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Abstract
merging smart agriculture is critical for optimizing crop quality and quantity. However, its
realization faces significant challenges, particularly the lack of feasible communication infras-
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sues, where UAVs act as in- termediaries between agriculture sensors and cloud servers. Our
key innovation is a Large Language Mode (LLM)-based approach for context-aware seman-
tic mapping, introducing an innovative Semantic Criticality Index (SCI) that dynamically
assesses the importance of agricultural data. This novel SCI drives our formulation of the
agricultural sensor data collection scheduling problem as an optimization problem to minimize
energy use in sensors and UAVs, solved using a proposed Semantic-Guided Deep Q-Network
(SG-DQN) algorithm that optimizes energy consumption and resource allocation based on se-
mantic context. Simulations using public agricultural datasets show significant improvements
over traditional methods in energy efficiency and data classification accuracy.
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Abstract—Emerging smart agriculture is critical for opti-
mizing crop quality and quantity. However, its realization
faces significant challenges, particularly the lack of feasible
communication infrastructure and poor wireless connectiv-
ity in rural areas. This paper presents a novel Unmanned
Aerial Vehicle (UAV) assisted two-tier agriculture network
architecture to address these issues, where UAVs act as in-
termediaries between agriculture sensors and cloud servers.
Our key innovation is a Large Language Mode (LLM)-based
approach for context-aware semantic mapping, introducing an
innovative Semantic Criticality Index (SCI) that dynamically
assesses the importance of agricultural data. This novel SCI
drives our formulation of the agricultural sensor data collection
scheduling problem as an optimization problem to minimize
energy use in sensors and UAVs, solved using a proposed
Semantic-Guided Deep Q-Network (SG-DQN) algorithm that
optimizes energy consumption and resource allocation based on
semantic context. Simulations using public agricultural datasets
show significant improvements over traditional methods in
energy efficiency and data classification accuracy.

Index Terms—UAV-assisted smart agriculture, LLM-based
data labeling, context-aware semantic mapping, energy-efficient
data collection scheduling, and context-aware DQN problem-
solving.

I. INTRODUCTION

With global food demand on the rise and environmental
challenges intensifying, the agricultural sector faces mount-
ing pressure to increase productivity while minimizing its
ecological footprint. To meet these demands, smart agri-
culture has emerged as a data-driven approach by employ-
ing cutting-edge IoT networks to provide real-time data
on various parameters such as soil moisture, temperature,
and crop health, thus enabling optimized farming practices.
Smart agriculture technologies can be divided into sensing,
cloud computing, and networking. While sensing and cloud
computing have advanced agriculture, networking remains a
crucial yet unexplored area, linking sensors to cloud servers
for seamless data transmission and decision-making.

Unmanned Aerial Vehicles (UAVs) have been widely
utilized in agriculture for tasks such as monitoring, spraying,
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weeding, sensing, and seed planting. Although UAVs are
effective for targeted operations like spraying and planting,
ground-based agriculture sensors are often more economical
for daily tasks such as continuous monitoring and sens-
ing. However, IoT sensors deployed in rural and large-
scale farmlands often face connectivity challenges due to
limited infrastructure. To address this gap, this work in-
troduces a novel UAV-assisted communication framework
where UAVs function as dynamic data collection and relay
nodes, enhancing network coverage and ensuring seamless
data transmission. This UAV application scenario leads to
two particular challenges, i.e., how to schedule sensor data
collection to save crucial energy for UAVs and sensors and
how to efficiently route collected sensor data to remote cloud
servers for real-time processing and decision-making.

In response to the above-mentioned interconnected chal-
lenges, we propose AgriNex, a novel architecture that inte-
grates Large Language Models (LLMs) with UAV-assisted
IoT systems to transform smart agriculture operations. Un-
like conventional methods that rely on raw data for immedi-
ate feedback, AgriNex leverages the semantic depth provided
by LLMs to interpret data from diverse agriculture sensors,
facilitating context-aware decision-making and dynamic re-
source management. By prioritizing critical data collection
and optimizing energy consumption for both UAVs and
sensors, AgriNex ensures timely and efficient responses to
evolving agricultural conditions. It effectively captures the
multi-dimensional and context-dependent nature of agricul-
tural data, which is often missed by simpler machine learning
models [1].

In smart agriculture, data importance is not static but
influenced by factors such as seasonal growth requirements,
spatial sensor distributions, and environmental conditions.
Conventional methods fall short in dynamically prioritizing
these data points, potentially missing time-sensitive informa-
tion [2]. Semantic Criticality Index (SCI), another innovative
feature of our AgriNex approach, solves these issues by
quantifying data criticality based on crop-specific context
and environmental changes, ensuring that UAV resources are
focused on high-impact sensors and data collection areas.
This adaptation is key for resource optimization in preci-



sion agriculture, where response times directly affect crop
health and energy conservation. To facilitate this adaptive
approach, AgriNex introduces a Semantic-Guided Deep Q-
Network (SG-DQN) algorithm, which uses the SCI metric
to optimize agriculture sensor data collection scheduling and
UAV action.

II. RELATED WORKS

The work [3] highlights the modernization of traditional
agriculture through IoT paradigm. It applies automation and
IoT technologies via smart GPS-based remote controlled
robot to perform tasks like weeding, spraying, and moisture
sensing. The paper [4] offers a precision agriculture concept:
a comprehensive meta-review inspiring further research,
innovation, and adoption. Recently, agricultural UAVs have
gained significant academic interest, playing a key role in
precision farming with high-resolution imagery and real-
time monitoring [5]. Studies in [6] provides a comprehensive
survey of UAV applications in agriculture, including soil
analysis, crop monitoring, and weed identification. Research
work [7] reviews trends and applications of leading tech-
nologies related to agricultural UAVs, control technologies,
equipment, and development. Authors in [8] provide an in-
depth survey of UAV applications in PA, categorizing them
into a) UAV-based applications for tracking, b) UAV-based
applications for spraying, and c) Multi-UAV applications.
However, they note a shortage of research on multi-UAV
applications in agriculture despite the significant potential
benefits. LLMs, initially developed for natural language
processing, have recently been applied in optimized envi-
ronmental sensing and agriculture [9]. These models excel
at processing large datasets to identify patterns and generate
predictions, enhancing semantic understanding in IoT net-
works and improving data interpretation in agriculture. As
energy efficiency remains a key concern for UAV and IoT
deployments, the ability of LLMs to optimize data collection
and transmission strategies can be especially valuable for
sustainable agricultural practices.

III. SMART AGRICULTURE NETWORK MODEL

This paper presents a novel UAV-assisted two-tier smart
agriculture network model illustrated in Fig. 1, compris-
ing agriculture sensors, UAVs and cloud servers for UAV-
assisted sensor data collection and routing in agricultural en-
vironments, where agriculture sensors communicate through
UAVs due to their limited transmission range and cost-
efficient design in unlicensed frequency bands. Therefore,
agriculture sensors are divided into clusters based on criteria
such as spatial distribution where each cluster is managed
by at least one UAV, responsible for collecting sensor data
and relaying data to cloud servers. Accordingly, the first-tier
networks are multi-point-to-point (MP2P) networks, dynam-
ically established by assigning UAVs to sensor clusters for
data collection. The second-tier network is a dynamic mesh

Fig. 1. Two-tier smart agriculture network model

network formed by UAVs and cloud servers for sensor data
and analysis information routing. The routing in UAV mesh
network can use existing routing schemes in works such as
[10] and hence, this work focuses on sensor data collection in
the first-tier networks and LLM-based data processing, and
decision-making. We consider a sensor cluster comprising
N sensors, denoted as C = {1,2, . . . ,N}. Without loss of
generality, we assume one UAV u is assigned for the cluster
C to collect data. During a data collection period, the UAV u
with capacity constraint Ucap

u in communication and storage
can only collect data from a subset of the sensors in cluster
C at any time t and thus, needs to make a decision regarding
whether or not to serve a sensor n. We denote Uu,n,t as action
taken by UAV u for the sensor n at time t with Uu,n,t = 1
indicating sensor n being served and Uu,n,t = 0 indicating
otherwise. The UAV capacity constraint implies that at any
time t, Uu,n,t must satisfy the constraint ∑n∈C Uu,n,t ≤Ucap

u .

IV. LLM-POWERED SEMANTIC LABELING OF
AGRICULTURAL DATA

Traditional time-series analysis methods often fail to cap-
ture the complex, multi-dimensional nature of crop health
monitoring [11]. Therefore, AgriNex introduces a novel
semantic labeling framework that fundamentally transforms
agricultural sensor data interpretation through the novel
application of LLMs. The LLMs have shown exceptional
performance in natural language processing tasks, and we
extend these capabilities to smart agriculture, where sensor
data readings, environmental conditions, and crop health
indicators form the “language”.

Data Acquisition: UAVs collect sensor data according
to data criticality, historical patterns, time elapsed since the
last data collection, and environmental triggers that indicate
changes in conditions. The raw dataset is formalized as
D = {dr

1,d
r
2, . . . ,d

r
|D |}, where each raw data reading dr

i is
a tuple (si, ti,ci,vi), si is the sensor identifier with location
coordinates, ti is the timestamp, ci is the cluster identifier,
and vi is a vector of critical agricultural parameters (Nitro-
gen, Temperature, Humidity, pH, Rainfall, etc.)

Preprocessing: The raw sensor data undergoes prepro-
cessing through a multi-stage pipeline defined as

di = Norm(Clean(vi))◦Context(si, ti,ci) (1)



where outlier filtering removes anomalies, normalization
scales values to a [-1, 1] range, and contextual augmentation
incorporates crop-specific thresholds, growth stage, seasonal
adjustments, and spatial context.

Semantic Labeling: AgriNex employs fine-tuned Bidirec-
tional Encoder Representations from Transformers (BERT)
based models [12] for semantic labeling. Semantic labeling
begins with a labeled subset Dlabeled, where data is catego-
rized into multiple criticality levels using agricultural expert
knowledge. For simplicity, we illustrate our methodology
using four criticality levels: “normal,” “abnormal,” “critical,”
and “urgent.” While these categories may appear simple,
their application requires dynamic classifications that adapt
to crop-specific and environmental contexts. The BERT
model parameters θ are optimized to predict the semantic
label yi for the preprocessed sensor data reading di by
minimizing the classification loss, as shown below

L =− 1
N

N

∑
i=1

∑
c∈Dlabeled

1{yi = c} logP(yi = c|di;θ), (2)

where 1{yi = c} is an indicator function that equals 1 if
yi = c and 0 otherwise, and P(yi = c|di;θ) is the predicted
probability that the data di belongs to class c given the
collection of all trainable parameters in our fine-tuned BERT
model as θ . Techniques like cross-entropy loss and Adam
optimization can be employed to fine-tune θ effectively.

Data Level SCI: The Data Level SCI evaluates the
criticality of individual sensor readings by measuring their
deviation from predefined thresholds, contextualized by
crop-specific and environmental factors. To model Data-
Level SCI, we use a two-step process that leverages semantic
embeddings, context layers, and an attention mechanism.

(1) Semantic Embedding: Each sensor data reading di is
mapped to a high-dimensional space E(yi) using correspond-
ing semantic label yi as

E(yi) = LLMembed(yi,context), (3)
where the term context includes three layers of context: tem-
poral trends from recent historical data, spatial correlations
from neighboring sensors, and domain knowledge like crop
stage. Hence, the embedding provides feature alignment and
contextual enrichment. For example, during critical growth
stages, the embedding process prioritizes parameters like
temperature and humidity, which may have greater relevance
than stable factors such as soil pH.

(2) Contextual Relevance and Attention: To accurately
compute the Data-Level SCI, it is essential to incorporate
various contextual factors that influence the importance
of each sensor reading. Our SCI framework integrates a
contextual relevance mechanism inspired by Transformer
models, enabling dynamic assessment of each sensor’s data
based on its relative importance. This mechanism allows the
AgriNex system to prioritize high-impact areas and optimize
decision-making and resource allocation in smart farming.
For a sensor data reading di with label yi, the data-level SCI

is computed as
ISCI(yi) = Attention(E(yi),Snet,Hperf), (4)

where Snet represents the network state vector and Hperf
represents the historical performance vector. The attention
mechanism is defined as

Attention(E(yi),Snet,Hperf) = ∑
k

αkValuek, (5)

where Valuek represents contextually relevant information
derived from Snet and Hperf, while αk denotes the attention
weight for each contextual component k. The attention
weights αk are computed as

αk =
exp(Score(E(yi),Kk))

∑l exp(Score(E(yi),Kl))
, (6)

with the score function measuring the relevance of the
semantic embedding to the network state and historical
performance keys, given by

Score(E(yi),Kk) = E(yi)
⊤WKk, (7)

where W is a learnable weight matrix that projects the
semantic embedding E(yi) into the same dimensional space
as the keys Kk.

Sensor Level SCI: For a sensor n, we propose an
innovative Sensor-Level SCI ĨSCI(n, t) that incorporates both
the sensor’s baseline importance and a Redundancy Index
(RI(n, t)) to account for overlapping data. Let {di

n,t} and Dh,t
be new readings and historical dataset, respectively. Sensor
n ultimately yields Mn labels {yn,1,yn,2, . . . ,yn,Mn} over a
time interval [Ts,Te]. To obtain an overall measure of how
important sensor n is, these Data-Level SCIs are averaged
to form a baseline Sensor-Level SCI as

ISCI(n, t) =
1

Mn

Mn

∑
i=1

ISCI
(
yn,i
)
. (8)

A high ISCI(n, t) indicates that sensor n routinely generates
data of substantial significance. However, importance alone
does not address overlapping or redundant information. To
capture such redundancy, we define a Redundancy Index
RI(n, t) ∈ [0,1] as

RI(n, t) =

Mn

∑
i=1

max
j∈{1,...,Mh}

sim
(
di

n,t ,d
j
h,t

)
|Dn,t |

, (9)

where {d1
n,t , . . . ,d

Mn
n,t } is the new data from sensor n,

{d1
h,t , . . . ,d

Mh
h,t } is a relevant historical dataset, |Dn,t | is the

total new-data volume, normalizing the overlap score and
sim(·) is often a Gaussian kernel for measuring data overlap
such that

sim(di
n,t ,d

j
h,t) = exp

(
−
∥di

n,t −d j
h,t∥

2

2σ2

)
. (10)

Finally, we unify sensor’s average importance with its nov-
elty by defining the novelty-adjusted Sensor-Level SCI as

ĨSCI(n, t) = ISCI(n, t)
(
1−RI(n, t)

)
. (11)

A sensor that is important yet produces highly overlapping
data will have its effective SCI penalized, discouraging fur-
ther resource expenditure on repeated information. Instead,



a sensor with both high importance and low redundancy
retains a strong ĨSCI(n, t), indicating that it should receive
higher priority in the data collection process.

By defining ĨSCI(n, t) as the definitive sensor-level metric,
the system directs its wake-ups and transmissions toward
sensors whose data is not only semantically critical but
also novel, maximizing useful information gained while
minimizing duplication in UAV-assisted agricultural IoT
networks. Our LLM-based semantic labeling is described in
Algorithm 1. This approach facilitates adaptive and efficient

Algorithm 1: Semantic Labeling with SCI
Input: Preprocessed dataset D , labeled subset

Dlabeled, fine-tuned LLM model θ

Output: Semantic labels Y , SCI scores {ISCI, ĨSCI}
1 Fine-tune θ using Dlabeled to classify data into

criticality levels (normal, critical, etc.);
2 foreach data point xi ∈D do
3 Predict semantic label yi: yi← argmaxP(y|xi;θ);
4 Compute Data-Level SCI:

ISCI(yi) = Attention(E(yi),Snet,Hperf);

5 foreach sensor n do
6 Compute baseline SCI: ISCI(n) = 1

Mn
∑ ISCI(yi,n);

7 Compute novelty-adjusted SCI:
ĨSCI(n) = ISCI(n)(1−RI(n));

8 return Y ,{ISCI, ĨSCI}

data gathering in agricultural IoT systems by leveraging
LLM-derived semantic labels to create a high-level semantic
map, allowing for more intelligent decision-making and
resource allocation in smart farming.

V. ADAPTIVE ENERGY CONSUMPTION MODELS

This section presents our context-adaptive energy models.

A. UAV Energy Consumption Model

For the UAV u, its energy consumption can be broadly di-
vided into flight energy and communication energy, modeled
as Eu = Eu

flight +Eu
comm.

Flight Energy Consumption: Our work considers UAV
flight energy during the sensor data collection period. For
the UAV u, its flight energy Eu

flight is given by

Eu
flight =

∫ Tc+D(ISCI(Y (t)))

Tc

Pnav(vu(t))dt, (12)

where Y (t) is the vector of all distinguished semantic data
labels, Pnav(v(t)) represents the power required for naviga-
tion, Tc and D are data collection starting time and duration.

Communication Energy Consumption: The communi-
cation energy of u is modeled as Eu

comm = Eu
tx +Eu

rx, where

Eu
tx =

N

∑
n=1

∫
τu,n

0
Ptx,u

(
|hn,u(t)|2

)
dt (13)

is control signal transmission energy and

Eu
rx =

N

∑
n=1

∫
τn

0
Prx,u(t)dt (14)

covers sensor data reception energy, Ptx,u and Prx,u are
transmission and reception power levels, respectively, τu,n
and τn are the durations of transmission to sensor n and
reception from sensor n, respectively, and |hn,u(t)| denotes
the Rician fading channel coefficient between n and u.

B. Sensor Energy Consumption Model

In our UAV-assisted agricultural IoT system, the process
of data collection for a sensor n begins when the UAV u
sends a wake-up signal to sensor n. Upon receiving this
signal, the sensor n transitions from its sleep or listen mode
to active wake-up mode, ready to perform its sensing and
data transmission tasks. This dynamic interaction between
UAV and sensors forms the foundation of our energy-
efficient monitoring system.

The energy consumption of the agriculture sensors is a
critical factor that directly impacts the efficiency and sus-
tainability of the agricultural IoT network. For a sensor n, its
energy consumption can be broadly categorized into sensing
energy, transmission energy and sleep energy, modeled as
En = En

sensing +En
tx +En

sleep.
Sensing Energy Consumption: For a sensor n, let tn,

δn and τn be wake-up time, wake-up duration and data
transmission duration, respectively, within a data collection
period. Thus, the active sensing interval is

[
tn, tn +δn− τn

]
with sensing operation governed by two gating functions:

(i) Sensor-Level Gating Function (α): The gating function
α
(
ĨSCI(n, t)

)
determines whether sensor n is activated for

sensing based on the novelty-adjusted Sensor-Level SCI:

α
(
ĨSCI(n, t)

)
=

{
1, ĨSCI(n, t) ≥ Θsensor,

0, otherwise,
(15)

where Θsensor is the threshold for sensor activation, ensuring
that only sensors with sufficiently novel or critical contribu-
tions are activated.

(ii) Data-Level Gating Function (β ): The data-level gating
function β

(
ISCI(yi)

)
filters individual data readings based on

the Data-Level SCI:

β
(
ISCI(yi)

)
=

{
1, ISCI(yi) ≥ Θdata,

0, otherwise,
(16)

where Θdata ensures that only critical data readings exceed-
ing this threshold are considered for further processing or
transmission. The sensor consumes energy for sensing only
if both the sensor-level and data-level gating conditions are
satisfied. The sensing energy is given by

En
sensing =

∫ tn+δn−τn

tn
α
(
ĨSCI(n, t)

)
β
(
ISCI(yi)

)
Ps,n(t)dt, (17)

where Ps,n(t) is the time-varying sensing power of sensor n.
Transmission Energy Consumption: Once the sensor

collects data, it transmits only the critical data readings



identified by the Data-Level SCI threshold (Θdata). The
transmission energy is modeled as

En
tx =

∫ tn+δn

tn+δn−τn

β
(
ĨSCI(n, t)

)
Ptx,n(t) |hn,u(t)|2 dt. (18)

Sleep Energy Consumption: The energy consumed dur-
ing sleep mode reflects minimal power usage while main-
taining sensor readiness. The sleep energy is modeled as

En
sleep =

∫ Te

Ts

Psleep,n(t)χsleep,n(t)dt, (19)

where Psleep,n(t) is the time-varying sleep power of sensor n,
χsleep,n(t) is a binary function that defines the sleep periods
of sensor n, given by

χsleep,n(t) =

{
0, if tn ≤ t < tn +δn

1, otherwise
(20)

VI. SCI BASED AGRICULTURE SENSOR DATA
COLLECTION SCHEDULING

The sensor data collection occurs between time Ts and
Te, with the collection process starting at Tc for duration D,
during which sensors actively gather data while remaining in
sleep or sensing mode outside this collection window. At the
end of the current collection period, the next data collection
period duration D is dynamically adjusted to respond to the
varying needs of the system such that

D = Dc +∆D, (21)
where Dc is the duration of the current data collection period
and ∆D is calculated to adjust the collection period duration
based on the semantic criticality of the data gathered during
the current period and to balance the necessity of com-
prehensive data capture against the imperative of resource
conservation. The adjustment factor ∆D is given by

∆D = D× ( f (ISCI(Y ))−1), (22)
where Y is the vector of all distinguished semantic data
labels and the function f (ISCI(Y )) integrates the semantic
criticality indices derived from all sensor data. Using four
criticality levels Y = {ynormal,yabnormal,ycritical,yurgent} as an
example, function f can be defined as

f (ISCI(Y )) = max{1+ γnormalavg(ISCI(ynormal)) ,

exp(γabnormal (1−max(ISCI(yabnormal)))) ,

1+ γcritical

(
1− [max(ISCI(ycritical))]

2
)
,

1+
γurgent

1+max
(
ISCI(yurgent)

)},
(23)

where the scaling factors γnormal, γabnormal, γcritical, and γurgent
are parameters used to modulate the impact of different
semantic criticality levels on scheduling duration.

The adjustments on the operational window of sensor n
are computed as follows, aligning with UAV availability and
ensuring efficient data collection such that

tn = Tc +∆tn,

δn = δn +∆δn,

τn = τn +∆τn,

(24)

where ∆tn,∆δn and ∆τn are determined based on the sensor
data’s semantic criticality, ensuring that each sensor is active
only when necessary and transmits the most relevant data.

We formulate the agriculture sensor data collection
scheduling problem as an optimization problem that balances
energy efficiency with effective scheduling. The primary
objective is to minimize the total energy consumption while
ensuring successful data transmission. The optimization
problem is formally defined as

minimize
Tc,D,t̂,d̂,τ̂

Etotal−ωsuc

N

∑
n=1

Psuccess,n,u

subject to SNRn,u ≥ SNRthreshold, ∀n,
0≤ vu ≤ vmax,

Tc ≤ tn ≤ Tc +D−δn, ∀n,
τn ≤ δn ≤ D− (tn−Tc), ∀n,

∑
n∈C

Uu,n,t ≤Ucap
u , ∀t,

(25)

where Psuccess,n,u is the successful packet reception probabil-
ity at UAV u from sensor n, t̂, δ̂ , τ̂ are vectors of tn,δn,τn,
respectively, vu is the velocity of u to maintain the required
signal-to-noise ratio (SNR) with sensors, ωsuc is a weighting
factor to adjust the relative importance of successful data
transmission compared to energy conservation, and Etotal =
Eu

flight +Eu
comm +∑

N
n=1(E

n
sensing +En

tx +En
sleep) is total energy.

VII. SEMANTIC-GUIDED DEEP Q-NETWORK (SG-DQN)
ALGORITHM FOR OPTIMIZATION PROBLEM

We formulate the scheduling problem (25) as a Markov
Decision Process (MDP) and introduce the SG-DQN for it.

State Space S: The state space at time t is de-
fined as S(t) = {Si(t),S2(t), · · · ,SN(t),vu,Tc,D} with Sn(t) =
{sn(t),En(t), ĨSCI(n, t), tn,δn,τn} being state of the sensor n,
where sn(t)∈ {sense, transmit,sleep} denotes the operational
state of the sensor n, En(t)∈ [0,Emax] represents the remain-
ing energy of the sensor n.

Action Space A : The action space at time t is defined as
A(t) = {A1(t),A2(t), · · · ,AN(t)} with An(t) = {an(t) | an(t)∈
{sense, transmit, sleep},Uu,n,t}.

State Transition P : The state transition for sensor n is
described as follows

sn(t) =


sleep, if Ts ≤ t < tn
sense, if tn ≤ t < tn +δn− τn

transmit, if tn +δn− τn ≤ t ≤ tn +δn

sleep, if tn +δn ≤ t ≤ Te

(26)

Reward Function with Penalties: The reward function
R(S(t),A(t)) at time t is formulated as follows,

R(S(t),A(t)) =−Etotal(t)−
5

∑
i=1

λimax(0,gi(t)), (27)

where the gi(t) functions are derived directly from the
constraints in the optimization problem (25), and λi is a
penalty coefficient for the i-th constraint, indicating the
severity of the penalty for violating this constraint.



Algorithm 2: Training Phase of SG-DQN Algorithm
Input: State S(t), Action A(t), Learning rate η ,

Discount factor γ , SCI ĨSCI(y, t), Exploration
rate ε , Crop and environment parameter ρ

Output: Optimal policy π∗(S)
1 Initialize Q-network with weights θ , target network

with θ ′ = θ , and replay buffer D ;
2 for each episode e = 1 to E do
3 Initialize state S(0);
4 for each time step t = 1 to T do
5 Choose action A(t) using:

A(t)=


argmaxA

[
Q(S(t),A;θ)+ρ ĨSCI(y, t)

]
,

with probability 1− ε,

random action,
with probability ε

6 Execute A(t), observe reward R(S(t),A(t)),
and next state S(t +1);

7 Store (S(t),A(t),R(S(t),A(t)),S(t +1)) in D ;
8 if replay buffer is ready for sampling then
9 Sample mini-batch from D ;

10 Compute target y(t):
y(t) = R(t)+ γ max

A′
Q(S(t +1),A′;θ

′)

Update θ by minimizing the loss
function:

L(θ) = E
[
(y(t)−Q(S(t),A(t);θ))2

]
Update target network θ ′← θ every C
steps;

11 Decay ε and adjust ρ as needed;

12 return π∗(S) = argmaxA Q(S,A;θ)

Objective: The objective is to find an optimal policy π∗

that maximizes the expected cumulative discounted reward
for all sensors and is shown as

π
∗ = argmax

π
E

[
∞

∑
t=0

γ
t
dR(S(t),A(t))

]
, (28)

where γd ∈ [0,1) is the discount factor at time t and our
proposed SG-DQN approach is described in Algorithm 2.

VIII. SIMULATION RESULTS AND DISCUSSIONS

We utilized a public dataset Kaggle agriculture [13] to
evaluate the performance of our proposed smart agriculture
technologies. Our simulation scenario involves one UAV and
20 sensors, with Round Robin, Threshold-Based, Greedy,
Weighted Fair Queuing, Earliest Deadline First, and Least
Laxity First algorithms serving as benchmarks.

The heatmap in Fig. 2 illustrates the predicted crop
conditions based on pairwise combinations of agricultural
features. Phosphorus, potassium, and temperature exhibit
the strongest positive influence on crop conditions (0.0230
to 0.0360), with rainfall also having a moderate impact,
especially when paired with these nutrients. In contrast,

Fig. 2. Heatmap of Predicted Crop
Condition

Fig. 3. Confusion Matrix for Data
Criticality Classification

Fig. 4. Performance Comparison of
Machine Learning Models

Fig. 5. Energy Consumption vs
Sensor-Level SCI Threshold

Fig. 6. Total Reward by SG-DQN,
DQN and Q-Learning

Fig. 7. SCI Distribution for Sensor
Selection and Skipping

humidity, pH value, and nitrogen generally show lower
predictive power (0.0015 to 0.0094). The confusion matrix
in Fig. 3 shows high accuracy in classifying agricultural
data, with near-perfect identification of routine and urgent
conditions and minimal misclassification in critical cases.

Fig. 4 shows the superior performance of our LLM-based
smart agriculture technologies across all metrics, with scores
around 0.95 for accuracy, recall, and F1 score, and 0.92 for
precision. This significant improvement over SVM, k-NN,
and Naive Bayes highlights the effectiveness of integrating
LLMs and semantic understanding into smart agricultural
systems. Figure 5 depicts the relationship between total
energy consumption and the sensor activation threshold
(Θsensor) for three different data thresholds (Θdata). For
lower Θsensor, more sensors are activated, leading to higher
energy consumption. As Θsensor increases, fewer sensors
are activated, resulting in a sharp decline in total energy
consumption. Beyond a critical Θsensor value, energy usage
drops to nearly zero as no sensors are activated. Lower
Θdata values, such as 0.3, result in the transmission of more
data, which increases energy consumption. Moreover, higher
Θdata values, such as 0.7, filter out moderate sensor readings,
thereby reducing transmission energy costs.

Fig. 6 demonstrates the superior performance of our
proposed SG-DQN algorithm compared to traditional DQN
and Q-Learning algorithms in UAV-assisted smart agricul-



ture systems. After initial exploration, SG-DQN consistently
achieves higher total rewards, culminating in a 66% im-
provement over DQN and 71% over Q-Learning in the
final episode. Fig. 7 illustrates the SCI distribution for
sensors selected and skipped by our SG-DQN compared
to a threshold-based method. Our SG-DQN demonstrates
superior discrimination, preferentially selecting sensors with
higher SCI values (blue area, peak around 0.8) while skip-
ping lower-value sensors (orange area, peak around 0.15).

Fig. 8. Sensor Energy Consumption Comparison by Different Scheduling
Algorithms

Fig. 8 shows the energy consumption comparison for
different scheduling algorithms. Our LLM-based scheduling
method consistently demonstrates the lowest energy con-
sumption for sensing and transmission across all scheduling
durations. At 20 seconds, the LLM-based method saves up
to 50% in sensing and 60% in transmission compared to the
next best-performing algorithm.

Fig. 9. UAV Energy Consumption Comparison by Different Scheduling
Algorithms

Fig. 9 shows UAV energy consumption. For navigation,
our LLM-based scheduling consumes up to 58% less energy
than other algorithms at longer durations (e.g., 72J vs. 90J+
at 20s). For communication, our LLM-based scheduling uses
up to 66% less energy (e.g., 32J vs. 80J+ at 20s). These
significant improvements highlight the effectiveness of in-
tegrating semantic understanding from LLM with physical
energy management in agricultural environments.

IX. CONCLUSION

In this paper, we proposed AgriNex, a novel UAV-assisted
smart agricultural system that integrates UAVs to enable
energy-efficient agricultural sensor data collection and data
processing. Our approach leverages the power of LLMs to

generate a semantic map that identifies sensors of varying
importance, enabling adaptive adjustments of signal propa-
gation and energy consumption parameters. We introduced
novel energy consumption models tailored for UAVs and
agricultural sensors, addressing the critical need for energy
efficiency in large-scale farm operations. The agricultural
sensor data collection problem was formulated as an op-
timization challenge to minimize overall system energy
consumption. To tackle this, we developed a reinforcement
learning-based optimization algorithm that learns optimal
data collection intervals and agriculture sensor wake-up in-
terval adjustment policies based on the semantic map and the
system’s historical performance. Our extensive evaluation
using public agricultural datasets demonstrates AgriNex’s
superior performance, showing significant improvements in
both energy efficiency and data classification accuracy com-
pared to conventional approaches, underlining the potential
of LLMs and IoT in agricultural practices.
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