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Enhanced Agility and Safety in Mobile Manipulators through
Centroidal Momentum-Based Motion Planning

Min Dai, Zehui Lu, Na Li, and Yebin Wang

Abstract— This paper presents a framework for the planning
and control of wheeled mobile manipulators, integrating a novel
reduced-order dynamics model that can be used during motion
planning to enhance safety and prevent tip-overs. Leveraging
centroidal momentum dynamics, the model captures key forces
at the center of mass, enabling efficient, dynamically feasible
trajectory generation that considers both manipulator motion
and ground interaction forces. Unlike traditional methods that
rely on conservative planning or separate reactive tip-over
prevention mechanisms, our approach incorporates stability
considerations directly into the motion planning phase. By
embedding the zero moment point criterion within the model,
our framework ensures tip-over prevention even during fast
and payload-intensive tasks. Simulations demonstrate the ef-
fectiveness of this approach, achieving stable and efficient task
execution across various scenarios.

I. INTRODUCTION

Wheeled mobile manipulators combine the advantages of
both mobile platforms and robotic manipulators, significantly
extending their workspace and flexibility compared to con-
ventional fixed-base manipulators [1], [2]. This capability
enables their application across a wide range of industrial
tasks, from factory automation to service robots. However,
achieving fast and safe motion control remains a challenging
problem, primarily due to the inherent instability caused by
the unilateral contact forces between the wheels and the
ground. Stability concerns, especially the risk of tipping,
complicate agile motion planning for these systems.

Existing research has addressed the coordination of mobile
bases and manipulators in various ways. Traditional ap-
proaches [3], [4] often decouple the planning of the base and
manipulator, leading to sequential movements—first moving
the base into position and then controlling the manipulator
for precision tasks. These methods are slow due to the
sequential movement, and tight velocity limits are imposed to
reduce the impact of dynamic coupling between the base and
the manipulator and to prevent tip-over of the manipulator.

Recent advances in computational power have enabled
synchronized motion planning, where kinematic models are
commonly used for model-based or sample-based approaches
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Fig. 1: Overview of the proposed reduced-order dynamics model
and control framework designed for target end-effector positioning
tasks, illustrating the integration of stability and maneuverability
considerations.

to address end-effector tracking problems while avoiding
obstacles [5]–[8]. Although synchronized kinematic planning
has faster task execution time than sequential approaches, it
still imposes conververtive velocity limits to prevent tip-overs
due to the absence of dynamic models that explicitly capture
the dynamic coupling between the base and the manipulator.

However, efficiency is crucial for real-world industry ap-
plications. Traditional methods to counteract tip-over risk,
such as adding counterweights or limiting operational speed
as mentioned earlier, can enhance stability but often com-
promise the system’s overall efficiency and responsiveness
[9]. As a result, these strategies are less suited for modern
applications where speed and adaptability are crucial.

Various alternative solutions have been proposed to assess
tip-over. Initial analyses, such as system energy level with
respect to the tilt axes [10] and force-angle stability metrics
[11], offered foundational insights into stability. However,
these studies focused mainly on static scenarios and did not
account for dynamic effects arising from the base’s acceler-
ation or deceleration. The Moment Height Stability (MHS)
measure [12] offered a refinement over purely static methods
by considering the height of the overturning moment, thereby
capturing the effects of rotational forces. The Zero Moment
Point (ZMP) concept [13], originally developed for robotic
bipedal walking, was adapted for mobile manipulators to
address dynamic stability concerns [14], [15]. However,
precise calculations of forces and moments at each wheel-
ground contact remain challenging [16], which complicates



the development of effective motion planning algorithms
using MHS and ZMP criteria.

Utilizing the proposed criteria, existing tip-over avoidance
solutions operate reactively [17], [18]. For instance, when
tip-over risks are detected using real-time analysis tools (e.g.,
MHS or ZMP-based criterion), the system may respond
by slowing down the base or adjusting the manipulator’s
position to a pre-defined safe state. Some methods utilize
fuzzy logic control schemes to adjust the arm’s configuration
[19]. As these methods are not inherently part of the motion
planning framework, they can produce behaviors that conflict
with the initial plan. Consequently, task completion may
become slower or less precise, as the robot repeatedly
adjusts between following the planned path and responding
to stability alarms. These limitations highlight the need for
a more integrated solution.

In this work, we introduce a novel framework that in-
corporates tip-over prevention directly into the motion plan-
ning phase, enhancing both safety and maneuverability. This
framework is built on a reduced-order dynamical model
that leverages centroidal momentum dynamics, including the
linear and angular centroidal momentum [20]. While full
dynamic models consider every joint and link of the robot,
centroidal momentum dynamics significantly reduces this
complexity by focusing on the forces and moments acting
on the center of mass (CoM) while maintaining the neces-
sary components to ensure dynamic feasibility. Additional
simplification of wheel-ground force modeling allows the
embedding of the ZMP criterion into the planning phase. As
shown in Fig. 1, together with a task-space-styled tracking
controller, our framework realized dynamically feasible tra-
jectories while avoiding tip-overs even during fast maneuvers
or while carrying payloads, ensuring stable and efficient task
execution across a variety of scenarios. The collection of the
result videos is available in the accompanying video 1.

The remainder of this paper is organized as follows. Sec-
tion II reviews the kinematic and dynamic models commonly
used in motion planning for mobile manipulators, highlight-
ing their limitations. Building upon these limitations, section
III introduces our proposed reduced-order dynamics model,
along with the constraints necessary to ensure dynamic
feasibility and prevent tip-over. Section IV formulates the
motion planning problem and details the trajectory tracking
controller implemented in this work. Section V presents
simulation results that demonstrate the effectiveness of our
approach. Finally, section VI concludes the paper and dis-
cusses directions for future work.

II. EXISTING MODELS

To contextualize our approach, we first review commonly
used kinematic and dynamic models for wheeled mobile
manipulators. In particular, we focus on a nonholonomic
mobile base that operates under Pfaffian velocity constraints,
which limit lateral movements. These constraints are char-
acteristic of many practical wheeled mobile systems, includ-
ing unicycles, differential drive vehicles, and Ackermann

1https://vimeo.com/1027881425?share=copy

Fig. 2: Schematic representation of a differential drive mobile robot,
showing both top-down and side views. Subscrits are used to define
coordinate frame where (·)s is world frame, (·)w is wheel frame
and (·)s is the body frame.

steering systems. Unlike holonomic systems, which allow
omnidirectional movement and are often equipped with spe-
cialized wheels, nonholonomic ones are more robust in real-
world environments, such as warehouses and factories. While
holonomic bases are prevalent in academic settings, where
precise maneuverability is prioritized, they are susceptible to
jamming and wear in industrial conditions due to complex
wheel mechanisms. Although our framework can directly
be applied to holonomic systems, we specifically target
nonholonomic bases for broader applicability in the industry.

A. Kinematic Model
The kinematic model for a differential drive robot is based

on a coordinate system centered at the robot’s center of
rotation. As shown in Fig. 2, the position and orientation
of the mobile base on flat ground are given by generalized
coordinates qb,3 =

[
pT
b θb

]T
, where pb and θb represent

the Cartesian coordinates and angle of the base frame relative
to the world frame. This simplified 3D coordinate represen-
tation is often used because it provides an efficient and prac-
tical approach for modeling motion in planar environments,
which are common in robotics applications like factory floors
or warehouses. Let W be half of the car width and let ρ be
the wheel radius. Under the assumption of no lateral slip
and single ground contact points for each wheel, the robot’s
motion is constrained by a non-holonomic constraint:1 0 W cos(θb) −ρ cos(θb) 0

0 1 W sin(θb) −ρ sin(θb) 0
1 0 −W cos(θb) −ρ cos(θb) 0


︸ ︷︷ ︸

Λb

vb,3

vw,r

vw,l

 = 0, (1)

where vb,3, vw,r, and vw,l represent the velocities of the base
coordinate, the right wheel, and the left wheel, respectively.
Rearranging this constraint, the equation of motion for the
kinematic model of the mobile base is given by:

d

dt
qb,3 =

ρ
2 cos(θb)

ρ
2 cos(θb)

ρ
2 sin(θb)

ρ
2 sin(θb)

ρ
2W − ρ

2W


︸ ︷︷ ︸

Jw,3

[
vw,r

vw,l

]
(2)

where Jw,3 represents the Jacobian that maps wheel velocity
to the 3-dimensional base velocity. As a result, the kinematic
model of a mobile manipulator with a non-holonomic base
can be summarized as:

d

dt

[
qb,3

qa

]
=

[
Jw,3(qb,3) 0

0 I

] [
vw

va

]
, (3)

https://vimeo.com/1027881425?share=copy


where qa ∈ Qnarm and va ∈ Rnarm represent the position and
velocity of the articulated manipulator arm aside from base
coordinates. Additionally, vw =

[
vw,r vw,l

]T
represents

wheel velocities.

B. Dynamic Model

A dynamic model is required to account for dynamic
mass inertia properties, which can be derived using rigid
body dynamics. Most work in mobile manipulator literature
[21]–[23] use the Lagrange dynamic approach or Newton-
Euler approach. With added dimension due to the additional
manipulator, other rigid-body dynamics algorithms includ-
ing composite rigid-body algorithm [24] can be efficiently
applied. The final equation of motion is given as:

D(q)q̈ +H(q, q̇) = Bτ + ΛTλ, (4)

Λq̈ + Λ̇q̇ = 0, (5)

where q =
[
qT
b,3 qT

w qT
a

]T
and qw ∈ R2 is the gener-

alized coordinate for wheels. D, H , and B are the inertia
matrix, the collection of centrifugal, Coriolis and gravita-
tional forces, and the actuation matrix. The input torque is
denoted by τ and λ represents the Lagrange multiplier that
corresponds to the non-holonomic constraints where

Λ =
[
Λb 03×narm

]
.

The use of a 3-dimensional base coordinate in dynamic
models for mobile manipulators, like in kinematic models,
stems from its ability to capture the primary motion char-
acteristics needed for most planar movement tasks while
maintaining computational simplicity. Since a 3D base model
does not account for forces and torques along the vertical
axis or rotations around the base’s pitch and roll axes, it
cannot fully capture dynamics that are critical for tip-over
prevention. In high-speed or high-load conditions, omitting
vertical dynamics can lead to inaccuracies in predicting sta-
bility. As a result, while existing models handle basic motion
requirements, they omit stability-critical factors and are thus
insufficient for preventing the tip-over, which motivates our
development of a new model tailored to these considerations.

III. REDUCED-ORDER DYNAMICS MODEL

Given the limitations of existing models discussed in the
earlier section, we propose a novel reduced-order model that
effectively captures the essential dynamics of mobile ma-
nipulators while maintaining computational efficiency. Our
model operates on the following state variables:

x =

[
hcom
q

]
=


hcom
qb

qw

qa

 ∈ R14+narm (6)

where hcom ∈ R6 is the centroidal momentum, qb ∈
SE(3) represents the 6-dimensional configuration of the base,
qw ∈ R2 represents the configuration of the actuated wheels,
and qa denotes the narm dimensional configuration of the
manipulator. This setup allows our model to represent the

dynamics associated with roll, pitch, and vertical motion,
essential for stability analysis. By abstracting individual joint
and link forces into a consolidated representation of the
system’s stability-related dynamics, our model effectively
filters out less impactful interactions compared to the model
presented in section II-B while preserving accuracy in areas
crucial for tip-over prevention and overall stability.

The centroidal momentum dynamics have the external
wrench f as its input, whereas qw and qa have their
velocities as inputs, respectively. Thus, the control inputs of
the reduced order model are given by:

u =

[
f
v

]
=

 f
vw

va

 ∈ R8+narm , (7)

where v denotes the actuated joint velocity. It is important
to note that these inputs cannot be controlled independently;
further details will be provided in the dynamics section. Note
that the wrench f considered here is a lumped wrench vector
at the base frame mapped to 2D ground:

f =
[
Fx Fy Fz Mx My Mz

]T
. (8)

Ideally, a mobile manipulator experiences contact
wrenches at all wheels that are in contact with the ground.
However, the wheel-ground contact wrench, which encom-
passes normal forces, frictional forces and moments, and the
resulting slip dynamics, is greatly influenced by factors such
as slip angle, tire properties, surface material, and contact
mechanics [25]. We simplify the wheel-ground contact by
treating the mobile base as a rigid body in contact with
the ground. While modeling individual contact wrenches
at each wheel could theoretically offer added safety by
capturing more granular wheel-ground interactions, it also
introduces considerable computational complexity. Since our
main safety consideration is tip-over prevention, we focus on
ensuring that the ZMP remains within the support polygon
on the ground, a critical criterion for maintaining stability.
As a result, the reduction from full dynamics to centroidal
dynamics and the treatment of a single lumped wrench
provide a practical balance that preserves critical safety
aspects while significantly reducing computational demands.

A. Dynamics

The equation of motion for our reduced-order model,
incorporating non-holonomic constraints, is formulated as:

d

dt
x =

d

dt


hcom
qb

qw

qa

 =


Jf (q) 0 0
0 Jw(qb) 0
0 I 0
0 0 I


︸ ︷︷ ︸

A(x)

u+


g
0
0
0


︸︷︷︸

b

(9)

where Jf (q) ∈ R6×6 is the Jacobian relating the effect of
the wrench to the derivative of the centroidal momentum,
Jw(qb) ∈ R6×2 represents the non-holonomic constraints
imposed by the wheel kinematics for 6-dimensional base
definition, and g =

[
0 0 −g 0 0 0

]T
is the gravi-

tational force vector. Note that Jw(qb) includes zero entries



for the roll, pitch, and vertical (z-axis) degrees of freedom,
extending the 3-dimensional wheel Jacobian Jw,3 to a 6-
dimensional configuration space. This extended formulation
also assumes no wheel slippage and that tip-over is avoided
as models in section II. However, these assumptions are
enforced through safety constraints, ensuring that the model’s
dynamics remain valid under these operating conditions.

The Jacobian Jf (q) for centroidal dynamics is defined as:

Jf (q) =

[
I 0

[pf (q)− pcom(q)]× I

]
, (10)

where pf (q) and pcom(q) represent the location of contact
force and CoM, respectively. The notation [ · ]× denotes the
transformation to a skew-symmetric matrix that models the
cross product between the position and force vector.

An equality constraint is required to relate the robot’s
joint motions to its centroidal momentum [26], expressed
as hcom = M(q)q̇. The M(q) matrix can be computed
using centroidal composite rigid-body algorithm [24] given
the robot configuration. Since the velocity of the robot’s base
is underactuated and determined by the motion of its wheels
under non-holonomic constraints, the centroidal momentum
constraint can be formulated as follows:

hcom = M(q)q̇ (11)
= Mb(q)q̇b +Mw(q)q̇w +Ma(q)q̇a (12)
= Mb(q)Jw(qb)vw +Mw(q)vw +Ma(q)va (13)

=: Mhcom(q)

[
vw

va

]
, (14)

where Mhcom(q) provides a compact representation of the
centroidal momentum in terms of the reduced-order states
x and inputs u. The centroidal momentum dynamics are
subject to external forces and wrenches acting on the system,
with the momentum itself derived from the robot’s joint
positions and velocities. This relationship ensures that the
model captures the impact of forces and moments at the
center of mass, allowing for dynamically feasible trajectory
planning. The complete equation of motion, incorporating
the dynamics and non-holonomic constraints, is given by:

d
dt

[
hcom

q

]
= A(x)u+ b

hcom −Mhcom(q)v = 0

(Dynamics)

This coupled representation for dynamics guarantees that the
forces and moments applied through the control inputs are
feasible through the robot’s physical motion.

B. Safety Constraints

To ensure the safe and stable operation of the mobile
manipulator, we impose the following safety constraints:
ZMP constraints to prevent tip-over, friction constraints to
avoid slipping, and joint limits to ensure physical feasibility.

1) ZMP Constraints: The ZMP, denoted by pzmp =[
rx ry 0

]T
, represents the point on the ground plane

where the resultant moment about horizontal axes is zero.
To prevent tip-over, the ZMP must remain within the sup-
port polygon defined by the wheel positions [13]. For this
work, we assume a rectangular support polygon with ZMP
constraints expressed as:

−αla ≤ rx ≤ αlb (15)
−αwa ≤ ry ≤ αwb (16)

where la, lb, wa, wb represent the distances to the edges
of the support polygon from base frame location, and α
is a tuning factor that adjusts the conservativeness of the
constraints, allowing for compensation for dynamic uncer-
tainty. The location of the ZMP is determined by identifying
the point at which applying force results in zero moments
about the horizontal axes. This requirement is defined by the
following condition:

Mh
zmp =

[
Mx

My

]
+

rxry
0

×

Fx

Fy

Fz


x,y

=

[
0
0

]
. (17)

Solving this equation yields rx =
My

Fz
and ry = −Mx

Fz
.

Substituting these expressions into the ZMP bounds, we can
reformulate the constraints in terms of the model inputs u:{

−αFzla ≤ My ≤ αFzlb,

−αFzwa ≤ Mx ≤ αFzwb.
(C-ZMP)

2) Friction Constraints: To ensure stable contact between
the wheels and the ground, we enforce a friction cone
constraint that limits the allowable lateral forces:

F 2
x + F 2

y ≤ µ2F 2
z , (18)

where µ is the friction coefficient. This constraint ensures
that the lateral forces do not exceed what the ground friction
can support, thereby preventing slipping. For computational
simplicity, the friction cone can be approximated by a friction
pyramid with linear constraints:{

|Fx| ≤ µ√
2
Fz,

|Fy| ≤ µ√
2
Fz.

(C-friction)

This approximation provides a conservative but computation-
ally efficient alternative to the friction cone, allowing us to
represent the friction limits using linear constraints.

In addition, we impose a constraint on the yaw moment
to prevent excessive turning forces that could cause slippage
[27]. Let ν denote the rotational friction coefficient, the yaw
moment constraint is:

|Mz| ≤ νFz. (C-rotation)

Together, these constraints ensure that the applied forces
and moments remain within the frictional stability limits,
preventing lateral and rotational slipping during maneuvers.



3) Joint Limits and Joint Velocity Limits: To ensure that
the planned trajectory respects the physical limitations of the
robot’s joints, we impose inequality constraints on both joint
positions and velocities:{

qa ≤ qa ≤ qa,

va ≤ va ≤ va.
(C-limit)

Here, qa and qa represent the lower and upper bounds on
the joint positions, while va and ≤ va define the velocity
limits. These constraints ensure that joint movements remain
within the robot’s mechanical limits, preventing damage and
ensuring safe operation.

IV. MOTION PLANNING AND TRACKING

This section introduces the dynamically feasible motion
planning framework, leveraging the proposed reduced-order
model and safety constraints. The planning focuses on target-
reaching tasks, formulated as an offline nonlinear program
(NLP) to ensure safe and effective movement towards prede-
fined goals. Additionally, a feedback controller is presented
for accurate trajectory tracking by the mobile manipulator.

A. Planning

To achieve dynamically feasible motion planning, we
formulate a NLP that enables the generation of stable tra-
jectories by solving for the state and control inputs across
a preview horizon. We divide this planning horizon of t
seconds into N intervals with dt = t

N . At each time instance,
we denote the state and input by xi ∀i ∈ [0, · · · , N ] and
ui ∀i ∈ [0, · · · , N − 1].

The objective function for the NLP formulation consists of
two main terms: (1) an end-effector tracking term Jee, which
drives the mobile manipulator towards the target pose, and
(2) a regularization term Ju that minimizes control efforts
and promote smooth and efficient movements.

The end-effector tracking cost Jee(xi) is formulated to
minimize the difference between the current and target poses
of the end-effector in the SE(3) space:

Jee(xi) = ∥e(qi)∥Wee , (19)

where qi is extracted from xi at each collocation node, and
the notation ∥X∥2W ≜ XTWX defines a quadratic cost
such that W is a positive-definite diagonal weight matrix.
A terminal cost Jee,N (xN ) is defined with weight Wee,N to
ensure accurate tracking at the final time step. The pose error
e(qi) is calculated using twists from Lie algebra [28], which
enables an efficient representation of the difference between
the current and target poses in the SE(3) space:

e(q) := T s∗ ⊖ T sb(q) = log6(T bs(q)T s∗) = log6(T b∗(q))

where T s∗ represents the target end-effector pose in the
world frame, T sb(q) represents the pose of end-effector
derived from forward dynamics of the robot in the world
frame, and log6 : SE(3) → se(3) maps poses to twists.
This twist-based error representation avoids issues like an-
gle wraparound and ensures rotational errors are computed
continuously without abrupt changes.

The input regularization cost on velocities and wrench is
given as:

Ju(ui) = ∥f i∥Wf
+ ∥vw,i∥Ww

+ ∥va,i∥Wa
(20)

The complete optimization problem is formulated as:

min
x0···N ,u0···N−1

N−1∑
i=1

(Jee(xi) + Ju(ui)) + Jee,N (xN )

(NLP)
s.t. (Dynamics Constraints),

(Safety Constraints).

Here, the Dynamics Constraints are enforced as equality
constraints where the forward Euler scheme is used for
collocation with EoM (Dynamics). The Safety Constraints
including (C-ZMP), (C-friction),(C-rotation) and (C-limit)
are collectively represented as inequality constraints.

B. Tracking
To address modeling errors and integration inaccuracies

from the collocation framework, we implement a real-time
tracking controller that adjusts wheel and arm joint velocities.
This tracking controller can be adapted for torque control if
such functionality is supported by the hardware. The tracking
controller is composed of two components, i.e.

v(q, t) = vff (t) + vfb(q, t). (21)

The feedforward component is obtained directly from the
solution of (??):

vff (t) = v∗
NLP(t) (22)

The feedback component is designed to correct deviations
from the planned trajectory. The tracking error e(q, t) with
respect to the reference trajectory is defined as:

e(q, t) := Ts∗(t)⊖ T0b(q),

where Ts∗(t) represents the target end-effector frame from
the NLP solution over time. The feedback control law, in-
spired by the task-space Proportional Integral (PI) controller,
is given as:

vfb = J̃†
(
−Kpe(q, t)−Ki

∫ t

0

e(q, τ)dτ

)
, (23)

where J̃ is the modified task Jacobian. Since the feedfor-
ward component already compensates for planned trajectory
dynamics, ė(q, t) is not included in the feedback controller.
The derivation of the nominal task Jacobian is given by:

Jtask :=
∂e

∂q
(q) = −J log6(T∗b) bJ0b(q) (24)

Jtask maps joint velocity to task space velocity; however,
since not all joints are actuated, we further map the Jacobian
to the actuated joints to obtain the modified task Jacobian:

J̃ = JtaskJmap

=
[
Jb
task Jw

task Ja
task

] Jbw(qb) 0
I 0
0 I


=

[
Jb
taskJw(qb) + Jw

task Ja
task

]
∈ R6×(nwheel+narm)



Fig. 3: Comparison of kinematic vs. proposed dynamic planning
trajectories in simulation. Kinematic planning, lacking stability con-
straints, leads to instability and falls, while the dynamic model with
stability constraints achieves the target successfully. The bottom
panels display squared pose errors for kinematic (left) and dynamic
(right) planning, highlighting reduced error and improved stability
in the proposed dynamic planning.

The mapping to actuated joints restricts the task Jacobian to
the DoF that can be directly controlled, ensuring compati-
bility with the physical limitations of the mobile manipula-
tor. Together, the planning and tracking components ensure
that the mobile manipulator can reach its target stably and
efficiently, compensating for modeling errors and ensuring
robust execution of the planned trajectory.

V. RESULTS

The proposed framework, as illustrated in Fig. 1, was
tested using a Fetch robot [29], a differential drive mobile
manipulator. The Fetch robot, weighing approximately 121
kg, has two drive wheels and four supporting caster wheels.
The arm of the robot provides eight DoF, excluding the two
DoF of the gripper’s claw. For the study, a 12.1 kg payload
was attached to the end-effector to simulate a load-carrying
task, which increases the system’s dynamic complexity.

The simulations were conducted in a custom-built environ-
ment using the PyBullet physics engine [30]. The velocity
control loop operates at a frequency of 50 Hz to capture
the responsiveness of the robot’s motion. We leverage the
Pinocchio library [24] interfaced with CasADi [31] with
symbolic computation to model and solve complex dynamics
for our robotic system. The final optimal control problem
(??) is solved using IPOPT [32] embedded in CasADi.

Control parameters for all end-effector targets were set
as follows: Wa = 0.01I , Ww = 0.001I , Wf = 0.001I ,
Wee = 300I , Wee,N = 6000I . The safety constraints were
configured with µ = 0.8, ν = 0.05, la = lb = 0.18m, and

Fig. 4: Impact of ZMP bound parameter α on the trajectory. Left:
A relaxed bound (α = 0.8) allows extended arm positioning with
lower base velocity, maintaining stability. Right: A conservative
bound (α = 0.5) necessitates a more compact arm posture but
allows for higher base velocity to achieve a similar target reach,
demonstrating the trade-off between arm extension and base ad-
justments under varying stability constraints.

wa = wb = 0.12m. The planning horizon was 2 seconds,
divided into N =100 intervals. The ZMP parameter α is
set to 0.8 unless specified otherwise. Tracking controller is
implemented with Kp = 1I and Ki = 0.05I .

In comparing traditional kinematic planning with the
proposed dynamic planning approach, we structured the
kinematic planning model similarly to (??), replacing the
dynamics equation with the kinematic model from Section
II-A and using only the joint position and velocity limit
(C-limit) for safety constraints. Parameters for Wa, Ww,
Wee, and Wee,N remained consistent across both approaches.

As shown in Figure 3, the kinematic planning approach,
lacking safety constraints, caused aggressive movements that
led to a forward fall during the simulation. In contrast, our
dynamic model incorporated ZMP-based safety constraints
and accounted for payload effects, resulting in a stable
motion plan that successfully reached the target. The plot
of pose error reveals that the kinematic simulation suffered
high error due to instability, whereas the dynamic plan-
ning approach minimized this error effectively. Additional
comparisons for different target poses are available in the
supplementary video linked earlier.

Figure 4 illustrates the impact of different ZMP bound
parameters on trajectory characteristics. On the left, the
trajectory is generated with a relatively relaxed ZMP bound
of α = 0.8, enabling the arm joints to extend forward as the



manipulator reaches the target. This configuration remains
stable, as the low base acceleration keeps the ZMP within
safe limits. In contrast, a more conservative ZMP bound
parameter α = 0.5 constrains the arm joints to a more
inward position. Although this configuration restricts the
arm’s range, the base compensates with a higher velocity,
allowing the manipulator to maintain a similar overall target-
reaching time. This results in generally higher linear and
angular momentum on the right, highlighting the trade-off
between arm extension and base velocity to meet stability
requirements under various constraints. In general, if the
user is confident in the dynamics model of the mobile
manipulator, it is preferable to set α closer to 1.

VI. CONCLUSION AND FUTURE WORK

In this work, we proposed a novel reduced-order model
for dynamically feasible motion planning. The problem is
posed as an offline trajectory optimization problem and a
task-space-styled tracking controller is implemented during
execution. Since the reduced order model simplifies the full
dynamics significantly, the planning problem can likely be
framed as an online MPC-styled recursive planner when
implemented properly. Additionally, this model is well suited
for robust control, especially considering the uncertain load
on the end effector. These will be addressed in future work.
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