
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
https://www.merl.com

TuneComp: Joint Fine-Tuning and Compression for Large
Foundation Models

Chen, Xiangyu; Liu, Jing; Wang, Ye; Brand, Matthew; Wang, Pu; Koike-Akino, Toshiaki

TR2025-079 June 07, 2025

Abstract
o reduce model size during post-training, compression methods, including knowledge distil-
lation, low-rank approximation, and pruning, are often applied after fine- tuning the model.
However, sequential fine-tuning and compression sacrifices performance, while creating a
larger than necessary model as an intermediate step. In this work, we aim to reduce this
gap, by directly constructing a smaller model while guided by the downstream task. We
propose to jointly fine-tune and compress the model by gradually distilling it to a pruned
low-rank structure. Experiments demonstrate that joint fine-tuning and compression signifi-
cantly outperforms other sequential compression methods.

IEEE Conference on Computer Vision and Pattern Recognition (CVPR) workshop on
Efficient and On-Device Generation 2025

c© 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139





TuneComp: Joint Fine-tuning and Compression for Large Foundation Models

Xiangyu Chen, Jing Liu, Ye Wang, Matthew Brand, Pu (Perry) Wang, Toshiaki Koike-Akino
Mitsubishi Electric Research Laboratories (MERL), Cambridge, MA 02139, USA

{xiachen, jiliu, yewang, brand, pwang, koike}@merl.com

Abstract

To reduce model size during post-training, compression
methods, including knowledge distillation, low-rank ap-
proximation, and pruning, are often applied after fine-
tuning the model. However, sequential fine-tuning and com-
pression sacrifices performance, while creating a larger
than necessary model as an intermediate step. In this work,
we aim to reduce this gap, by directly constructing a smaller
model while guided by the downstream task. We propose
to jointly fine-tune and compress the model by gradually
distilling it to a pruned low-rank structure. Experiments
demonstrate that joint fine-tuning and compression signifi-
cantly outperforms other sequential compression methods.

1. Introduction
Large transformer-based models have demonstrated supe-
rior performance in many tasks, including natural language
processing and computer vision. However, their enormous
size requires substantial computational power and mem-
ory for fine-tuning and deployment to effectively adapt to
downstream tasks. To tackle these, Parameter-Efficient
Fine-Tuning (PEFT) was widely explored to reduce mem-
ory consumption in fine-tuning. In deployment, various
post-training compression techniques have been employed
in these fine-tuned models, including weight quantization,
knowledge distillation, and network pruning. However, se-
quentially fine-tuning and compression often suffers from
significant performance loss.

Joint fine-tuning and distillation has emerged as a
promising alternative [18]. This approach was first pro-
posed in computer vision tasks to jointly fine-tune and prune
convolutional neural networks iteratively [35]. Recently,
PC-LoRA [18] uses a decay factor to reduce the influence of
pretrained teacher branch smoothly, discarding the switch-
ing between fine-tuning and compression. The inclusion
of fine-tuning in the compression process leads to much
higher compression ratios, while maintaining comparable
accuracy. However, the potential of the progressive com-
pression pipeline is under-explored. The structure of the

Pretrained 
weights

𝑊0

ℎ𝑖𝑛

ℎ𝑜𝑢𝑡

b

𝛼𝑡𝑌0 1 − 𝛼𝑡
2 𝑌𝑠𝑡𝑢𝑑𝑒𝑛𝑡

+
𝛼𝑡: 1 → 0

ℎ𝑖𝑛

ℎ𝑜𝑢𝑡

b

Joint finetuning and compression Finetuned and compressed layer

𝑌𝑠𝑡𝑢𝑑𝑒𝑛𝑡

Pretrained 
weights

𝑊0

ℎ𝑖𝑛

ℎ𝑜𝑢𝑡

𝑌0 

Original linear layer

Figure 1. The proposed joint fine-tuning and compression
pipeline, where compression involves low-rank approximation as
well as the pruning/sparsification of the low-rank structures.

3.5x efficiency

improve 10.5%

Figure 2. Comparison between our proposed TuneComp, jointly
fine-tuning and compression, with other compression strategies.

student branch with a basic low-rank decomposition can be
further compressed with pruning techniques. Further, the
performance can be enhanced through more careful design
of the transition from the teacher to the student branch.

Extending the progressive compression pipeline, our
work proposes TuneComp as shown in Fig. 1. In this
framework, each linear projection layer is split into two
parallel branches. The first branch is the frozen weights
of the pretrained model, while the second is the trainable



and compressed student branch based on low-rank approx-
imation. During fine-tuning, the student branch gradually
replaces the teacher branch, which reduces its influence on
the output to zero, while maintaining the total power from
both branches equal to 1. We also employ novel extensions
of activation-aware initialization. To further compress the
model, pruning is jointly applied on top of this low-rank
decomposition. The entire pipeline integrates fine-tuning,
knowledge distillation, low-rank decomposition, and prun-
ing, and directly producing a compact and efficient model.

2. Related Work

2.1. Joint fine-tuning and compression

From fine-tuning to compression, there are multiple
pipelines to select [5, 8, 29]. One widely used is fine-tuning
downstream tasks first and then distilling to small models
for deployment. In this path, researches either focus on im-
proving fine-tuning to closing the gap between source do-
main of pretrained dataset and the new domain from down-
stream tasks, hence making the fine-tuned model general-
ize better on the given the tasks. For example, a notable
line of work is Parameter-Efficient Fine-Tuning (PEFT),
such as LoRA [16], LoHA [42], LoKr [42], KronA [12],
SuperLoRA [6], LoDA [27] and CorDA [40]. Another
line aims to compress the post-training model to achieve
similar performance to the original model while signifi-
cantly reducing model size. Work in this line includes
pruning [1, 13, 19, 23, 30], parameter efficient structures
[7, 33, 37, 44], knowledge distillation [22], quantization
[2, 3, 10, 26, 32, 43] and combined [17, 20, 25]. Others
compress the model first and fine-tune the small model for
the target tasks [4, 9, 15, 28, 34, 36, 39, 41]. However,
these sequential pipelines from whichever direction, fine-
tune then compress or compress then fine-tune, introduced
an intermediate agent, either the large fine-tuned model or
the small compressed model, restricting the interplay be-
tween fine-tuning and compression, and often with signifi-
cantly degraded performance. Therefore, some other works
tried to combine finetuning and compression. However, this
line of work is still underexplored. [35] proposes to fine-
tune and compress the model alternatively, which is time-
consuming and suboptimal. PC-LoRA [18] eliminated the
alternative switching between teacher and student model
with a decay factor that gradually decreasing with time, thus
gradually reducing the dependence on teacher model.

2.2. Low-Rank initialization

Initialization of low-rank approximation, a parameter effi-
cient structure W ≈ BA, has been studied in many scenar-
ios. As adapters in parameter-efficient fine-tuning, LoRA
[16] proposed either A or B should be initialized as zero
matrix, while the other one to be random Gaussian matrix.

While [14] argues that Gaussian initialization for the A ma-
trix can lead to better performance by introducing more in-
stability. Weight-aware initialization is also studied. PiSSA
[31] instead initialized them with SVD decomposition. Nys-
trom initialization [24] combined both the pretrained ma-
trix W0 with Gaussian initialization. CorDA [40] further
integrated covariance of activations, leading to activation-
aware initialization. However, all these methods target in
the adapter-initialization in fine-tuning. For compression,
ASVD [44] also claimed that task information should be in-
tegrated in the initialization to emphasize different features
given different tasks and hence proposed general activation-
aware initialization based on the statistics of activations.
However, low-rank initialization in joint fine-tuning and
compression lacks investigation, given PC-LoRA [18] sim-
ply used Gaussian initialization for the low-rank matrices.

3. Method
3.1. Basic low-rank approximation via SVD
Low-rank approximation uses a pair of low-rank matrices
A ∈ Rr×din and B ∈ Rdout×r to approximate a matrix
W ∈ Rdout×din , via W ≈ BA, where typically the rank
r ≪ min{din, dout}. Compared to the original weight ma-
trix W, the parameters used for the low-rank approxima-
tion reduces from d2 to 2dr when din = dout = d. However,
this approximation becomes less accurate with smaller rank.
A natural way to realize the low-rank approximation is to
use the singular value decomposition (SVD), which decom-
poses a matrix W as W = USVT , where U, V are the
left and right singular vectors, respectively, and S is a diag-
onal matrix of non-negative singular values that are sorted
in descending order, by convention. Truncating the SVD to
keep only the largest r singular values and corresponding
vectors, yields the optimal rank-r approximation of W (in
terms of minimum Frobenius norm error), W ≈ UrSrV

T
r ,

where Ur and Vr denote the first r columns of U and V,
respectively, and Sr is the top-left r × r block of S, cor-
responding to the largest (most important) singular values.
The low-rank approximation BA can be formed by

B = UrS
1/2
r , A = S1/2

r VT
r . (1)

Notation: we will use S−r to denote the bottom-right r× r
block of S, and U−r and V−r to denote the corresponding
last r columns of U and V, respectively.

3.2. Activation-aware low-rank approximation
Focusing on only approximating the pretrained weights is
suboptimal as it does not consider the effect of the activa-
tion statistics on the overall performance of the model. Ul-
timately, the objective is to approximate WX, given a cal-
ibration set of l sample activations arranged in the matrix
X ∈ Rdin×l. Following the methodology of [38, 44], we



adopt an invertible transform matrix C to adapt the weights
to the pattern of activations X. In this framework, SVD is
performed on WC, as given below:

W = (WC)C−1 = SVD(WC)C−1 = (USVT )C−1

(2)

Keeping only the top r singular values/vectors, we have the
low-rank approximation W ≈ Ŵ := (UrSrV

T
r )C

−1. As
derived by [38], an optimal choice, to minimize

∥ŴX−WX∥2F (3)

is to set C equal to the Cholesky decomposition of the co-
variance XXT . This choice of C serves to whiten the acti-
vations, i.e., C−1X(C−1X)T = I. Similarly, setting C to
be the square root (in terms of the singular values) of the co-
variance, i.e., C = (XXT )1/2, also achieves the optimum,
which we called RootCorDA, in contrast to CorDA [40]
that sets C = (XXT ).

In RootCorDA, one can set B = Ur and A =
SrV

T
r C

−1 with C = (XXT )1/2, which achieves the
global optimal of Eq. (3) given Ŵ = BA.

3.3. Prune low-rank structure during distillation
To further compress the low-rank structure, we propose to
further simultaneously prune the low-rank matrices dur-
ing the low-rank distillation process via hard shrinkage.
Specifically, given the target pruning ratio ρ, in the for-
ward process of each iteration, we dynamically calculate
the corresponding pruning threshold for each low-rank ma-
trix, and zero out elements with magnitudes smaller than
the threshold. For example, for the low-rank matrix A,
we have prune(A) = HardShrink(A, ρ), where the Hard-
Shrink function sets the smallest ρ percent of the elements
in A (in terms of the magnitude) to zero.

At the end of our joint fine-tuning and compres-
sion iterations, the original weight matrix W is approxi-
mated/replaced by the product of two pruned low-rank ma-
trices, i.e., prune(B)prune(A).

3.4. Joint fine-tuning, distillation and compression
3.4.1. Distill from teacher branch to student branch
Similar to PC-LoRA [18], a progressive compression
pipeline is employed. Specifically, the output of each lin-
ear layer can be denoted as Y = αYteacher + α′Ystudent,
where α decreases from one to zero according to

αt =

{
1− sin

(
πt
2T

)
if t ≤ T

0 otherwise
(4)

where t is the current iteration number, and T is the number
of decaying iterations, which is set as 80% of total number
of iterations. In PC-LoRA [18], α′ = 1 and Yteacher =
W0X+ b0,Ystudent = WX+ b.

Instead, to maintain the total power from both branches
to be equal to one, we propose to use α′

t =
√
1− α2

t .
Our overall pipeline becomes

Y = αt (W0X+ b0)︸ ︷︷ ︸
teacher

+
√
1− α2

t (WX+ b)︸ ︷︷ ︸
student

, (5)

where decay factor αt is set as in Eq. (4).

3.4.2. Layer-wise regularization
To generalize better on downstream tasks, a regularization
term is added to the overall loss:

Ltotal = Ltask{y, ŷ}+ γLfeat{Ft, Fs} (6)

where Lfeat{Ft, Fs} = 1
m

∑m
i=1 MSE(Fti , Fsi). Here y, ŷ

are the ground truth and outputs of the network, Fsi and
Fti are outputs of i-th linear layer from student and teacher
model respectively.

Instead of setting γ as a constant 0.2 in [18], we propose
to decrease γ from 1 to 0 during the iterations, similar to
Eq. (4). Our goal is to provide more layer-wise guidance
at the beginning of the distillation iterations, and gradually
relax this guidance.

4. Experiments
To validate our joint fine-tuning and compression method,
we evaluated it on the Vision Transformer (ViT) [11] model
for image classification.

4.1. Settings
We evaluated our TuneComp pipeline on the transfer learn-
ing task from ImageNet1K [14] to CIFAR100 [21] using
the ViT-Base model as in [6]. We use training set of CI-
FAR100 as the fine-tuning dataset, and test on the testing
set of CIFAR100. Similar to [6], OneCycleLR scheduler is
used and learning rate ranges from 7 × 10−5 to 3 × 10−3,
and the best classification accuracy is recorded. The rank of
the low-rank matrices of the student branch is tested from
{32, 64, 128, 256}. Note that smaller rank corresponds to
higher compression rate.

4.2. Comparison of compression strategies
We compare the proposed TuneComp with some widely
used pipelines:
• Fine-tune: baseline, no compression at all.
• Fine-tune −→ distill: first full (dense) fine-tune each linear

layer, and then compress the model by distillation.
• Distill −→ fine-tune: distill to a small model first, and then

fine-tune the small model.
• TuneComp (joint fine-tune and compress): progressively

distill, prune, and fine-tune simultaneously, where the
pruning ratios are tested between 0 to 90%.



Table 1. Comparison of the classification accuracies by different
low-rank matrices initialization methods for TuneComp.

INITIALIZATION r = 32 r = 64

B = 0, A = GAUSSIAN 65.92 69.07
B = GAUSSIAN, A = GAUSSIAN 70.13 73.14
B = 0, A = W0× GAUSSIAN 72.73 74.18
B = U−r , A = V−r 70.91 72.37
B = U−rS−r , A = V−r 70.35 68.40
B = U−r , A = S−rV−r 73.01 72.57
B = U−rS

1/2
−r , A = S

1/2
−r V−r 70.93 72.42

B = Ur , A = Vr 75.03 79.61
B = UrSr , A = Vr 78.01 83.73
B = Ur , A = SrVr 77.96 83.82
B = UrS

1/2
r , A = S

1/2
r Vr 78.74 83.89

CORDA 76.70 83.34
ROOTCORDA (PROPOSED) 78.99 84.62

• Distill only: compression only without fine-tuning.
The accuracy of the Distill only method is very poor (be-

low 40%) and hence omitted from the figure. As shown by
the Pareto fronts plotted in Fig. 2, TuneComp significantly
outperforms baseline methods. Distill−→fine-tune performs
second best. Further, while FT−→distill can even outper-
form the state-of-the-art joint fine-tuning and compression
method PC-LoRA at low compression rate, it is still domi-
nated by our proposed method.

4.3. Effect of low-rank matrix initialization
We evaluated different initialization methods for the low-
rank matrices B and A listed below.
(a) For Gaussian initialization, we evaluated:

• B = 0, A = Gaussian [14];
• B = Gaussian, A = Gaussian;

The results, found in Tab. 1, show that for the joint fine-
tuning and compression case, initializing both low-rank ma-
trices as Gaussian results in better performance, especially
when the rank is low.
(b) For weight-aware initialization, we compared with Nys-
trom initialization [24] where B = 0, A = W× Gaussian.
We also compared with many variants of SVD based initial-
izations listed in Tab. 1.

We can see from Tab. 1 that, for SVD based low-rank de-
composition, selecting top r principle vectors works better
than least r singular vectors, and is much better than simple
Gaussian initialization and Nystrom initialization. Symmet-
rically assigning singular values into left and right singular
vectors is often a good choice.
(c) For the activation-aware initialization, we evaluated:

• CorDA initialization from [40];
• Proposed RootCorDA initialization.

The last few rows in Tab. 1 shows that CorDA in [40] can-
not consistently outperform the weight-aware SVD initial-

103 104 105

Model parameter size (K)

50

60

70

80

90

Ac
cu

ra
cy

TuneComp (RootCorDA initialization)
Dense FT

= 0%
= 20%
= 40%
= 60%
= 80%
= 90%
= 95%

103 104 105

Model parameter size (K)

50

60

70

80

90

Ac
cu

ra
cy

TuneComp (SVD initialization)
Dense FT

= 0%
= 20%
= 40%
= 60%
= 80%
= 90%
= 95%

Figure 3. Performance of TuneComp under different pruning ratio
ρ ∈ {0%, 20%, 40%, 60%, 80%, 90%, 95%}.

Table 2. Classification accuracy of TuneComp compressed model
using different regularization weighting strategies.

REGULARIZATION r = 32 r = 64 r = 128 r = 256

CONSTANT [18] 78.39 84.27 88.12 90.80
DYNAMIC 80.41 86.11 89.49 91.69

ization (Symmetric singular values with top-r singular vec-
tors). However, our RootCorDA outperforms CorDA.

4.4. The effect of pruning

We studied the influence of integrating pruning into the
compression. Specifically, during joint fine-tuning and dis-
tillation of the low-rank structure, pruning on the low-rank
structure is simultaneously applied to each matrix B and A,
and the pruning ratio can be predefined. Fig. 3 demonstrates
the performance of TuneComp under different pruning ra-
tios. The blue dashed line corresponds to no pruning (ra-
tio = 0%), while other lines correspond to different pruning
ratios. We can see that pruning 20% (yellow dashed line)
or 40% (green dashed line) consistently outperforms the
no pruning case, in terms of the accuracy-efficiency trade-
off. However, pruning 60% or more may not have a better
accuracy-efficiency trade-off.

4.5. Effect of regularization decay

Finally, we compare our proposed regularization decay
strategy in Sec. 3.4.2 with the constant regularization γ =
0.2 [18]. The results are shown in Tab. 2. It is clear that our
proposed decay strategy achieves better performance.

5. Conclusion

We proposed a method that simultaneously performs fine-
tuning, knowledge distillation, low-rank approximation,
and pruning. Experiments show that it significantly out-
performs baselines, especially when compression rate is
high.



References
[1] Guangji Bai, Yijiang Li, Chen Ling, Kibaek Kim, and Liang

Zhao. Sparsellm: Towards global pruning of pre-trained lan-
guage models. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems, 2024. 2

[2] Ron Banner, Yury Nahshan, and Daniel Soudry. Post train-
ing 4-bit quantization of convolutional networks for rapid-
deployment. Advances in Neural Information Processing
Systems, 32, 2019. 2

[3] Yaohui Cai, Zhewei Yao, Zhen Dong, Amir Gholami,
Michael W Mahoney, and Kurt Keutzer. Zeroq: A novel
zero shot quantization framework. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 13169–13178, 2020. 2

[4] Beidi Chen, Tri Dao, Eric Winsor, Zhao Song, Atri Rudra,
and Christopher Ré. Scatterbrain: Unifying sparse and low-
rank attention. Advances in Neural Information Processing
Systems, 34:17413–17426, 2021. 2

[5] Feiyang Chen, Ziqian Luo, Lisang Zhou, Xueting Pan, and
Ying Jiang. Comprehensive survey of model compression
and speed up for vision transformers. Journal of Information,
Technology and Policy, pages 1–12, 2024. 2

[6] Xiangyu Chen, Jing Liu, Ye Wang, Pu Wang, Matthew
Brand, Guanghui Wang, and Toshiaki Koike-Akino. Super-
LoRA: Parameter-efficient unified adaptation for large vi-
sion models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR) Work-
shops, pages 8050–8055, 2024. 2, 3

[7] Xiangyu Chen, Ye Wang, Matthew Brand, Pu Perry Wang,
Jing Liu, and Toshiaki Koike-Akino. Slaying the hydra:
Parameter-efficient hyper networks with low-displacement
rank adaptation. In Adaptive Foundation Models: Evolving
AI for Personalized and Efficient Learning, 2024. 2

[8] Hongrong Cheng, Miao Zhang, and Javen Qinfeng Shi. A
survey on deep neural network pruning: Taxonomy, compar-
ison, analysis, and recommendations. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2024. 2

[9] Krzysztof Marcin Choromanski, Valerii Likhosherstov,
David Dohan, Xingyou Song, Andreea Gane, Tamas Sar-
los, Peter Hawkins, Jared Quincy Davis, Afroz Mohiuddin,
Lukasz Kaiser, et al. Rethinking attention with performers.
In International Conference on Learning Representations,
2021. 2

[10] Tim Dettmers, Mike Lewis, Younes Belkada, and Luke
Zettlemoyer. Gpt3. int8 (): 8-bit matrix multiplication for
transformers at scale. In Advances in Neural Information
Processing Systems, 2022. 2

[11] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. In International Con-
ference on Learning Representations, 2020. 3

[12] Ali Edalati, Marzieh Tahaei, Ivan Kobyzev, Vahid Partovi
Nia, James J Clark, and Mehdi Rezagholizadeh. KronA:
Parameter efficient tuning with Kronecker adapter. In

NeurIPS’23 Workshop on on Efficient Natural Language and
Speech Processing, 2023. 2

[13] Elias Frantar and Dan Alistarh. Sparsegpt: massive language
models can be accurately pruned in one-shot. In Proceedings
of the 40th International Conference on Machine Learning,
pages 10323–10337, 2023. 2

[14] Soufiane Hayou, Nikhil Ghosh, and Bin Yu. The impact
of initialization on lora finetuning dynamics. arXiv preprint
arXiv:2406.08447, 2024. 2, 3, 4

[15] Yen-Chang Hsu, Ting Hua, Sungen Chang, Qian Lou, Yilin
Shen, and Hongxia Jin. Language model compression with
weighted low-rank factorization. In International Confer-
ence on Learning Representations, 2022. 2

[16] Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li,
Shean Wang, Lu Wang, Weizhu Chen, et al. Lora: Low-
rank adaptation of large language models. In International
Conference on Learning Representations, 2022. 2

[17] Yating Huang, Yunzhe Hao, Jiaming Xu, and Bo Xu. Com-
pressing speaker extraction model with ultra-low precision
quantization and knowledge distillation. Neural Networks,
154:13–21, 2022. 2

[18] Injoon Hwang, Haewon Park, Youngwan Lee, Jooyoung
Yang, and SunJae Maeng. PC-loRA: Low-rank adaptation
for progressive model compression with knowledge distilla-
tion. arXiv preprint arXiv:2406.09117, 2024. 1, 2, 3, 4

[19] Berivan Isik, Hermann Kumbong, Wanyi Ning, Xiaozhe
Yao, Sanmi Koyejo, and Ce Zhang. Gpt-zip: Deep compres-
sion of finetuned large language models. In Workshop on Ef-
ficient Systems for Foundation Models@ ICML2023, 2023.
2

[20] Mengyu Ji, Gaoliang Peng, Sijue Li, Feng Cheng, Zhao
Chen, Zhixiong Li, and Haiping Du. A neural network com-
pression method based on knowledge-distillation and param-
eter quantization for the bearing fault diagnosis. Applied Soft
Computing, 127:109331, 2022. 2

[21] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009. 3

[22] Minae Kwon, Sang Michael Xie, Kalesha Bullard, and Dorsa
Sadigh. Reward design with language models. In The
Eleventh International Conference on Learning Representa-
tions, 2023. 2

[23] Woosuk Kwon, Sehoon Kim, Michael W Mahoney, Joseph
Hassoun, Kurt Keutzer, and Amir Gholami. A fast post-
training pruning framework for transformers. Advances in
Neural Information Processing Systems, 35:24101–24116,
2022. 2

[24] Bingcong Li, Liang Zhang, Aryan Mokhtari, and Niao He.
On the crucial role of initialization for matrix factorization.
arXiv preprint arXiv:2410.18965, 2024. 2, 4

[25] Benedetta Liberatori, Ciro Antonio Mami, Giovanni San-
tacatterina, Marco Zullich, and Felice Andrea Pellegrino.
Yolo-based face mask detection on low-end devices using
pruning and quantization. In 2022 45th Jubilee International
Convention on Information, Communication and Electronic
Technology (MIPRO), pages 900–905. IEEE, 2022. 2

[26] Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming
Chen, Wei-Chen Wang, Guangxuan Xiao, Xingyu Dang,



Chuang Gan, and Song Han. Awq: Activation-aware weight
quantization for on-device llm compression and acceleration.
Proceedings of Machine Learning and Systems, 6:87–100,
2024. 2

[27] Jing Liu, Toshiaki Koike-Akino, Pu Wang, Matthew Brand,
Ye Wang, and Kieran Parsons. Loda: Low-dimensional
adaptation of large language models. In NeurIPS’23 Work-
shop on on Efficient Natural Language and Speech Process-
ing, 2023. 2

[28] Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and
Trevor Darrell. Rethinking the value of network pruning.
In International Conference on Learning Representations,
2019. 2

[29] Alexandre Lopes, Fernando Pereira dos Santos, Diulhio de
Oliveira, Mauricio Schiezaro, and Helio Pedrini. Com-
puter vision model compression techniques for embedded
systems: A survey. Computers & Graphics, 123:104015,
2024. 2

[30] Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang,
Hongyu Lin, Yaojie Lu, Xianpei Han, and Weipeng Chen.
Shortgpt: Layers in large language models are more redun-
dant than you expect. arXiv preprint arXiv:2403.03853,
2024. 2

[31] Fanxu Meng, Zhaohui Wang, and Muhan Zhang. PiSSA:
Principal singular values and singular vectors adaptation of
large language models. In The Thirty-eighth Annual Confer-
ence on Neural Information Processing Systems, 2024. 2

[32] Markus Nagel, Mart van Baalen, Tijmen Blankevoort, and
Max Welling. Data-free quantization through weight equal-
ization and bias correction. In Proceedings of the IEEE/CVF
international conference on computer vision, pages 1325–
1334, 2019. 2

[33] Arijit Sehanobish, Kumar Avinava Dubey, Krzysztof Marcin
Choromanski, Somnath Basu Roy Chowdhury, Deepali Jain,
Vikas Sindhwani, and Snigdha Chaturvedi. Structured
unrestricted-rank matrices for parameter efficient finetuning.
In The Thirty-eighth Annual Conference on Neural Informa-
tion Processing Systems, 2024. 2

[34] Jingtong Su, Yihang Chen, Tianle Cai, Tianhao Wu, Ruiqi
Gao, Liwei Wang, and Jason D Lee. Sanity-checking prun-
ing methods: Random tickets can win the jackpot. Advances
in neural information processing systems, 33:20390–20401,
2020. 2

[35] Frederick Tung, Srikanth Muralidharan, and Greg Mori.
Fine-pruning: Joint fine-tuning and compression of a convo-
lutional network with bayesian optimization. arXiv preprint
arXiv:1707.09102, 2017. 1, 2

[36] Haotao Wang, Shupeng Gui, Haichuan Yang, Ji Liu, and
Zhangyang Wang. Gan slimming: All-in-one gan compres-
sion by a unified optimization framework. In European Con-
ference on Computer Vision, pages 54–73. Springer, 2020.
2

[37] Hongyi Wang, Saurabh Agarwal, and Dimitris Papailiopou-
los. Pufferfish: Communication-efficient models at no extra
cost. Proceedings of Machine Learning and Systems, 3:365–
386, 2021. 2

[38] Xin Wang, Yu Zheng, Zhongwei Wan, and Mi Zhang.
SVD-LLM: Truncation-aware singular value decomposition

for large language model compression. arXiv preprint
arXiv:2403.07378, 2024. 2, 3

[39] Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty,
Mingxing Tan, Glenn Fung, Yin Li, and Vikas Singh.
Nyströmformer: A nyström-based algorithm for approximat-
ing self-attention. In Proceedings of the AAAI conference on
artificial intelligence, pages 14138–14148, 2021. 2

[40] Yibo Yang, Xiaojie Li, Zhongzhu Zhou, Shuaiwen Leon
Song, Jianlong Wu, Liqiang Nie, and Bernard Ghanem.
CorDA: Context-oriented decomposition adaptation of large
language models for task-aware parameter-efficient fine-
tuning. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2024. 2, 3, 4

[41] Lewei Yao, Renjie Pi, Hang Xu, Wei Zhang, Zhenguo Li,
and Tong Zhang. Joint-detnas: Upgrade your detector with
nas, pruning and dynamic distillation. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 10175–10184, 2021. 2

[42] Shih-Ying Yeh, Yu-Guan Hsieh, Zhidong Gao, Bernard BW
Yang, Giyeong Oh, and Yanmin Gong. Navigating text-to-
image customization: From LyCORIS fine-tuning to model
evaluation. In The Twelfth International Conference on
Learning Representations, 2024. 2

[43] Zhihang Yuan, Lin Niu, Jiawei Liu, Wenyu Liu, Xinggang
Wang, Yuzhang Shang, Guangyu Sun, Qiang Wu, Jiaxiang
Wu, and Bingzhe Wu. Rptq: Reorder-based post-training
quantization for large language models. arXiv preprint
arXiv:2304.01089, 2023. 2

[44] Zhihang Yuan, Yuzhang Shang, Yue Song, Qiang Wu, Yan
Yan, and Guangyu Sun. ASVD: Activation-aware singular
value decomposition for compressing large language models.
arXiv preprint arXiv:2312.05821, 2023. 2


	Title Page
	page 2

	/projects/www/html/my/publications/docs/TR2025-079.pdf
	page 2
	page 3
	page 4
	page 5
	page 6


