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Abstract

To reduce model size during post-training, compression
methods, including knowledge distillation, low-rank ap-
proximation, and pruning, are often applied after fine-
tuning the model. However, sequential fine-tuning and com-
pression sacrifices performance, while creating a larger
than necessary model as an intermediate step. In this work,
we aim to reduce this gap, by directly constructing a smaller
model while guided by the downstream task. We propose
to jointly fine-tune and compress the model by gradually
distilling it to a pruned low-rank structure. Experiments
demonstrate that joint fine-tuning and compression signifi-
cantly outperforms other sequential compression methods.

1. Introduction
Large transformer-based models have demonstrated supe-
rior performance in many tasks, including natural language
processing and computer vision. However, their enormous
size requires substantial computational power and mem-
ory for fine-tuning and deployment to effectively adapt to
downstream tasks. To tackle these, Parameter-Efficient
Fine-Tuning (PEFT) was widely explored to reduce mem-
ory consumption in fine-tuning. In deployment, various
post-training compression techniques have been employed
in these fine-tuned models, including weight quantization,
knowledge distillation, and network pruning. However, se-
quentially fine-tuning and compression often suffers from
significant performance loss.

Joint fine-tuning and distillation has emerged as a
promising alternative [18]. This approach was first pro-
posed in computer vision tasks to jointly fine-tune and prune
convolutional neural networks iteratively [35]. Recently,
PC-LoRA [18] uses a decay factor to reduce the influence of
pretrained teacher branch smoothly, discarding the switch-
ing between fine-tuning and compression. The inclusion
of fine-tuning in the compression process leads to much
higher compression ratios, while maintaining comparable
accuracy. However, the potential of the progressive com-
pression pipeline is under-explored. The structure of the
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Figure 1. The proposed joint fine-tuning and compression
pipeline, where compression involves low-rank approximation as
well as the pruning/sparsification of the low-rank structures.
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Figure 2. Comparison between our proposed TuneComp, jointly
fine-tuning and compression, with other compression strategies.

student branch with a basic low-rank decomposition can be
further compressed with pruning techniques. Further, the
performance can be enhanced through more careful design
of the transition from the teacher to the student branch.

Extending the progressive compression pipeline, our
work proposes TuneComp as shown in Fig. 1. In this
framework, each linear projection layer is split into two
parallel branches. The first branch is the frozen weights
of the pretrained model, while the second is the trainable



and compressed student branch based on low-rank approx-
imation. During fine-tuning, the student branch gradually
replaces the teacher branch, which reduces its influence on
the output to zero, while maintaining the total power from
both branches equal to 1. We also employ novel extensions
of activation-aware initialization. To further compress the
model, pruning is jointly applied on top of this low-rank
decomposition. The entire pipeline integrates fine-tuning,
knowledge distillation, low-rank decomposition, and prun-
ing, and directly producing a compact and efficient model.

2. Related Work

2.1. Joint fine-tuning and compression

From fine-tuning to compression, there are multiple
pipelines to select [5, 8, 29]. One widely used is fine-tuning
downstream tasks first and then distilling to small models
for deployment. In this path, researches either focus on im-
proving fine-tuning to closing the gap between source do-
main of pretrained dataset and the new domain from down-
stream tasks, hence making the fine-tuned model general-
ize better on the given the tasks. For example, a notable
line of work is Parameter-Efficient Fine-Tuning (PEFT),
such as LoRA [16], LoHA [42], LoKr [42], KronA [12],
SuperLoRA [6], LoDA [27] and CorDA [40]. Another
line aims to compress the post-training model to achieve
similar performance to the original model while signifi-
cantly reducing model size. Work in this line includes
pruning [1, 13, 19, 23, 30], parameter efficient structures
[7, 33, 37, 44], knowledge distillation [22], quantization
[2, 3, 10, 26, 32, 43] and combined [17, 20, 25]. Others
compress the model first and fine-tune the small model for
the target tasks [4, 9, 15, 28, 34, 36, 39, 41]. However,
these sequential pipelines from whichever direction, fine-
tune then compress or compress then fine-tune, introduced
an intermediate agent, either the large fine-tuned model or
the small compressed model, restricting the interplay be-
tween fine-tuning and compression, and often with signifi-
cantly degraded performance. Therefore, some other works
tried to combine finetuning and compression. However, this
line of work is still underexplored. [35] proposes to fine-
tune and compress the model alternatively, which is time-
consuming and suboptimal. PC-LoRA [18] eliminated the
alternative switching between teacher and student model
with a decay factor that gradually decreasing with time, thus
gradually reducing the dependence on teacher model.

2.2. Low-Rank initialization

Initialization of low-rank approximation, a parameter effi-
cient structure W ≈ BA, has been studied in many scenar-
ios. As adapters in parameter-efficient fine-tuning, LoRA
[16] proposed either A or B should be initialized as zero
matrix, while the other one to be random Gaussian matrix.

While [14] argues that Gaussian initialization for the A ma-
trix can lead to better performance by introducing more in-
stability. Weight-aware initialization is also studied. PiSSA
[31] instead initialized them with SVD decomposition. Nys-
trom initialization [24] combined both the pretrained ma-
trix W0 with Gaussian initialization. CorDA [40] further
integrated covariance of activations, leading to activation-
aware initialization. However, all these methods target in
the adapter-initialization in fine-tuning. For compression,
ASVD [44] also claimed that task information should be in-
tegrated in the initialization to emphasize different features
given different tasks and hence proposed general activation-
aware initialization based on the statistics of activations.
However, low-rank initialization in joint fine-tuning and
compression lacks investigation, given PC-LoRA [18] sim-
ply used Gaussian initialization for the low-rank matrices.

3. Method
3.1. Basic low-rank approximation via SVD
Low-rank approximation uses a pair of low-rank matrices
A ∈ Rr×din and B ∈ Rdout×r to approximate a matrix
W ∈ Rdout×din , via W ≈ BA, where typically the rank
r ≪ min{din, dout}. Compared to the original weight ma-
trix W, the parameters used for the low-rank approxima-
tion reduces from d2 to 2dr when din = dout = d. However,
this approximation becomes less accurate with smaller rank.
A natural way to realize the low-rank approximation is to
use the singular value decomposition (SVD), which decom-
poses a matrix W as W = USVT , where U, V are the
left and right singular vectors, respectively, and S is a diag-
onal matrix of non-negative singular values that are sorted
in descending order, by convention. Truncating the SVD to
keep only the largest r singular values and corresponding
vectors, yields the optimal rank-r approximation of W (in
terms of minimum Frobenius norm error), W ≈ UrSrV

T
r ,

where Ur and Vr denote the first r columns of U and V,
respectively, and Sr is the top-left r × r block of S, cor-
responding to the largest (most important) singular values.
The low-rank approximation BA can be formed by

B = UrS
1/2
r , A = S1/2

r VT
r . (1)

Notation: we will use S−r to denote the bottom-right r× r
block of S, and U−r and V−r to denote the corresponding
last r columns of U and V, respectively.

3.2. Activation-aware low-rank approximation
Focusing on only approximating the pretrained weights is
suboptimal as it does not consider the effect of the activa-
tion statistics on the overall performance of the model. Ul-
timately, the objective is to approximate WX, given a cal-
ibration set of l sample activations arranged in the matrix
X ∈ Rdin×l. Following the methodology of [38, 44], we



adopt an invertible transform matrix C to adapt the weights
to the pattern of activations X. In this framework, SVD is
performed on WC, as given below:

W = (WC)C−1 = SVD(WC)C−1 = (USVT )C−1

(2)

Keeping only the top r singular values/vectors, we have the
low-rank approximation W ≈ Ŵ := (UrSrV

T
r )C

−1. As
derived by [38], an optimal choice, to minimize

∥ŴX−WX∥2F (3)

is to set C equal to the Cholesky decomposition of the co-
variance XXT . This choice of C serves to whiten the acti-
vations, i.e., C−1X(C−1X)T = I. Similarly, setting C to
be the square root (in terms of the singular values) of the co-
variance, i.e., C = (XXT )1/2, also achieves the optimum,
which we called RootCorDA, in contrast to CorDA [40]
that sets C = (XXT ).

In RootCorDA, one can set B = Ur and A =
SrV

T
r C

−1 with C = (XXT )1/2, which achieves the
global optimal of Eq. (3) given Ŵ = BA.

3.3. Prune low-rank structure during distillation
To further compress the low-rank structure, we propose to
further simultaneously prune the low-rank matrices dur-
ing the low-rank distillation process via hard shrinkage.
Specifically, given the target pruning ratio ρ, in the for-
ward process of each iteration, we dynamically calculate
the corresponding pruning threshold for each low-rank ma-
trix, and zero out elements with magnitudes smaller than
the threshold. For example, for the low-rank matrix A,
we have prune(A) = HardShrink(A, ρ), where the Hard-
Shrink function sets the smallest ρ percent of the elements
in A (in terms of the magnitude) to zero.

At the end of our joint fine-tuning and compres-
sion iterations, the original weight matrix W is approxi-
mated/replaced by the product of two pruned low-rank ma-
trices, i.e., prune(B)prune(A).

3.4. Joint fine-tuning, distillation and compression
3.4.1. Distill from teacher branch to student branch
Similar to PC-LoRA [18], a progressive compression
pipeline is employed. Specifically, the output of each lin-
ear layer can be denoted as Y = αYteacher + α′Ystudent,
where α decreases from one to zero according to

αt =

{
1− sin

(
πt
2T

)
if t ≤ T

0 otherwise
(4)

where t is the current iteration number, and T is the number
of decaying iterations, which is set as 80% of total number
of iterations. In PC-LoRA [18], α′ = 1 and Yteacher =
W0X+ b0,Ystudent = WX+ b.

Instead, to maintain the total power from both branches
to be equal to one, we propose to use α′

t =
√
1− α2

t .
Our overall pipeline becomes

Y = αt (W0X+ b0)︸ ︷︷ ︸
teacher

+
√
1− α2

t (WX+ b)︸ ︷︷ ︸
student

, (5)

where decay factor αt is set as in Eq. (4).

3.4.2. Layer-wise regularization
To generalize better on downstream tasks, a regularization
term is added to the overall loss:

Ltotal = Ltask{y, ŷ}+ γLfeat{Ft, Fs} (6)

where Lfeat{Ft, Fs} = 1
m

∑m
i=1 MSE(Fti , Fsi). Here y, ŷ

are the ground truth and outputs of the network, Fsi and
Fti are outputs of i-th linear layer from student and teacher
model respectively.

Instead of setting γ as a constant 0.2 in [18], we propose
to decrease γ from 1 to 0 during the iterations, similar to
Eq. (4). Our goal is to provide more layer-wise guidance
at the beginning of the distillation iterations, and gradually
relax this guidance.

4. Experiments
To validate our joint fine-tuning and compression method,
we evaluated it on the Vision Transformer (ViT) [11] model
for image classification.

4.1. Settings
We evaluated our TuneComp pipeline on the transfer learn-
ing task from ImageNet1K [14] to CIFAR100 [21] using
the ViT-Base model as in [6]. We use training set of CI-
FAR100 as the fine-tuning dataset, and test on the testing
set of CIFAR100. Similar to [6], OneCycleLR scheduler is
used and learning rate ranges from 7 × 10−5 to 3 × 10−3,
and the best classification accuracy is recorded. The rank of
the low-rank matrices of the student branch is tested from
{32, 64, 128, 256}. Note that smaller rank corresponds to
higher compression rate.

4.2. Comparison of compression strategies
We compare the proposed TuneComp with some widely
used pipelines:
• Fine-tune: baseline, no compression at all.
• Fine-tune −→ distill: first full (dense) fine-tune each linear

layer, and then compress the model by distillation.
• Distill −→ fine-tune: distill to a small model first, and then

fine-tune the small model.
• TuneComp (joint fine-tune and compress): progressively

distill, prune, and fine-tune simultaneously, where the
pruning ratios are tested between 0 to 90%.



Table 1. Comparison of the classification accuracies by different
low-rank matrices initialization methods for TuneComp.

INITIALIZATION r = 32 r = 64

B = 0, A = GAUSSIAN 65.92 69.07
B = GAUSSIAN, A = GAUSSIAN 70.13 73.14
B = 0, A = W0× GAUSSIAN 72.73 74.18
B = U−r , A = V−r 70.91 72.37
B = U−rS−r , A = V−r 70.35 68.40
B = U−r , A = S−rV−r 73.01 72.57
B = U−rS

1/2
−r , A = S

1/2
−r V−r 70.93 72.42

B = Ur , A = Vr 75.03 79.61
B = UrSr , A = Vr 78.01 83.73
B = Ur , A = SrVr 77.96 83.82
B = UrS

1/2
r , A = S

1/2
r Vr 78.74 83.89

CORDA 76.70 83.34
ROOTCORDA (PROPOSED) 78.99 84.62

• Distill only: compression only without fine-tuning.
The accuracy of the Distill only method is very poor (be-

low 40%) and hence omitted from the figure. As shown by
the Pareto fronts plotted in Fig. 2, TuneComp significantly
outperforms baseline methods. Distill−→fine-tune performs
second best. Further, while FT−→distill can even outper-
form the state-of-the-art joint fine-tuning and compression
method PC-LoRA at low compression rate, it is still domi-
nated by our proposed method.

4.3. Effect of low-rank matrix initialization
We evaluated different initialization methods for the low-
rank matrices B and A listed below.
(a) For Gaussian initialization, we evaluated:

• B = 0, A = Gaussian [14];
• B = Gaussian, A = Gaussian;

The results, found in Tab. 1, show that for the joint fine-
tuning and compression case, initializing both low-rank ma-
trices as Gaussian results in better performance, especially
when the rank is low.
(b) For weight-aware initialization, we compared with Nys-
trom initialization [24] where B = 0, A = W× Gaussian.
We also compared with many variants of SVD based initial-
izations listed in Tab. 1.

We can see from Tab. 1 that, for SVD based low-rank de-
composition, selecting top r principle vectors works better
than least r singular vectors, and is much better than simple
Gaussian initialization and Nystrom initialization. Symmet-
rically assigning singular values into left and right singular
vectors is often a good choice.
(c) For the activation-aware initialization, we evaluated:

• CorDA initialization from [40];
• Proposed RootCorDA initialization.

The last few rows in Tab. 1 shows that CorDA in [40] can-
not consistently outperform the weight-aware SVD initial-
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Figure 3. Performance of TuneComp under different pruning ratio
ρ ∈ {0%, 20%, 40%, 60%, 80%, 90%, 95%}.

Table 2. Classification accuracy of TuneComp compressed model
using different regularization weighting strategies.

REGULARIZATION r = 32 r = 64 r = 128 r = 256

CONSTANT [18] 78.39 84.27 88.12 90.80
DYNAMIC 80.41 86.11 89.49 91.69

ization (Symmetric singular values with top-r singular vec-
tors). However, our RootCorDA outperforms CorDA.

4.4. The effect of pruning

We studied the influence of integrating pruning into the
compression. Specifically, during joint fine-tuning and dis-
tillation of the low-rank structure, pruning on the low-rank
structure is simultaneously applied to each matrix B and A,
and the pruning ratio can be predefined. Fig. 3 demonstrates
the performance of TuneComp under different pruning ra-
tios. The blue dashed line corresponds to no pruning (ra-
tio = 0%), while other lines correspond to different pruning
ratios. We can see that pruning 20% (yellow dashed line)
or 40% (green dashed line) consistently outperforms the
no pruning case, in terms of the accuracy-efficiency trade-
off. However, pruning 60% or more may not have a better
accuracy-efficiency trade-off.

4.5. Effect of regularization decay

Finally, we compare our proposed regularization decay
strategy in Sec. 3.4.2 with the constant regularization γ =
0.2 [18]. The results are shown in Tab. 2. It is clear that our
proposed decay strategy achieves better performance.

5. Conclusion

We proposed a method that simultaneously performs fine-
tuning, knowledge distillation, low-rank approximation,
and pruning. Experiments show that it significantly out-
performs baselines, especially when compression rate is
high.
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