code of
the joint SVD compression for QK latent projections. Here,
we generalize the pre-conditioning matrix P , as not neces-
sarily the optimal C

1
2 . In addition, we explicitly denoted

any arbitrary junction matrices that do not change the er-
ror. Note that there are additional junction matrices per
heads Ji ∈ Rdh×dh as well as individual Q/K junctions
Jq ∈ Rrk×rk and Jk ∈ Rrk×rk . This suggests that we can
further reduce the number of parameters by transforming
into the block identity form per head.

Algorithm 1 Joint SVD for QK Projections in MHA

Input: Pre-conditioning P ∈ Rd×d, query projection heads
Wq,i ∈ Rdh×d, key projection heads Wk,i ∈ Rdh×d, number
of heads h, rank rq, rk, iteration N
Initialize:
Wq,i = Wq,iP for i ∈ {1, . . . , h}
Wk,i = Wk,iP for i ∈ {1, . . . , h}
Gi = W⊤

q,iWk,i for i ∈ {1, . . . , h}
Aq = RightSingularrq

[∑h
i=1 GiG

⊤
i

]
for n = 1 to N do

Ak = RightSingularrk
[∑h

i=1 G
⊤
i A

⊤
q AqGi

]
Aq = RightSingularrq

[∑h
i=1 GiAkA

⊤
k G

⊤
i

]
end for
Output:
Bq,i = J⊤

i Wq,iA
⊤
q Jq for i ∈ {1, . . . , h}

Bk,i = J+
i Wk,iA

⊤
k Jk for i ∈ {1, . . . , h}

Aq = J+
q AqP

+

Ak = J+
k AkP

+

3.2. Multi-head latent attention: Joint VO SVD
Next, we discuss the joint SVD for value (V) and output
(O) projections in MHA. For any arbitrary attention map,
we may consider minimizing the loss:

L3 =
∑h

i=1

∥∥Wo,iWv,iX − Ŵo,iŴv,iX
∥∥2, (9)

where Wo,i ∈ Rd′×dh is the ith head output projection, and
Wv,i ∈ Rdh×d is the ith head value value projection. Here
we design the low-rank compression: Ŵo,i = BoAo,i ∈
Rd′×dh and Ŵv,i = Bv,iAv ∈ Rdh×d with Bo ∈ Rd′×ro ,
Ao,i ∈ Rro×dh , Bv,i ∈ Rdh×rv , and Av ∈ Rrv×d. Interest-
ingly, this is also formulated in a similar manner of Eq. (8),
and it can be solved by the joint SVD algorithm.

3.3. Latent MLP: Joint UD SVD
Finally, we address the joint compression of MLP layers
which consists of up (U) projection and down (D) projec-
tion in typical LLMs/LMMs. Although the global optimiza-
tion is generally difficult due to the nonlinear activations in
the MLP layer, SparseLLM [3] provides an elegant way to
approximate MLP layer. The key idea is to minimize the
MLP loss in a decoupled manner by introducing auxiliary
variables. Our LatentLLM exploits the same philosophy to
compress MLP layers not to prune. Refer more details on
the decoupled optimization in SparseLLM [3].

4. Experiments
We conduct experiments for LLM and LMM benchmarks to
evaluate the effectiveness of our method, based on the same
setting of SparseLLM [3] and their code base1. For LLM

1https://github.com/BaiTheBest/SparseLLM

https://github.com/BaiTheBest/SparseLLM
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Figure 4. Perplexity (↓) over compression ratio for OPT models.

Table 2. Accuracy in percent (↑) on ScienceQA dataset of LLaVA model with different compression methods for 10%–20% size reduction.
Question subjects: natural science (NAT); social science (SOC); language science (LAN). Context modality: text (TXT); image (IMG); or
no context (NO). Grades: 1–6 (G1-6); 7–12 (G7-12).

Subject Context Modality Grades

Method Compression NAT SOC LAN TXT IMG NO G1-6 G7-12 Avg

Original un-compressed 0% 72.47 69.18 65.73 73.51 68.82 65.99 72.72 65.19 70.03

Plain SVD (Identity) 10% 5.33 1.35 0.27 5.77 6.69 0.00 3.30 2.97 3.18
ASVD (Hessian) 10% 17.23 24.97 3.18 18.43 29.55 2.16 17.40 11.27 15.21
ASVD (ℓ2-norm) 10% 16.70 18.34 2.55 17.89 24.34 2.23 16.04 8.57 13.37
ASVD (Cov) 10% 41.21 27.22 37.91 41.30 35.15 38.33 38.62 35.27 37.42
ASVD (RootCov) 10% 64.08 56.13 57.36 64.03 60.98 57.35 62.70 57.02 60.67
LatentLLM (RootCov) 10% 68.52 64.23 61.36 69.06 65.20 61.53 68.72 60.45 65.76

Plain SVD (Identity) 20% 0.18 0.00 0.00 0.20 0.20 0.00 0.04 0.20 0.09
ASVD (Hessian) 20% 3.82 2.81 0.00 3.62 5.30 0.14 3.01 1.91 2.62
ASVD (ℓ2-norm) 20% 0.44 0.79 0.00 0.39 0.79 0.07 0.51 0.20 0.40
ASVD (Cov) 20% 41.39 27.22 37.55 41.45 35.35 38.12 38.69 35.14 37.42
ASVD (RootCov) 20% 61.19 53.43 53.36 61.53 59.40 52.68 58.96 54.98 57.53
LatentLLM (RootCov) 20% 66.39 61.19 60.82 67.20 63.41 60.62 66.41 59.26 63.85

calibration, we use 64 samples of 2048-token segments,
randomly chosen from the first shard of the C4 [23] dataset.
For LMM calibration, we use 64 samples, randomly chosen
from the train split of the ScienceQA [20] dataset.

For LLM, we consider the OPT model family [33] as it
provides a wide range of model scales from 125M to 175B.
We consider the benchmark of raw-WikiText2 (WT2) [22],
the Penn Treebank (PTB) [21], and the C4 [23], popular in
the related literature [8, 9, 26]. For LMM, we use LLaVA
7B [19] model. We evaluate the capability of the multi-
modal answer reasoning with ScienceQA, which contains
21K questions for three subjects: natural, social, and lan-
guage science. Some questions have image and/or text con-
texts, and the problem levels range from grade 1 to 12.

We first look into the compression capability of our La-
tentLLM for LLM benchmarks in Fig. 4. We can see that
the conventional plain SVD has a poor performance, and
that ASVD with a proper pre-conditioning can significantly

improve the perplexity. Further, the joint SVD used for La-
tentLLM offers an additional improvement for all bench-
marks.

We then show the accuracy of latent LLaVA models for
ScienceQA multi-modal reasoning benchmark in Tab. 2. It
is verified that our LatentLLM can significantly outperform
other low-rank compression methods across diverse reason-
ing problems over different subjects/contexts/grades.

5. Summary

We introduced LatentLLM which jointly compresses mul-
tiple tensors through the use of high-order tensor-rank de-
composition. We also provided new perspectives for choos-
ing the pre-conditioner and junction matrix. Benchmark ex-
periments demonstrated that the model compression perfor-
mance of LLM/LMM can be significantly improved.
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