
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
https://www.merl.com

A Hierarchical Approach for Tractor-trailer Motion Planning
Using Graph Search and Reinforcement Learning

Ma, Haitong; Zhang, Tianpeng; Li, Na; Di Cairano, Stefano; Wang, Yebin

TR2025-093 June 26, 2025

Abstract
This paper introduces a hierarchical motion planning strategy for autonomous tractor-trailer
systems, designed for efficient long-horizon, collision-free maneuvering in complex environ-
ments. By combining high-level reference line graph search with low-level primal-dual rein-
forcement learning (RL)- based trajectory optimization, our approach addresses the computa-
tional challenges inherent to the motion planning of tractor-trailer dynamics. The high-level
graph search decides waypoints guided by Reeds-Shepp cost, and the low-level RL connects
the waypoints with dynamically feasible and collision-free trajectories. To enhance safety
and accuracy, we incorporate reachability constraints and batch trajectory sampling in the
RL algorithm design. Empirical results show that our method significantly reduces computa-
tion time, out- performing traditional state-lattice-based planning approaches and enabling
real-time applicability.

European Control Conference (ECC) 2025

c© 2025 MERL. This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission
to copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes provided
that all such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi
Electric Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and
all applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall
require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139

A Hierarchical Approach for Tractor-trailer Motion Planning Using
Graph Search and Reinforcement Learning

Haitong Ma, Tianpeng Zhang, Na Li, Stefano Di Cairano, Yebin Wang∗

Abstract— This paper introduces a hierarchical motion plan-
ning strategy for autonomous tractor-trailer systems, designed
for efficient long-horizon, collision-free maneuvering in complex
environments. By combining high-level reference line graph
search with low-level primal-dual reinforcement learning (RL)-
based trajectory optimization, our approach addresses the
computational challenges inherent to the motion planning of
tractor-trailer dynamics. The high-level graph search decides
waypoints guided by Reeds-Shepp cost, and the low-level
RL connects the waypoints with dynamically feasible and
collision-free trajectories. To enhance safety and accuracy,
we incorporate reachability constraints and batch trajectory
sampling in the RL algorithm design. Empirical results show
that our method significantly reduces computation time, out-
performing traditional state-lattice-based planning approaches
and enabling real-time applicability.

I. INTRODUCTION

Autonomous tractor-trailer systems have attracted strong
interest from both industry and academia due to their high
cargo transportation efficiency. However, their complicated
dynamics pose significant challenges in motion planning,
particularly, when reversing maneuvers and collision avoid-
ance are needed. Moreover, there exists a tight budget for
the computation time for the practical applications, which
makes the problem more challenging.

The motion planning problem aims to solve an optimal
control problem (OCP) that minimizes the cost-to-go while
satisfying dynamics, inputs, states, and collision-avoidance
constraints. Such a complex constrained optimization algo-
rithm usually lacks global convergence guarantees, which re-
quires non-trivial initialization to converge to global optimum
[1]–[4], especially in cluttered environments. Local optimum
is acceptable in practical applications. However, a bigger
challenge in practice is the computation time. To reduce the
computation time and make the problem real-time solvable,
recent works can be categorized as (1) search-based motion
and state-lattice-based planning with motion primitives and
(2) learning-based motion planning.

Search-based motion planning abstracts the planning as a
graph with nodes and edges and finds the shortest collision-
free paths on the graph [5], [6]. To ensure the graph

H. Ma, T. Zhang, N. Li are with the Harvard School of Engi-
neering and Applied Sciences. This work was done while H. Ma and
T. Zhang were research interns and N. Li was a visiting researcher
at Mitsubishi Electric Research Laboratories (MERL), Cambridge, MA
02139, USA. (email: {haitongma,tzhang}@g.harvard.edu,
nali@seas.harvard.edu).

S. Di Cairano and Y. Wang are with MERL. (email:
{dicairano,yebinwang}@ieee.org).

* Corresponding author: Y. Wang.

connection paths are dynamically feasible, the connection is
constructed via pre-computing a series of dynamically feasi-
ble trajectories, also called motion primitives [6]–[8]. Then
in the online phase, the algorithms conduct graph search
such as A* [8]–[10] with collision check to find collision-
free trajectories. Methods combining motion primitives and
graph search are also called state-lattice-based algorithms.
The major limitation of state-lattice-based methods is the
curse of dimensionality, which means the number of pre-
computed motion primitives scales exponentially with the
system dimension and resolution error. As we have an addi-
tional trailer dimension in the dynamics, this method either
requires a large number of motion primitives or suffers a low
success rate if the number of primitives is insufficient [11]–
[13].

Another solution to reduce computation time is to train a
learning-based motion planner. Many recent works leveraged
reinforcement learning (RL) to achieve end-to-end motion
planning [14]–[17], which directly fits the end-to-end map-
ping from maps to trajectories. The learning-based planner
usually maintains a waypoint graph, either in configuration
space [14] or latent space [16]. Then an exploration policy
is trained to expand the graph using neural network models
such as transformer [15] and graph neural networks [17]. The
major difficulties of learning-based planning are exploration
scheme design and collision checking. [15] shows that even
with the simple Dubin’s car in a 2D workspace, the shape
of the corresponding 3D free space in configuration space is
very irregular, posing significant difficulties in exploration
scheme design. Collision checking also reduces training
efficiency. These difficulties make end-to-end learning-based
planning not practical on the tractor-trailer system.

Contributions. In this paper, we proposed a hierarchical ap-
proach that combines high-level graph search and low-level
RL-based trajectory optimization to perform long-horizon
planning for tractor-trailer systems. We first search a series
of intermediate reference lines via the shortest path on the
reference line graph search, where graph nodes are directed
straight reference line segments in the environments, and the
edge exists only if the transition is feasible with one forward
or reverse turn of the tractor. Then we design a primal-dual
reinforcement learning (RL) algorithm to generate dynami-
cally feasible collision-free trajectories connecting successive
reference lines. We incorporate other practical tricks, such as
statewide dual variable, reachability-based safety constraints,
and batch trajectory sampling with stochastic policy, to make
the trajectory precise and collision-free. Compared to the

Fig. 1: Dynamics of a front-drive tractor-trailer.

state-of-the-art state-lattice-based methods, we significantly
improve the planning efficiency by avoiding solving nu-
merous motion primitives offline and online tree searches.
Simulations demonstrate the effectiveness of the proposed
method in terms of computation time and planning success
rate.

The paper is organized as follows. Section II introduces
the tractor-trailer systems and overall motion planning prob-
lem formulation. The following two sections provide the
technical details about the hierarchical framework, where
Section III presents the high-level graph search and Section
IV shows the low-level RL-based trajectory optimization.
Empirical results are demonstrated in Section V and Section
VI concludes the paper.

II. PROBLEM SETUP AND PRELIMINARIES

A. Tractor-trailer System

Consider a front wheel drive standard trailer system [18],
[19] as shown in Fig. 1, where (x, y)⊤ are the coordinates
of the midpoint of the tractor’s rear wheel axis, θ is the
tractor orientation, θ1 is the orientations of trailer, vf is the
front-wheel velocity of the tractor, δ is the steering angle
of the tractor, and L is the wheelbase on the tractor. A
mechanical constraint |δ| ≤ δmax limits the minimum turning
radius R of a path with tan(δmax) = L

R . We write the
tractor-trailer dynamics model ṡ = f(s, u) in the coordinates
s = (x, y, θ, ξ, v, δ)⊤ as follows:

ẋ = cos(θ)v ξ̇ = −v sin(ξ)
d1

− v tan(δ)

L

ẏ = sin(θ)v v̇ = u1

θ̇ =
v tan(δ)

L
δ̇ = u2

(1)

where the control inputs are the acceleration u1 and the
steering rate u2. The system needs to avoid a jack-knife
configuration,

|ξ| ≤ ξmax, (2)

where ξmax must be less than π
2 .

B. Motion Planning Problem Formulation

The overall motion planning problem is stated below.
Denote Sfree the collision-free configuration space of sys-
tem (1). Given an initial configuration si ∈ Sfree and a goal
configuration sf ∈ Sfree, the motion planning algorithm
aims to find a feasible trajectory which starts at si and ends

at sf , while satisfying (1) and a series of constraints,

min
u0,u1,...,uN−1,N

N∑
t=1

l(st, ut) (3a)

s.t. s0 = si, sN = sf (3b)
st = fd(st−1, ut−1), st ∈ Sfree (3c)

|vt| ≤ vmax, |δt| ≤ δmax, |ξt| ≤
π

2
(3d)

amin ≤ at ≤ amax, δ̇min ≤ ψt ≤ δ̇max (3e)
∀t = 1, 2, . . . , N

where l is a cost function, fd in (3c) is the proper
discretization of continuous tractor-trailer dynamics in (1),
(3d) indicates the operation range of velocity v, steering
angle δ, and avoidance of jack-knife configuration on the
relative angle ξ, and (3e) indicates the input constraints.

Solving (3) with RL is very difficult for multiple reasons:
• The dynamics is non-holonomic, so the tractor-trailer

usually needs complex maneuvers to reach the goal
state. Simply defining reward as minimizing the Eu-
clidean distance will not guide to correct solutions.

• The time step N is not fixed while there exists terminal
constraints on the terminal time step.

To handle these challenges, we present the hierarchical
framework, where a high-level graph search decides a set
of intermediate waypoints as guidance, and a low-level RL-
based trajectory generator solves the sub-tasks connecting
successive waypoints.

III. REFERENCE LINE GUIDED SEARCH

In this section, we conduct the high-level graph search to
decide a series of intermediate sub-goals. We first introduce
how to abstract the environments and construct the reference
line graph, and then introduce our graph-search algorithm
design to find the shortest reference line path and generate
sub-goals.

(a) Planning environment (b) The connection between
reference lines

Fig. 2: Problem setup for tractor-trailer planning with reference
lines.

A. Reference Line Graph Construction

Given a road map shown in Figure 2(a), the reference
lines are directed line segments l1, l2, ..., ln that constitute a
skeleton of the roadmap, as shown in Figure 2(a). Each li
is endowed with two cardinal directions + and − denoted
as nodei = (li, σi) where σ ∈ (+,−). The reference line
graph, shown by Figure 2(b), is defined by the transition

feasibility between reference line segments. Each node is a
directed reference line segment (li, σi) and the edge exists
between two nodes (li, σi) and (lj , σj) if there are states
si ∈ (li, σi) and sj ∈ (lj , σj), such that si can transition to
sj with a simple motion (forward, backward, left turn, right
turn) while ignoring obstacles. For instance, there is an edge
between (l1,+) and (l2,+) because the tractor can transition
between the two with a 90-degree turn; meanwhile, since it
is impossible to transition from (l1,+) to (l3,+) without
chaining more than one simple motion together, there is not
a direct edge between them.

B. Heuristic and Sub-goal Selection

We leverage A∗-based graph search, which uses a heuristic
function to guide the shortest path search [9]. The cost to
reach the goal is estimated as the sum of the heuristic cost
to reach the goal and the actual cost from the start to that
node. Then the A* algorithm maintains an open set of nodes
to explore, prioritizing nodes with the lowest total estimated
cost until the goal node is explored. Therefore, heuristics
design is key to the graph search.

Fig. 3: Demonstration of edge cost calculation as minimization of
two-stage Reeds-Shepp cost of the tractor in orange color.

We first define the edge cost function. The edge cost
function is defined as the sum of two Reeds-Shepp costs
1, shown in Figure 3, which is solved the following opti-
mization problem,

EdgeCost(nodei,nodej) = min
s∗∈(li,σi)

sj∈(lj ,σj)

cRS(s
i, s∗)+cRS(s

∗, sj)

(4)
where notation nodei = (li, σi), and we slightly abuse the
notation to let s∗ ∈ (li, σi) mean the tractor align with the
reference line (li, σi). A tractor aligning with the reference
line means the position is on the reference line and the
heading angle is the same as the reference line direction.
cRS(s, s

′) is the Reeds-Shepp cost transition from the tractor
state in s to tractor state in s′. Note that we only consider
the Reeds-Shepp cost of the tractor for simplicity. s∗ is an
intermediate waypoint. This two-stage transition ensures the
tractor stays on the reference line for as long as possible,
then deviates minimally from the reference lines.

For the heuristic function, we also use the Reeds-Shepp
cost,

Heurstic(nodei,nodegoal) = cRS(s
i, sf) (5)

1Reeds-Shepp cost means the minimal distances to turn a Reeds-Shepp
car from initial state to goal state, where Reeds-Shepp car is a car that can
move in both forward and reverse directions. Reeds and Shepp have proved
that for arbitrary initial and goal states, one only needs to consider paths
with at most 2 reversals [20].

where si is already solved in (4) since the heuristic can be
always calculated after the actual cost is calculated.

Algorithm 1: Reference Line Guided Tree Search
Required:
The reference graph G = (V, E), where
V = {(l1,±), (l2,±), ..., (ln,±)};
Start and goal states s0, sf ;

1 Find start and goal node nodestart,nodegoal
2 Search shortest path using A∗ with cost (4) and

heuristic (5)
3 Recover sub-goals on the shortest path using

solutions of (4)

The graph search algorithm is summarized in Algorithm 1.
The computational burden of this method clearly lies priority
in computing the pair-wise minimal distance points between
neighboring reference lines. We only consider the Reeds-
Shepp cost on 2D space, so the computation burden is not
significant.

IV. REINFORCEMENT LEARNING-BASED TRAJECTORY
OPTIMIZATION

In this section, we solve the low-level trajectory optimiza-
tion using the primal-dual RL algorithm, which connects suc-
cessive sub-goals generated by the high-level graph search
described in Section III.

A. RL Problem Formulation

Fig. 4: Demonstration of RL-based trajectory optimization.

The reference line guided search outputs a high-level path
{s0, s1, s2, . . . , sK} with s0 = si, s

K = sf , and the goal
of the low-level task is to connect successive waypoint pairs
(s0, s1), (s1, s2), . . . , (sK−1, sK). Figure 4 shows an exam-
ple of ith low-level task, the goal is connecting (si−1, si)
within finite time steps while avoiding obstacles. We model
the free space of ith as two safety corridors centered around
the start reference line and the goal reference line, denoted
by Sifree. We use (sb, se) to denote the beginning and
ending sub-goals in this section, differentiating them from
the overall initial and goal states.

We consider MDP M = ⟨S,A, r, h, P,M, ρb, ρe⟩. The
state space includes tractor-trailer states st and free space
information. The inputs are acceleration v̇ and steering rate
δ̇ in (1). The reward function r : S × A → R and collision
function h : S × A → Rd design will be presented in

the following section, where d is the constraint dimension.
The transition dynamics P follows the vehicle transition
dynamics (1), and M is the maximum number of time steps
to reach the goal configuration. ρb, ρe is the initial state and
terminal state distribution. Given the observation function
o that maps state s ∈ S to observation space o ∈ O
(construction explained later) and the policy π : O → ∆(A)
to optimize.

Furthermore, we provide the following techniques to con-
vert trajectory optimization (3) to RL problems,

Random map generation. We randomly sample these
components in the maps: a) reference line interception lgoal
and relative angle of start and end reference line; b) initial
and terminal states aligning with the two reference lines; c)
safety corridor widths of the start and goal reference lines
within a reasonable range.

Observation space. The observations include
{sb, st, se} ∪ {pji |j ∈ {ll, ul, ur, lr}i ∈
{tractor, tailer, box1, box2, box3, box4}}, where sb is
the initial states, st is the current states, se is the terminal
states, and others are the free space information. pji is four
corner points (“ll” for lower left corner, “ul” for upper left
corner, etc.) of the tractor, trailer, and four obstacles in the
figure 4.

Reward and constraints design. Our reward function is
designed to reach the goal configuration sf ,

r(st, ut) =− 1(∥sM − se∥ ≤ ϵ) + 0.01∥u∥2 (6)

where ϵ is the admissible error. We reformulate constraints
(3b) and (3d) to trajectory-based reachability constraints
following [21],

max
t∈{1,2,...,M}

−d(st) ≤ 0, max
t∈{1,2,...,M}

|ξt| ≤
π

2
(7)

where d(s) : S → R as the signed distance to all the collision
boxes and d(s) ≥ 0 indicates the tractor and trailer are not
colliding with the four collision boxes. The calculation of
distance is based on separating axis theorem since both the
vehicles and obstacles are convex. The terminal constraints
are converted to inequality constraints ∥sM − se∥ ≤ ϵ
with admissible error ϵ. Combining these constraints, we
reformulate (3) to the RL problem we solve in practice,

min
π

E s0∼ρb

st∼P (·|st,ut)
ut∼π(·|o(st))

[
M∑
t=1

r(st, ut)

]

s.t. ∥sM − se∥ ≤ ϵ ∀se ∼ ρe

max
t∈{1,2,...,M}

−d(st) ≤ 0, max
t∈{1,2,...,M}

|ξt| ≤
π

2
,∀s0 ∼ ρb

(8)

B. Algorithm Design

It is natural to use primal-dual to solve constrained policy
optimization (8). One issue is that every initial state has con-
straints. We leverage the statewise multiplier mapping [22],
denoted as λ : S → Rd

+. The primal-dual optimization

problem becomes

max
λ

min
π
L(π, λ) :=

E s0∼ρ
st∼P (·|st,ut)
ut∼π(·|o(st))

[
M∑
t=1

r(st, ut)

]
+

∫
s0

λ⊤(s0)h
π(s0)ds0

(9)

where L(π, λ) is the Lagrangian and hπ(s0) = [∥sM −
se∥ − ϵ,maxt∈{1,2,...,M}−d(st),maxt∈{1,2,...,M} |ξt| − π

2]
⊤

are the constraints. In the practical algorithm, we use neural
networks to parametrize policy πζ and dual variable λη with
parameters ζ and η. We use uniform initial state distribution
in a bounded support and approximate the integral term in
(9) by sample mean Es0∼ρλ(s0)

⊤hπ(s0). This will cause the
practical λ to scale up by a constant factor 1/ρ(s), which
does not affect the optimal policy.

Model-based policy gradient. As we fully know the
differentiable dynamics model f , reward function r, and
every element in constraints hπ , we can directly calculate
the model-based policy gradient ∂L(π,λ)

∂π .
Stochastic policy. We show empirical tricks with a

stochastic policy to generate trajectories to precisely reach
the goal position. We take use Gaussian random policy
ut ∼ N (πd(ot), σ

2I2), where πd is a deterministic mapping
that maps from observations to the mean value and σ2 is a
constant variance. Then after training, we use the stochastic
policy to sample a batch of trajectories and select the one
with the terminal state closest to the given goal state without
causing collision.

Supervised learning initialization from state-lattice-
based methods. The initialization is key to the performance
of optimization problem. Therefore, we leverage the existing
state-lattice-based methods, specially the improved A-search
guided tree [23] to generate feasible trajectories and initialize
the policy mean value with supervised learning.

The practical RL algorithm is summarized in Algorithm
2.

V. EMPIRICAL EVALUATION

In this section, we show the empirical results of our
proposed hierarchical motion planning framework.

A. Experimental Setup

We select one representative cluttered environment shown
in Figure 5(a), and generate 5 representative tasks with
different initial and goal states: moving to other positions,
parking, U-turn, and driving out.

Baselines and performance metrics. We compare our
proposed algorithm, named Ref-Guided RL against two
baseline motion planning algorithms. a) One is the improved
A-search Guided Tree search (plain i-AGT) [23], where
no high-level reference graph guided search is conducted.
The initial state si and goal state sf are directly input
to the motion planner. b) Combining the i-AGT motion
planner with graph-guided search, called Ref-Guided i-
AGT. We evaluate the motion planning performance by
the planning time, terminal position and angle errors and
planned path length. The computation time is counted on

Algorithm 2: RL for trajectory optimization
Required: Distribution of successive sub-goals

(ρb, ρe), map generators, time steps M ,
reward function r, distance function d,
initial policy πζ0 and multiplier λη0

,
learning rate βζ , βη .

1 # Pre-training via supervised learning

from search-based methods.

2 Sample goal points sb ∼ ρb, se ∼ ρe
3 for Each sampled initial states s0 ∼ ρ do
4 Solve trajectories using [23]

5 for Pre-training iteration k = 1, 2, . . . , Tpre do
6 Supervised learning on policy mean πd
7 # Main Training stage.

8 for Iteration k = 1, 2, . . . , T do
9 Randomly sample maps and initial states s0 ∼ ρ

10 for time step t = 0, 1, 2, . . . ,M − 1 do
11 Rollout st+1 using at ∼ π and dynamics (1)
12 Calculate reward r(st, at), constraints hπ(s0)

13 Calculate the Lagrangian in (9)
14 Update policy parameters ζ

ζTpre+k ← ζTpre+k−1 − β ∂L(π,λ)
∂ζ

15 Update dual variable parameters ζ0
ηk ← ηk−1 + β ∂L(π,λ)

∂θ

16 # Online trajectory generation.

17 Use πζTpre+T
to rollout multiple trajectories and

select the one whose terminal state are closest to
goal.

an Apple Macbook Air with the Apple M3 processor. When
solving the RL problem, we decide the admissible terminal
position error in (8) as 0.2m and terminal angle error as
1◦ ≈ 0.017rad.

B. Experimental Results

First, we visualize the proposed hierarchical motion plan-
ning pipelines in Figure 5 using our first task, moving the
tractor-trailier from one garage to another one. Then we
construct reference lines, shown in Figure 5(b). Then we
conducted the reference line guided search, and the search
results is (l8,+) → (l2,−) → (l1,+), where +,− matches
the direction of x, y axes since the reference line segments
are all parallel with the axes. The reference line guided
search also outputs the sub-goals shown in Figure 5(c), where
every pair of successive sub-goals are connected with only
one turn or straight line. Figure 5(d) shows the trajectory
optimization results solved by the primal-dual RL algorithm.
Note that the graph search only considered collision-free
Reeds-Shepp cost, where the single-turn or single-straight
transition might not be possible when then tailor and collision
avoidance are considered.

Additionally, we considered four more cases, including
moving to other positions while changing direction, parking,
U-turn, and driving out and the planned trajectories of tractor
are shown in Figure 6. The performance metrics of all 5

cases are compared in Table I. We can see that the proposed
Ref-Guided RL achieves significantly lower planning time
compared to other i-AGT-based baselines. The low-planning
time only includes neural network forward pass and accuracy
comparison in Algorithm 2. The planned trajectory length is
also shorter than the Ref-guided i-AGT planner. However,
there is no free lunch and the price to pay is the planning
accuracy. As shown in Table I, the position error of RL are
only around 0.2m and 0.017rad (1 degree), which is exactly
the terminal position and angle error we set. Therefore, the
proposed motion planner actually achieves target planning
accuracy. For the baseline i-AGT without reference line
search, for some tasks like case 3 and 5 the search is very
fast. However, for other task the search time is extremely
long and it even fails case 4.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a hierarchical motion planning
framework that combines high-level graph search and low-
level RL-based trajectory optimization to perform long-
horizon planning for tractor-trailer systems. We first search
for a series of sub-goals by constructing reference line graph
and searching for the shortest path. Then we design a primal-
dual RL algorithm to generate dynamically feasible collision-
free trajectories connecting successive reference lines. Em-
pirical results have shown significant improvements on the
planning time with satisfactory accuracy.

There are several places to improve in this work, for
example, improving heuristic and cost design in graph
search, designing automatic reference line graph construction
algorithm, etc.

REFERENCES

[1] A. V. Rao, “A survey of numerical methods for optimal control,”
Advances in the Astronautical Sciences, vol. 135, no. 1, pp. 497–528,
2009.

[2] X. Zhang, A. Liniger, A. Sakai, and F. Borrelli, “Autonomous parking
using optimization-based collision avoidance,” in 2018 IEEE Confer-
ence on Decision and Control (CDC). IEEE, 2018, pp. 4327–4332.

[3] K. Bergman and D. Axehill, “Combining homotopy methods and
numerical optimal control to solve motion planning problems,” in 2018
IEEE Intelligent Vehicles Symposium (IV). IEEE, 2018, pp. 347–354.

[4] J. Leu, G. Zhang, L. Sun, and M. Tomizuka, “Efficient robot motion
planning via sampling and optimization,” in 2021 American Control
Conference (ACC). IEEE, 2021, pp. 4196–4202.

[5] J.-W. Choi and K. Huhtala, “Constrained global path optimization
for articulated steering vehicles,” IEEE Transactions on Vehicular
Technology, vol. 65, no. 4, pp. 1868–1879, 2015.

[6] O. Ljungqvist, N. Evestedt, M. Cirillo, D. Axehill, and O. Holmer,
“Lattice-based motion planning for a general 2-trailer system,” in 2017
IEEE Intelligent Vehicles Symposium (IV). IEEE, 2017, pp. 819–824.

[7] M. Cirillo, T. Uras, and S. Koenig, “A lattice-based approach to multi-
robot motion planning for non-holonomic vehicles,” in 2014 IEEE/RSJ
International Conference on Intelligent Robots and Systems. IEEE,
2014, pp. 232–239.

[8] M. Cirillo, “From videogames to autonomous trucks: A new algorithm
for lattice-based motion planning,” in 2017 IEEE Intelligent Vehicles
Symposium (IV). IEEE, 2017, pp. 148–153.

[9] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” IEEE Transactions
on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[10] F. Islam, V. Narayanan, and M. Likhachev, “A*-connect: Bounded
suboptimal bidirectional heuristic search,” in 2016 IEEE International
Conference On Robotics and Automation (ICRA). IEEE, 2016, pp.
2752–2758.

(a) Case 1: moving to other position. (b) Step 1: Select reference lines. (c) Step 2: Searching for sub-goals. (d) Step 3: Solving trajectories.

Fig. 5: Step-by-step visualizations of the proposed motion planning algorithm. The initial position of the trailer is colored in red and the
goal position is colored in green. The tractor-trailer sub-goals are colored blue. The magenta line indicates the trajectory of the tractor.

(a) Case 2: move to other position 2 (b) Case 3: parking. (c) Case 4: U-turn. (d) Case 5: Driving out.

Fig. 6: Visualization of planned trajectories of the tractor.

TABLE I: Comparison path-planning performance between reference-guided RL planner, reference-guided i-AGT planner, and plain i-AGT
planner

Case
No.

Ref-Guided RL Ref-Guided i-AGT Plain i-AGT

Planning
Time [s]

Terminal
position

error
[m]

Terminal
angle
error
[rad]

Path
length

[m]

Planning
Time [s]

Terminal
position

error
[m]

Terminal
angle
error
[rad]

Path
length

[m]

Planning
Time [s]

Terminal
position

error
[m]

Terminal
angle
error
[rad]

Path
length

[m]

1 0.315 0.241 0.014 212.36 14.441 0.000 0.000 212.37 83.264 0.002 0.003 153.38
2 0.342 0.202 0.025 221.71 20.284 0.005 0.004 321.83 146.29 0.002 0.003 146.01
3 0.228 0.193 0.023 174.67 25.678 0.009 0.002 310.96 9.985 0.004 0.002 147.84
4 0.226 0.211 0.028 189.52 27.705 0.001 0.003 310.96 N/A* N/A N/A N/A
5 0.271 0.241 0.017 197.77 27.901 0.005 0.008 237.41 5.950 0.000 0.001 100.547

* Solver failed or time out. The maximum computation time is 180 seconds.

[11] M. Pivtoraiko, R. A. Knepper, and A. Kelly, “Differentially constrained
mobile robot motion planning in state lattices,” Journal of Field
Robotics, vol. 26, no. 3, pp. 308–333, 2009.

[12] O. Ljungqvist, N. Evestedt, D. Axehill, M. Cirillo, and H. Pettersson,
“A path planning and path-following control framework for a general
2-trailer with a car-like tractor,” Journal of field robotics, vol. 36, no. 8,
pp. 1345–1377, 2019.

[13] K. Bergman, O. Ljungqvist, and D. Axehill, “Improved path planning
by tightly combining lattice-based path planning and optimal control,”
IEEE Transactions on Intelligent Vehicles, vol. 6, no. 1, pp. 57–66,
2020.

[14] A. Tamar, Y. Wu, G. Thomas, S. Levine, and P. Abbeel, “Value iter-
ation networks,” Advances in neural information processing systems,
vol. 29, 2016.

[15] B. Chen, B. Dai, Q. Lin, G. Ye, H. Liu, and L. Song, “Learning
to plan in high dimensions via neural exploration-exploitation trees,”
arXiv preprint arXiv:1903.00070, 2019.

[16] A. Deac, P.-L. Bacon, and J. Tang, “Graph neural induction of value
iteration,” Sep. 2020.

[17] C. Yu and S. Gao, “Reducing Collision Checking for Sampling-Based
Motion Planning Using Graph Neural Networks,” in Advances in

Neural Information Processing Systems, vol. 34. Curran Associates,
Inc., 2021, pp. 4274–4289.

[18] P. Rouchon, M. Fliess, J. Lévine, and P. Martin, “Flatness and motion
planning: the car with n trailers,” in Proc. ECC’93, Groningen, 1993,
pp. 1518–1522.

[19] C. Altafini, A. Speranzon, and B. Wahlberg, “A feedback control
scheme for reversing a truck and trailer vehicle,” IEEE Transactions
on robotics and automation, vol. 17, no. 6, pp. 915–922, 2001.

[20] J. Reeds and L. Shepp, “Optimal paths for a car that goes both
forwards and backwards,” Pacific journal of mathematics, vol. 145,
no. 2, pp. 367–393, 1990.

[21] D. Yu, H. Ma, S. Li, and J. Chen, “Reachability constrained rein-
forcement learning,” in International conference on machine learning.
PMLR, 2022, pp. 25 636–25 655.

[22] H. Ma, Y. Guan, S. E. Li, X. Zhang, S. Zheng, and J. Chen, “Feasible
actor-critic: Constrained reinforcement learning for ensuring statewise
safety,” arXiv preprint arXiv:2105.10682, 2021.

[23] J. Leu, Y. Wang, M. Tomizuka, and S. Di Cairano, “Improved a-
search guided tree for autonomous trailer planning,” in 2022 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2022, pp. 7190–7196.

	Title Page
	page 2

	
	Introduction
	Problem Setup and Preliminaries
	Tractor-trailer System
	Motion Planning Problem Formulation

	Reference Line Guided Search
	Reference Line Graph Construction
	Heuristic and Sub-goal Selection

	Reinforcement Learning-based Trajectory Optimization
	RL Problem Formulation
	Algorithm Design

	Empirical Evaluation
	Experimental Setup
	Experimental Results

	Conclusion and Future Work
	References

