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Abstract

We propose a new framework to convert a large foundation
model such as large language models (LLMs)/large multi-
modal models (LMMs) into a reduced-dimension latent
structure. Our method uses a global attention-aware joint
tensor decomposition to significantly improve the model ef-
ficiency. We show the benefit on several benchmark includ-
ing multi-modal reasoning tasks.

1. Introduction

Large language models (LLMs) [1, 27] and large multi-
modal models (LMMs) [19] have shown excellent per-
formance across a variety of general tasks [4, 14, 29].
Nonetheless, these models having billions of parameters de-
mand significant computational resources [25]. Towards
increasing the accessibility of LLMs/LMMs for limited
resource devices, extensive efforts have been devoted to
model compression [2, 30, 34]: e.g., partial activation [13,
16], pruning [3, 8, 10, 26], quantization [9, 17, 28], distilla-
tion [6, 11, 12], and low-rank factorization [12, 18, 32].
Recently DeepSeek-V3 [18] has attracted much attention
for its high efficiency with latent reduction. It employs a
multi-head latent attention (MLA) to compress the multi-
head attention (MHA), realizing an efficient KV cache [5].
In this paper, we provide a novel solution to convert a
pretrained LLM/LMM built with MHA into a compressed
LLM/LMM with MLA. Our approach is motivated by a
global compression framework [3, 28], while we adopt it
for tensor rank reduction not for pruning or quantization.
Our derived solution is based on a high-order tensor-rank
decomposition to jointly factorize multiple layers.
The contributions of our paper are summarized below.
* We propose a novel low-rank decomposition approach
called LatentLLM to compress LLMs/LMM:s.
* We discuss an optimal pre-conditioning for activation-
aware SVD.
* We reveal that a choice of junction matrix can signifi-
cantly reduce the model size.

(b) LLM Joint Tensor Compression

(a) LLM Local Tensor Compression

Figure 1. Reduced-dimension LLM/LMM with low-rank tensor
decomposition. (a) each module is locally compressed. (b) multi-
ple modules are globally compressed.

* We then introduce an attention-aware joint SVD frame-
work to compress multiple weights at the same time.

* Our experiments validate that our LatentLLM approach
can improve the efficiency of LLM/LMM.

* The latent LLaVA with our method offers a significant
advantage in multi-modal reasoning capability.

2. LatentLLM: Tensor compression
2.1. Reduced-dimension LLM/LMM

Fig. | illustrates the basic transformer architecture consist-
ing of MHA and MLP, used in typical LLMs/LMMs. For
MLP, there are up and down projections, whereas MHA
has query/key/value/output projections. By transforming
those dense weight matrices into low-rank decompositions,
we can realize an efficient latent LLM/LMM having po-
tential benefits: (i) fewer-parameter model size; (ii) KV
cache reduction; (iii) accelerated processing; (iv) lower-
power consumption. In fact, some recent LLM models such
as DeepSeek-V3 [18] demonstrated efficiency and high-
performance with MLA. We focus on compressing a pre-
trained LLM/LMM by converting MHA into MLA in a



Table 1. Variants of pre-conditioning matrices P.

Conditioning P
Identity (Plain SVD) [7, 24] T

diag[(XX " + AXI)"!] =

225 1Xal]

Expression

Diagonal Hessian [8—10]
Diagonal £1-norm [17, 32]  diag[ >, | X1, . ..
diag[X X ]2
XXT +AI

(XXT +AI)2

Diagonal ¢2-norm [26]
Covariance [31]
Root-Covariance (Ours)

zero-shot fashion, i.e., without any fine-tuning.

Most existing methods are based on a local optimiza-
tion to approximate each weight individually. Motivated by
recent global optimization [3, 28], we propose a joint ten-
sor compression method that we call “LatentLLM.” Before
describing our solution, we first address activation-aware
compression to provide some new insights below.

2.2. Activation-aware SVD: Pre-conditioning

A pioneering work by ASVD [32] introduced a way to com-
press a layer depending on the activation statistics. Con-
sider a pretrained-weight W € R4 %% to compress with a
lower-rank decomposition W = BA for compression ma-
trix A € R™*4 and decompression matrix B € R *"_ Us-
ing the input activation X € R?*! (I is the calibration sam-
ple length), ASVD aims to minimize the activation loss:

Ly =Ex|WX - Wx|

ey

instead of the naive weight-based loss: Lo = ||W — VT/H2
While the optimal solution to minimize £y can be given by
the plain SVD of W, to minimize £, ASVD introduced a
pre-conditioning matrix P € R?*< to whiten the statistical
impact of the activation X. Specifically, ASVD uses the
low-rank matrices given by whitened SVD:

BAP = svd,[WP], )

where svd,.[-] denotes the rank-r truncated SVD.
The optimal pre-conditioning matrix P can be given by
reformulating £, as follows:

Ly =tr[(W—BAEx[XXT](W - BA)"] 3)
= |(W = BA)C?|” = |[WC? — BACE|?, 4

where C = Ex[XX "] € R? is a covariance of input
activation. Hence, the above loss can be minimized by the
SVD: BAC? = svd,[WC'z]. Accordingly, it is found that
the optimal pre-conditioner is the square-root covariance:
P = C=. Given the finite calibration data X , We can esti-
mate the covariance as C = X X | +\I, where the damping
factor A € R, corresponds to the shrunk estimator [15].

Remark 1 Different pre-conditioning was introduced for
pruning and quantization, as listed in Tab. 1.
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Figure 2. Activation-aware compression with pre-conditioning
and junction matrix. The junction matrix J can be adjusted to
save the number of parameters and inference computation.

2.3. Junction matrix for model compression

The solution of Eq. (2) has non-unique decomposition for
matrices B and A. Consider the truncated SVD written as
USV = svd,[WP], where U € R¥*", § € R"™", and
V € R™*? are the left singular unitary matrix, singular-
value diagonal matrix, and right singular unitary matrix, re-
spectively. Hence, the matrices B and A can be expressed:

B=USJ, A=J"VPT, (5)
where J € R™™" is a junction matrix and [-]* denotes the
pseudo inverse. Choosing any junction matrix that satisfies
SJJ* = S has no impact on the loss. Hence, there is few
literature discussing the choice of J.

However, a certain choice of J has a noticeable ad-
vantage to reduce the number of parameters and floating-
point operations (FLOPs). We can write the whitened
right-singular matrix V PT as two sub-blocks: VPT =
Vi Vo, for Vi € R™" and V3 € R™(4="). When we
use J = V7, the compression matrix A will contain an iden-
tity block as long as V; is non-singular:

A=JVPr =V Vi W]=[ Vi'W]. (6

This can greatly reduce the number of parameters from

r(d' +d) to r(d’ +d)—r?, as well as the FLOPs, because no
computation is needed for the identity projection. Fig. 2 de-
picts the role of the pre-conditionning and junction matrices
for the activation-aware compression, showing the flexibil-
ity of tensor mapping with the tensor diagrams.

Remark 2 Pivoting columns solves the case when Vi is
singular, without additional FLOPs in inference.

3. LatentLLM: Joint tensor compression

The SVD described above is optimal in the sense that the
local error is minimized for the single tensor compression,
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whereas it does not guarantee global optimality. Motivated
by SparseLLM [3], we propose a joint tensor compression
technique which factorizes multiple tensors concurrently.

3.1. Multi-head latent attention: Joint QK SVD

First, we consider a joint compression of query (Q) and key
(K) projections in MHA to convert into MLA. The attention
map is the dot product of query and key features: M; =
X TWOI ;Wi.i X, where M; € R™! is the ith head attention
map before softmax operation, W, ; € R%*9 is the ith
head query projection matrix, and Wy ; € R%>4 is the ith
head key projection matrix. Here, d}, is the head dimension,
which is often d}, = d/h for the number of heads h.

We consider minimizing the attention map error:
2

Ly = Z?:1‘|Mi — XTAg By, Bii A X |

)

where A, € R"a*? is for the Q compression, A € R"<*4
is for the K compression, B ; € R%%7a ig for the ith head
Q decompression, and By ; € R X7« ig for the ith head K
decompression, respectively. Here, r and ry are the latent
dimensions for Q and K. Similar to Eq. (4), we can rewrite:

Lo=Y"||G: — AT H AL, (8)

where G; = C2W, Wi O3, Al = AC3, A}, = AC3,
and H; = B; ;Bx,i This is known as a high-order SVD
(HOSVD) problem to decompose for the 3-mode tensor
G € RM4*d whose ith slice is G;. Al corresponds
to the 2nd tensor plane, Aj is the 3rd tensor plane, and
H € RM*maxme whose ith slice is H;, is the tensor core.

This is illustrated in Fig. 3. This Tucker tensor decom-
position is typically solved by alternating SVD over each
slice sequentially. Algorithm | shows the pseudo-code of
the joint SVD compression for QK latent projections. Here,
we generalize the pre-conditioning matrix P, as not neces-
sarily the optimal C 2. In addition, we explicitly denoted
any arbitrary junction matrices that do not change the er-
ror. Note that there are additional junction matrices per
heads J; € R%®*d a5 well as individual Q/K junctions
Jq € R™*™ and Jx € R™ "<, This suggests that we can
further reduce the number of parameters by transforming
into the block identity form per head.

Algorithm 1 Joint SVD for QK Projections in MHA

Input: Pre-conditioning P € R?*¢, query projection heads
Waq.i € R%>4 key projection heads Wi; € R%*?, number
of heads h, rank rq, 7k, iteration N
Initialize:
Wq,i=Wq:Pforie{l,...,h}
Wk,i = Wk,iP fori € {1, ey h}
Gi = W, ;Wi fori € {1,...,h}
Aq = RightSingular, [Z?:1 GiG{ |
forn =1to N do
Ax = RightSingular,, [Z?Zl GIAJAQGZ-]
Aq = RightSingular,_ [Z?zl GiAxAy, G |
end for
Output:
Bq,i = J; Wq,i Ay Jq fori € {1,...,h}
Bkﬂ‘ = Jj_Wk’ZA;(er fori € {1, ey h}
Aq = JFAPT
Ax = JF AP

3.2. Multi-head latent attention: Joint VO SVD

Next, we discuss the joint SVD for value (V) and output
(O) projections in MHA. For any arbitrary attention map,
we may consider minimizing the loss:

Ly =" |[WoiWo i X — Wo Wi X[, (9

where W, ; € R% %% is the ith head output projection, and
W, € R%>d s the ith head value value projection. Here
we design the low-rank compression: VAVOJ- = ByA,; €
R % and W, ; = B, ;A, € R®*? with B, € RY *">,
A, € R7eXdn, B, ;€ R%X™ and A, € R™*4. Interest-
ingly, this is also formulated in a similar manner of Eq. (8),
and it can be solved by the joint SVD algorithm.

3.3. Latent MLP: Joint UD SVD

Finally, we address the joint compression of MLP layers
which consists of up (U) projection and down (D) projec-
tion in typical LLMs/LMMs. Although the global optimiza-
tion is generally difficult due to the nonlinear activations in
the MLP layer, SparseLLLM [3] provides an elegant way to
approximate MLP layer. The key idea is to minimize the
MLP loss in a decoupled manner by introducing auxiliary
variables. Our LatentLL.M exploits the same philosophy to
compress MLP layers not to prune. Refer more details on
the decoupled optimization in SparseLLM [3].

4. Experiments

We conduct experiments for LLM and LMM benchmarks to
evaluate the effectiveness of our method, based on the same
setting of SparseLLM [3] and their code base'. For LLM

lhtt ps://github.com/BaiTheBest/SparseLLM
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Figure 4. Perplexity () over compression ratio for OPT models.

Table 2. Accuracy in percent (1) on ScienceQA dataset of LLaVA model with different compression methods for 10%—20% size reduction.
Question subjects: natural science (NAT); social science (SOC); language science (LAN). Context modality: text (TXT); image (IMG); or

no context (NO). Grades: 1-6 (G1-6); 7-12 (G7-12).

Subject Context Modality Grades
Method Compression NAT SOC LAN TXT IMG NO Gl1-6 G7-12 Avg
Original un-compressed 0% 7247 69.18 6573 73,51 6882 6599 7272 65.19 70.03
Plain SVD (Identity) 10% 5.33 1.35 027 5717 6.69  0.00 3.30 297 3.18
ASVD (Hessian) 10% 17.23 2497 3.18 1843 29.55 2.16 1740 1127 15.21
ASVD (¢2-norm) 10% 16.70 1834 255 17.89 2434 223 16.04 8.57 13.37
ASVD (Cov) 10% 4121 2722 3791 4130 3515 3833 38.62 3527 3742
ASVD (RootCov) 10% 64.08 56.13 5736 64.03 6098 5735 6270 57.02 60.67
LatentLLM (RootCov) 10% 68.52 6423 61.36 69.06 6520 61.53 68.72 6045 65.76
Plain SVD (Identity) 20% 0.18 0.00 0.00 020 020 0.00 0.04 020  0.09
ASVD (Hessian) 20% 382 281 0.00 362 530 014 3.01 1.91 2.62
ASVD (¢2-norm) 20% 044 079 000 039 079 0.07 051 020 040
ASVD (Cov) 20% 4139 2722 3755 4145 3535 3812 38.69 3514 3742
ASVD (RootCov) 20% 61.19 5343 5336 61.53 5940 5268 5896 5498 57.53
LatentLLM (RootCov) 20% 66.39 61.19 60.82 67.20 6341 60.62 6641 59.26 63.85

calibration, we use 64 samples of 2048-token segments,
randomly chosen from the first shard of the C4 [23] dataset.
For LMM calibration, we use 64 samples, randomly chosen
from the train split of the ScienceQA [20] dataset.

For LLM, we consider the OPT model family [33] as it
provides a wide range of model scales from 125M to 175B.
We consider the benchmark of raw-WikiText2 (WT2) [22],
the Penn Treebank (PTB) [21], and the C4 [23], popular in
the related literature [8, 9, 26]. For LMM, we use LLaVA
7B [19] model. We evaluate the capability of the multi-
modal answer reasoning with ScienceQA, which contains
21K questions for three subjects: natural, social, and lan-
guage science. Some questions have image and/or text con-
texts, and the problem levels range from grade 1 to 12.

We first look into the compression capability of our La-
tentLLM for LLM benchmarks in Fig. 4. We can see that
the conventional plain SVD has a poor performance, and
that ASVD with a proper pre-conditioning can significantly

improve the perplexity. Further, the joint SVD used for La-
tentLLM offers an additional improvement for all bench-
marks.

We then show the accuracy of latent LLaVA models for
ScienceQA multi-modal reasoning benchmark in Tab. 2. It
is verified that our LatentL.LM can significantly outperform
other low-rank compression methods across diverse reason-
ing problems over different subjects/contexts/grades.

5. Summary

We introduced LatentLLM which jointly compresses mul-
tiple tensors through the use of high-order tensor-rank de-
composition. We also provided new perspectives for choos-
ing the pre-conditioner and junction matrix. Benchmark ex-
periments demonstrated that the model compression perfor-
mance of LLM/LMM can be significantly improved.
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