
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
https://www.merl.com

State Representation Learning for Visual Servo Control
Wang, Jen-Wei; Nikovski, Daniel N.

TR2025-094 June 26, 2025

Abstract
We propose a method for visual servo-control of robots using images from an uncalibrated
camera that constructs compact state representations of the robot’s con- figuration and uses
transition dynamics learned from collected execution traces to compute control velocities to
reach a desired goal state identified directly by its image. The key step of the proposed method
is the estimation of a homography transform between the image positions of distinct keypoints
belonging to the robot in the current image and those in a reference image, which can be
done quickly and robustly even when not the same set of keypoints is observed at each time
step, making it robust to noise and variations in illumination. The estimated homography is
then used to represent the robot configuration as the image coordinates of a minimal number
of virtual points moving with the robot. The method was verified experimentally for planar
motion of a fully actuated manipulator arm as well as an underactuated mobile robot with a
nonholonomic constraint.

European Control Conference (ECC) 2025

c© 2025 MERL. This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission
to copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes provided
that all such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi
Electric Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and
all applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall
require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139





State Representation Learning for Visual Servo Control

Jen-Wei Wang and Daniel Nikovski†

Abstract— We propose a method for visual servo-control
of robots using images from an uncalibrated camera that
constructs compact state representations of the robot’s con-
figuration and uses transition dynamics learned from collected
execution traces to compute control velocities to reach a desired
goal state identified directly by its image. The key step of the
proposed method is the estimation of a homography transform
between the image positions of distinct keypoints belonging to
the robot in the current image and those in a reference image,
which can be done quickly and robustly even when not the
same set of keypoints is observed at each time step, making it
robust to noise and variations in illumination. The estimated
homography is then used to represent the robot configuration
as the image coordinates of a minimal number of virtual points
moving with the robot. The method was verified experimentally
for planar motion of a fully actuated manipulator arm as well as
an underactuated mobile robot with a nonholonomic constraint.

I. INTRODUCTION

Visual servo (VS) control methods use information from
images acquired by cameras and extracted by means of
computer vision algorithms to control the operation of a robot
[1]. The use of VS methods is economically appealing when
the pose of the robot and/or objects manipulated by it are
unknown and not directly measurable, but can be observed
by one or more cameras.

A straightforward method to use images for VS is to
apply computer vision to determine the pose of the robot
and/or objects in the inertial frame and then use these poses
in the control loop. This method, known as pose-based
VS (PBVS) has the advantage of reducing the very high-
dimensional image signal to the most compact representation
possible of the configuration of the objects of interest in the
scene. If known, the dynamics of the robot and manipulated
objects can be represented in the same task (Cartesian) space,
allowing the use of model-based state-space controller design
methods to achieve desired control objectives.

However, PBVS requires the use of calibrated cameras in
order to recover the Cartesian poses of objects in the scene
from camera images. Furthermore, often CAD models of the
observed objects are needed to achieve acceptable accuracy
of pose estimation. When such calibration is not available,
VS can still be performed successfully by closing the control
loop not on actual Cartesian poses, but on a vector of visual
features s(t) [1]. If the values s∗ of the features at a desired
goal state are known, a VS error can be defined as e(t) =
s(t)−s∗ and used in a feedback VS control scheme. A central
question in such VS schemes is what the feature vector s(t)

†All authors are with Mitsubishi Electric Research Laboratories (MERL),
Cambridge, MA, USA 02139 {jenwang,nikovski}@merl.com

should be. The feature vector can consist of suitable visual
measurements, such as the coordinates of reliably identifiable
unique keypoints in the image, such as corners, edges, color
blobs, etc. This more general approach is known as image-
based VS (IBVS), and is very attractive economically due to
eliminating the need for camera calibration or CAD models.

However, using IBVS requires deciding which visual
features to use, which is usually problem-dependent and
involves costly human labor. Furthermore, if the feature
vector does not consist of actual Cartesian poses, any avail-
able knowledge about the system’s dynamics expressed in
terms of these poses cannot be used to design a feedback
VS controller, so different controller design methods are
necessary. It is thus very desirable to automate the process of
feature vector selection and VS controller design, based on
collected experimental data and leveraging machine learning
techniques. As the feature vector s is a proxy for the
actual configuration of the system, the automation of this
process effectively consists of state representation learning
(SRL) from image data followed by model-based controller
design using learned dynamics in the constructed state space
representation.

Section II defines the version of the VS control problem
we are addressing. Section III reviews the common methods
for VS control with and without calibrated cameras and
known system dynamics, as well as the complications in
VS control arising from nonholonomic constraints. Section
IV proposes a novel method for SRL from observed visual
data during planar motion, and VS control based on learned
nonlinear dynamical models in the constructed state space.
Section V introduces two experimental platforms for object
handling using a robotic manipulator and navigation of a
mobile robot. Section VI describes experiments to verify
empirically the proposed method on both experimental plat-
forms. Section VII discusses future work and concludes.

II. PROBLEM DEFINITION

We are considering the VS control of a robot or object
undergoing planar motion whose configuration q ∈ C is
described by the vector q = (x, y, θ)T in an inertial frame,
where the configuration space C coincides with R2×S1. An
example of such motion is a mobile robot moving around
a flat office floor, or an object grasped by a robot arm and
moved parallel to a flat work surface in a work cell. The
robot is steered in velocity control mode by control inputs
u = [v, ω], where v is linear velocity in the plane of motion
and ω is angular velocity about an axis perpendicular to that
plane. The use of velocity control mode, available on most
mobile robots and industrial manipulator arms, reduces the



normally second-order dynamics of motion to a first-order
kinematic model with trivial time-invariant system dynamics
q̇ = u. However, if the true configuration of the system q
cannot be recovered from sensor measurements, state-space
controller design based on these simple dynamics cannot be
performed, because an observer cannot be designed for a
full-state feedback controller.

Instead, we assume that camera images I(t) at any instant
in time contain sufficient information to identify unambigu-
ously the configuration q(t). Our goal is then to construct
(learn) a suitable feature vector s[k] from a sequence of
images I[k] = I(tk) collected at discrete time instants
tk = k∆t, where ∆t is the control time step, and associated
image measurements, by exciting the system with control
inputs u[k] = u(tk) applied at these instants. The transition
function s[k + 1] = f(s[k],u[k]) in the constructed feature
space is no longer trivial, but we can learn it from the same
execution trace, and design a VS controller based on it.

There are two common methods of placement of the cam-
era relative to the robot: eye-in-hand (moving with the robot)
and eye-to-hand (stationary) [1]. Without loss of generality,
we consider the eye-to-hand placement. We assume that the
image plane is not necessarily parallel to the xy plane of
motion of the robot in Cartesian space, but nevertheless, in
most practical settings, it is advantageous to point the camera
generally close to perpendicular to the plane of motion of the
robot, in order to maximize the camera’s field of view.

III. RELATED WORK ON VISUAL SERVO CONTROL

In PBVS, because s[k] = q[k] and q̇ = u, we have
ṡ = u, and a simple proportional control scheme is u[k] =
−λe[k], where e[k] = s[k]− s∗, with a proportional gain λ
[1]. This proportional controller will work well in systems
without nonholonomic constraints, gradually reducing the
visual servoing error to zero, when the robot will assume
its desired configuration s∗.

However, in systems with nonholonomic constraints, such
as wheeled mobile robots, the number of controls usually
does not equal the number of degrees of freedom, and the
robot cannot move in a direction perpendicular to that of
its wheels. For a planar mobile robot, only the magnitude
of its linear velocity v = ∥v∥ can be controlled, but not its
direction, as that direction is constrained to coincide with that
of its wheels. Consequently, when the visual feedback error
is perpendicular to the orientation of the robot’s wheels, if
the simple proportional feedback control scheme from above
is used, the robot will not move and will never close the
feedback error. For such systems, suitable motion paths must
be computed by control methods for control of nonholonomic
robots [2], [3].

In IBVS, s[k] ̸= q[k], but the relationship between ṡ and
u can still be expressed by the linearization of the dynamics
ṡ = Lsu, where the matrix Ls is called the interaction matrix
related to s. It can be the actual Jacobian of the nonlinear
dynamics f(s,u) around s, but it can also be the linearization
around a different point, for example the goal state s∗, or an
average of several Jacobians [1]. The relationship between

the derivative of the error and control velocity can then be
expressed as ė = Lsu, leading to a proportional controller of
the form u[k] = −λL+

s e[k], where L+
s = (LT

s Ls)
−1LT

s is
the Moore-Penrose pseudo-inverse of Ls, accounting for the
fact that the length of the vector s can be different (usually
longer) than that of the configuration q or control vector u.

The choice of image features s and the method for com-
puting the interaction matrix Ls are of primary importance
in VS control schemes. In IBVS, the features are usually the
image-plane normalized coordinates of trackable keypoints
in the image, meaning that the ability to reliably track these
points without fail is absolutely critical for success.

The exact interaction matrix Ls can be computed analyt-
ically only if the current depth of each point in the camera
frame is known, which is not easy to ensure unless the image
plane is always parallel and at a constant distance to a plane
in which the points move. As noted in the previous section,
we are not making this assumption, as it is difficult and
inconvenient to enforce in practice. Some IBVS methods use
pose estimation methods to compute point depths at every
iteration, or choose a constant interaction matrix computed
at the goal position s∗ [1].

When depth information is not available, or the camera is
not calibrated, off-line learning or on-line estimation methods
can be used to directly estimate the numerical values of the
interaction matrix from experimental data in the form of
feature variations ∆s caused by commanded pose variations
∆u = u∆t. A single interaction matrix for a specific pose
can be estimated by means of least-squares regression, and
neural networks and other machine learning methods can be
used to learn pose-dependent interaction matrices [1].

Similar to PBVS, nonholonomic constraints and/or under-
actuation complicate IBVS control significantly. As noted,
even if the camera is calibrated and the robot’s pose can
be estimated in the world frame, the task of servoing the
robot to a goal state defined directly in configuration space
is not trivial and usually involves the application of planning
algorithms. Such methods usually require an accurate kine-
matic model of the robot’s motion [2]. Furthermore, many
of these algorithms rely critically on the ability to compute
the current bearing of the robot with respect to the goal.
However, if the camera is not calibrated and the true pose
(configuration) cannot be estimated, the heading of the robot
in the world frame cannot be computed as part of its pose,
so it becomes impossible to apply such algorithms.

A method proposed by Zhang et al. [4] performs visual
servoing on a mobile robot equipped with an uncalibrated
camera limited to the eye-in-hand setting. In their method,
the unknown extrinsic camera parameter is the planar angle
between the robot and camera frames, and the algorithm
performs an iterative parameter identification step in order
to estimate it from collected data. Although this solution is
effective, it is specific to the eye-in-hand setting, and cannot
be applied easily to the eye-to-hand setting. Another set of
algorithms [5], [6] solves the problem assuming that the
plane of the robot’s motion is parallel to the image plane,
which, as noted, is often impossible to guarantee.



IV. PROPOSED METHOD FOR STATE REPRESENTATION
LEARNING AND VISUAL SERVOING

We propose an IBVS method for robots equipped with
pinhole uncalibrated cameras, where the feature vector is
constructed automatically based on sequences of images
collected in a self-supervised manner. It addresses one of the
main shortcomings of most IBVS methods – the need to al-
ways reliably track specific keypoints in the image, resulting
in failure of the controller if one of more of them are lost in
an image frame. The method still leverages algorithms for
identifying keypoints in images and establishing matching
correspondences for such keypoints in pairs of images, but
is robust to failure to track such points in each and every
image. Instead, the method estimates a homography matrix
from whatever keypoint correspondences are available for a
new frame, and computes the expected image coordinates of
two virtual points that jointly define a feature vector that
uniquely and robustly identifies the robot’s configuration.
Using a sequence of images and the compact feature vectors
computed in this way, the proposed algorithm learns a model
of transition dynamics in feature space using standard super-
vised ML methods. The learned model is then used to design
a feedback VS controller, depending on the type of robot
controlled. For fully actuated robots without nonholonomic
constraints, the learned transition model can be differentiated
to obtain an interaction matrix used in a proportional VS
control scheme. For robots with nonholonomic constraints, a
method based on differential dynamic programming is used
to compute a trajectory to the goal state in feature space,
and locally linear controllers are used to track this trajectory
by relating deviations from it to suitable velocity commands
that will bring the robot back on track.

The algorithm learns relatively compact state descriptors
of a robot moving in a plane and observed by a fixed
overhead camera. The method tracks image keypoints in the
camera image that correspond to coplanar points moving
together with the robot. The positions of these points are
unknown, but remain constant in the robot frame.

The robot moving in the plane is observed by a stationary
pinhole uncalibrated camera with unknown extrinsics. It can
measure the coordinates of the points p̄i[k] = (x̄[k], ȳ[k])T ,
i = 1, . . . , n in its own camera frame (2D image coordinates)
captured at time instant tk. The fact that the observed
points are coplanar means that there exists an unknown, but
constant homography Hk,j relating the image coordinates
of all corresponding points measured at times k and j:
λk,j ˜̄pi[k] = Hk,j ˜̄pi[j], where the homogeneous coordinates
˜̄pi = [p̄T

i , 1]
T all have a scaling factor of 1 [7]. Note that

the scaling factor λk,j is constant for all points i = 1, . . . , n.
Let p̄∗i be the measured keypoint in image coordinates

for the goal configuration of the robot. Given n ≥ 4 points
p̄i[k] whose correspondence has been established between
time instance k and the goal configuration, the homography
Hk,∗ can be computed using well-known algorithms [7].
(The reason at least 4 pairs of corresponding points are
needed is that the homography matrix has 8 independent

parameters and each pair of corresponding points provides
2 linear equations. Although, the more keypoints are used,
the more accurate the estimate is.) However, recovering the
transform corresponding to the planar motion of the robot
in its plane of motion from Hk,∗ for the purposes of PBVS
is only possible if the intrinsic parameters of the camera are
known [7], which we do not assume to be the case.

Instead, we propose to use purely IBVS, where the ho-
mography matrix Hk,∗ is used to construct a compact repre-
sentation of the robot’s pose, without necessarily recovering
that pose explicitly. This representation is based on the idea
that two fixed points on the robot are sufficient to uniquely
determine its pose if the robot undergoes planar motion. Let
p∗1 = (x∗

1, y
∗
1)

T and p∗2 = (x∗
2, y

∗
2)

T be the coordinates of
two such distinct points defined in the image of the goal
configuration. (They might or might not be actual keypoints,
and do not even have to lie within the shape of the robot in
that image; all that is needed is that they be distinct.) These
”virtual” keypoints define uniquely the desired configuration
s∗ of the robot as a 4-dimensional vector: for example, one
of these two points p∗1 can be taken to be the position of
the robot, and the angle atan2(y∗2 − y∗1 , x

∗
2 − x∗

1) defines
its orientation in screen coordinates, which has a (nonlinear)
one-to-one mapping to the true orientation of the robot in
the world frame.

Subsequently, when performing VS control at time instant
k and after we have computed the homography Hk,∗ from
as many keypoints as were registered in the image captured
at that time and matched to keypoints in the goal image, we
can compute where the two virtual keypoints must be at that
time as p̃i[k] = (xi[k], yi[k], 1)

T = Hk,∗p̃
∗
i /λk,∗, i ∈ {1, 2},

and λk,∗ is the perspective scaling factor for the homography
between image frame k and the target configuration’s image.
These coordinates unambiguously identify the configuration
of the robot s[k] = (x1[k], y1[k], x2[k], y2[k])

T at time tk.
Importantly, not all n keypoints must be visible at every

time step k – as the estimation problem is overconstrained,
any subset of the keypoints can be used for estimating the
homography Hk,∗, as long as its size exceeds the minimum
threshold of four registered points.

Since the homography matrix Hk,∗ represents the robot’s
relative movement between pose at time instance k and goal
pose in image space, we only consider the correspondences
of keypoints that are attached to the robot. To this end, an
image segmentation algorithm is adopted to mask the robot’s
region in goal image Ig , creating a new goal image where the
background is removed. In this way, most of the matching
points will be on the robot and the outliers will be eliminated
by the RANSAC algorithm during homography estimation.

Given state descriptors s[k], k = 0, . . . , N+1 correspond-
ing to an execution trace collected under the application of a
control sequence u[k], k = 0, . . . , N , we can learn the next-
state function s[k+1] = f(s[k],u[k]) using any suitable ML
method, such as Gaussian Process Regression (GPR) [8]. If
a differentiable ML model is used to learn the dynamics, it
can be differentiated analytically to compute the entries of
the interaction matrix Ls needed for VS control.



For fully actuated holonomic systems, the interaction
matrix Ls would be of size 4 × 3 for the proposed state
representation and planar motion controls (two linear and
one rotational velocities), and its Moore-Penrose pseudo-
inverse L+

s can be used directly for greedy VS control, as
described in Section III. For underactuated and/or nonholo-
nomic systems, a path planning method can be employed to
find a sequence of nominal controls and states leading from
the current state to the desired goal state, using the learned
transition dynamics. Possible choices for such methods in-
clude differential dynamics programming (DDP) and its
more modern variant the iterative linear quadratic regulator
(iLQR) [9]. These methods use the local linearization of
the nonlinear transition dynamics to iteratively find a local
optimum of the nominal control and state trajectories in terms
of a cumulative cost that expresses a preference for reaching
the goal state in minimal time and possibly with minimal
control effort. These methods also produce a sequence of
linear feedback controllers that stabilize the system along
the computed nominal trajectory.

V. EXPERIMENTAL SETUPS

We investigated the proposed algorithm experimentally on
three setups: a manipulator arm constrained to move its end
effector in a plane, a simulator of a planar mobile robot, and
a real two-wheeled mobile robot.

A. Object Handling with a Robotic Manipulator

The purpose of this testbed is to evaluate the algorithm on
a holonomic system. Figure 1.a shows the hardware setup of
the environment which consists of a box attached rigidly to
the endtool of a MELFA RV-4FL industrial six-axis robot
arm and an Oak-D Pro camera looking at the box. The
task is to design a VS controller that can command the
robot to move the box to a desired pose. The desired pose
is determined by steering manually the robotic arm to a
goal configuration and capturing a goal image of the box.
Because the robot has high precision (± 0.1 mm), we can
record robot poses both in current and goal configuration
and use the stock Cartesian-space controller of the robot
to do the goal-reaching task directly in task space, as a
baseline for comparison with the VS method. That is, we
regard this environment as an evaluation platform for testing
how accurate our VS controller is, using ground truth about
the robot’s end tool obtained from the robot joints’ encoders.

We use velocity control in Cartesian space to command the
robot, constraining the robot’s movement in the Y Z plane of
the world frame attached to the robot’s base. This results in
a total of three DoF, including translation along the y axis,
translation along the z axis, and rotation about x. The total
control input um is denoted by [vmy , vmz , ωm]. Note that the
rotational center is not at the center of the box and we do
not know the relative pose between the box and the robot’s
end effector.

The control loop is synchronized with the camera’s frame
capture, at 60 frames per second (fps). We only use every
6-th frame for VS, resulting in a control rate of 10 Hz.

Fig. 1. Experimental testbeds in three environments. (a) A juice box
attached to a MELFA RV-4FL six-axis robot. (b) A simulated navigation
environment viewed from a top-down camera. Green lines show the bound-
ary of the pool table and a red arrow represents the robot’s position and
heading. (c) An environment consisting of a pool table and a Sphero BOLT
robot. The upper left corner shows a randomly selected LED pattern with
rich features on top of the robot.

We follow the methodology from Section IV to design our
tracking algorithm. We manually select two points ((x∗

1, y
∗
1)

T

and (x∗
2, y

∗
2)

T ) on the goal image and use the estimated
homography matrix to transform two points from the goal
image to current image to obtain the compact represen-
tation (x1, y1, x2, y2)

T . Regarding homography estimation,
we adopt SIFT [10] as a feature detector/descriptor to find
feature points both in the current and goal images. The cor-
respondence between two sets of feature points is found by
calculating the Euclidean distance between two descriptors
and the pairs with the shortest distance are selected.

B. Navigation of a Mobile Robot

We evaluate the algorithm on navigation tasks both in
a simulated and a real-world environment. The reason for
using a simulated environment is that our selected real-world
mobile robot has some uncertainty in its actuation and we
would like to also evaluate the algorithm in an environment
with perfect representation and dynamics.

In simulation, we use the analytical unicycle model as
the ground-truth dynamics to simulate the rollout of a
differential-drive robot under control commands. As shown
in Figure 1.b, the simulated robot is operated on a virtual
table, where its boundary (green line in the figure) limits the
exploration space of the robot. To simulate perspective trans-
formation, we attach a virtual camera above the table. The
camera is tilted in order to evaluate whether controllers can
still perform well under a general perspective transformation
and without camera calibration. The simulation environment
in Figure 1.b shows the view from the top-down camera, and
accordingly the green lines do not form a perfect rectangle.

Using the methodology from Section IV, two points are
defined beforehand in the goal image. To simplify the
dynamics formulation, the first point (x1, y1)

T is defined to
be the centroid of the robot, and the second point (x2, y2)

T



Fig. 2. Evaluation of constructed state. The green arrow represents the
starting compact state and the red arrow represents the transformed compact
state after a control input is applied to the robot. We assume that at least
4 pairs and at most 16 pairs of feature points can be found by the SIFT
algorithm. Results show that the compact state can be robustly estimated if
at least 6 pairs of feature points can be found.

is chosen to be some fixed distance away. The two points
correspond to the start and end points of the red arrow in
the simulation environment of Figure 1.b. Based on the given
intrinsic and extrinsic matrices, the ground-truth dynamics in
the image space f can be derived analytically to evaluate the
accuracy of the proposed VS system.

In the hardware setup shown in Figure 1.c, we use a
Sphero BOLT robot as our target robot and operate it
on a pool table. Although the Sphero BOLT looks like
an omnidirectional robot, its internal mechanism makes it
similar to a unicycle robot, because it cannot move sideways
without turning its heading first. A Sphero BOLT can be
controlled via a commanded rotation angle θn and translation
velocity vn. Because velocity control is used in VS, the
rotation command to the robot is obtained by multiplying
the desired rotational velocity ωn by the control step ∆t.

We mounted a Luxonis Oak-D Pro camera above the table
as shown in Figure 1.c. In our VS system, we used the
frame capture loop of the camera, running at 60 fps, and
decimated it 10 times to obtain the VS control frequency of 6
Hz and control step ∆t = 0.1667 ms. We follow the method
described in Section IV to design the tracking algorithm. The
Sphero BOLT has an array of 8x8 LEDs that can display
color patterns, and we randomly selected a pattern with rich
features, as shown in the upper left corner of Figure 1.c.

After the pattern is selected and displayed, we manually
put the robot in the final desired pose and capture an image,
stored as the goal image. Once at least 4 correspondences are
found using the SIFT algorithm [10], a compact representa-
tion (x1, y1, x2, y2)

T can be found by applying the estimated
homography matrix to transform (x∗

1, y
∗
1)

T and (x∗
2, y

∗
2)

T on
the goal image to the current image. To handle the reflection
from the transparent shell of the Sphero BOLT, we applied a
color filtering algorithm on the YCrCb color space, resulting
in a robust tracking algorithm for the compact state.

VI. EXPERIMENTAL VERIFICATION

A. Evaluation of Constructed State

In this subsection, we present an investigation of the accu-
racy of the proposed compact state descriptor. Since we can
only obtain the ground-truth compact state in the simulator,
we validated the estimated virtual points in the simulated
navigation environment. Furthermore, we investigated how
different patterns influence the estimation results. To this end,

we varied the number of correspondences found by the SIFT
algorithm [10] to understand the relationship between the
number of matched feature points and estimation accuracy.

Figure 2 shows the test environment and estimation results.
The start and end of the red arrow represent the two virtual
points. The green arrow is the starting compact state and the
green dots are the detected feature points. After a control
input is applied to the robot, the green arrow will move to
the red one and so will the feature points. We randomly
select 4 to 16 pairs of feature points from these pre-defined
dots and estimate the homography transformation matrix.
The estimated compact state is then obtained by applying
the homography matrix to the green arrow. The error is
calculated via Euclidean distance between the estimated
compact state and the ground-truth compact state. We place
randomly the robot and apply random control inputs to obtain
500 test cases.

Based on Figure 2, we can observe that the estimation
becomes accurate and robust across all the test cases if
the number of correspondences exceeds 6. The blue shaded
area is the standard deviation of the estimation error. If 16
correspondences can be found, the average error is 0.15
pixels and its standard deviation is 0.17 pixels. Since we
assume that the robot motion on the image plane is a linear
transformation, most of the error comes from the distortion
of the camera on a real setup. However, the least squares
solution can still obtain a robust and accurate result even
when some non-linearity exists in the system.

B. Learning the Dynamics Function

Because the true dynamics are unknown, learning f from
robot exploration data is an essential component of model-
based control. However, directly learning the function f is
not sample-efficient and collecting data for learning f is
time consuming in real-world environments. Therefore, we
assume that the translation and rotation parts of the robot’s
dynamics are independent from each other and the dynamics
function f can be decomposed into several parts.

1) Object Handling: In the object handling environment,
we decompose the incremental dynamics function fmdec into
three parts fmy , fmz , and fmr :

∆m
y [k] = fmy (x1[k], y1[k], v

m
y [k]) (1)

∆m
z [k] = fmz (x1[k], y1[k], v

m
z [k]) (2)

∆m
r [k] = fmr (x1[k], y1[k], x2[k], y2[k], ω

m[k]) (3)

where ∆ denotes the increment of state s[k+1]−s[k] and
the subscript denotes which control dimension contributes
to the state increment. Therefore, after a control input
(vmy , vmz , ωm)T is applied, the total state increment ∆m

s [k]
expressed as (∆x1,∆y1,∆x2,∆y2)

T will be the summation
of three components ∆m

y [k] + ∆m
z [k] + ∆m

r [k]. Since we
assume that the two virtual points are not far away from each
other and the distortion effect of the camera is not severe, the
dependent variables of (1) and (2) only include the position
of the first virtual point.



2) Navigation: In the navigation environment, we re-
define the state vector s[k] at time k as (xc, yc, δx, δy)

T ,
where (xc, yc)

T is the centroid of the robot (x1, y1)
T , and

(δx, δy)T is a vector pointing from the first point to the
second point such that (δx, δy)T = (x2 − x1, y2 − y1)

T .
The decomposed incremental dynamics function fndec can be
expressed as

∆n
tr[k] = fntr(δx[k], δy[k], ẋc, ẏc, v

n[k]) (4)
∆n

rot[k] = fnrot(δx[k], δy[k], ω
n[k]) (5)

After a control input (vn, ωn)T is applied, the total state
increment ∆n

s [k] expressed as (∆x,∆y,∆dx,∆dy)
T will be

the sum of the two components ∆n
tr[k] + ∆n

rot[k].
The goal of learning f becomes that of learning fntr and

fnrot, which form the decomposed incremental dynamics fndec.
Note that ∆n

tr[k] is in general dependent on xc and yc, too.
However, we assume that the camera is viewing the scene
approximately from above, so we can remove the dependency
on the centroid location. Although fndec is not exactly the
same as the ground truth dynamics, fndec can approximately
capture the forced dynamics of the robot, and a well-designed
closed-loop controller can compensate the mismatch during
deployment.

In the real navigation environment, the Sphero BOLT will
generally not reach the commanded linear velocity within
one control step. Instead, an internal velocity controller
will accelerate or decelerate the robot until it reaches the
commanded velocity, which usually takes more than one
control step. Since we do not have access to the design of
this internal velocity controller, one way to approximate the
translation dynamics is to add a velocity measurement as
an independent variable. Therefore, Equations 4 include the
velocity of the centroid (ẋc, ẏc)

T . Since the control com-
mand is applied every 10 frames of the camera, we estimate
the centroid’s velocity by retrieving another centroid position
from the previous image frame acquired one step (1/60
s) before the control command, ensuring that the velocity
estimate is up-to-date. Therefore, the centroid velocity can be
estimated as the centroid difference multiplied by the frame
rate of the camera, 60 fps.

C. Evaluation of Learned Dynamics Function

We collected data for dynamics learning in all three
environments shown in Figure 1. Since the dynamics are de-
composed into several parts, we separately collected datasets
for learning each decomposed dynamics function. After the
dynamics functions were obtained via supervised learning,
we evaluated the learned dynamics in terms of their use for
control. The first evaluation metric is the prediction error on
a testing set. This is the standard evaluation metric for ML
algorithms, where the whole dataset is divided into a training
and testing sets, and the dynamics learned on the training set
is evaluated on the testing set. The prediction error represents
the one-step prediction error of the learned dynamics. We
compared two different ML algorithms that are often used for
learning dynamics functions: Locally Weighted Regression

TABLE I
ONE-STEP PREDICTION ERROR ON THREE ENVIRONMENTS.

Models Dyn. component RMSE NRMSE Dyn. component RMSE NRMSE
Object Handling Environment

LWR Rot 11.9644 1.1797 Trans 1.4184 1.0084
GPR 6.7326 0.6638 1.3523 0.9613

Simulated Navigation Environment
LWR Rot 0.0714 0.0319 Trans 0.0484 0.0052
GPR 0.0035 0.0016 0.0849 0.0091

Real Navigation Environment
LWR Rot 2.0535 1.0518 Trans 2.3017 0.4968
GPR 0.8669 0.4440 1.9516 0.4212

TABLE II
LONG-TERM PREDICTION ERROR OF THE GPR MODEL ON THREE

ENVIRONMENTS.

Steps Dyn. component MAE (deg) NMAE Dyn. component RMSE (pixel) NRMSE
Object Handling Environment

10
Rot

0.8198 0.1086
Trans

2.0892 0.0468
20 1.5511 0.2591 2.7234 0.0696
30 2.7742 0.3824 3.3281 0.0896

Simulated Navigation Environment
10

Rot
0.0695 0.0034

Trans
2.4340 0.0349

20 0.1120 0.0055 6.8965 0.0989
30 0.3658 0.0179 11.9782 0.1717

Real Navigation Environment
10

Rot
8.7435 0.0743

Trans
35.6605 0.1478

20 15.5726 0.1980 61.3825 0.2418
30 25.2268 0.2319 70.7925 0.2820

(LWR) and Gaussian Process Regression (GPR) [8]. In the
following tables, RMSE is defined as root mean square error
and MAE is defined as mean absolute error. There are two
corresponding metrics, NRMSE and NMAE, that are defined
as the respective metrics divided by the standard deviation
in the testing dataset.

Results shown in Table I indicate that the GPR model has
the best one-step prediction performance on average for all
three environments. However, precise one-step prediction is
just one requirement for a good dynamics function. To better
combine the learned dynamics with greedy and sequential
control, the learned dynamics need to have reasonable predic-
tion accuracy after multiple steps, up to the prediction hori-
zon. This evaluation can be done by collecting an evaluation
dataset that contains different trajectories of the robot with
different horizons based on different values of control inputs.
Then, we can use the learned dynamics f̂mdec and f̂ndec to roll
out from the initial state of each trajectory and compute the
prediction error at the prediction horizon.

Based on Table II, the prediction error grows when the
prediction horizon increases. This error accumulation is
often seen in learning-based control. Some previous works
minimize the accumulated error by applying sequence-to-
sequence models, but still the model accumulates error
inevitably. Based on the comparison between ground-truth
rollout and predicted rollout, we observed that the error also
comes from the coupling effect of translation and rotation
dynamics, as well as the sliding motion during the rolling
of the Sphero BOLT. Therefore, in reality, we cannot obtain
a perfect dynamics function with limited amount of data.
Instead, we focused on developing a closed-loop controller
that takes into account the uncertainties in the dynamics
function while simultaneously steering the robot to the goal.



Fig. 3. Comparison between our image-based VS control (colored
solid curve) and pose-based Cartesian space control (black dashed line).
Cartesian-space control serves as an upper bound on performance for any
VS algorithm, since the goal configuration of the robot in task space is
given to it. Both plots show the results of four different starting poses (4
corners of a square). The starting poses in the left plot do not have rotational
deviation with respect to the goal pose, whereas the ones in the right plot
have rotational deviation of 20 degrees. Although the two controllers choose
different routes, they ultimately reach the goal (square center).

D. Evaluation of VS Control with Compact State on the
Holonomic System

In this subsection, we report the performance of VS con-
trol in the object handling environment using the proposed
compact state. We combine the learned dynamics described
in the previous section with the greedy controller to move
the box to a designated goal pose. We obtain the interaction
matrix at the goal pose and use this interaction matrix to
determine the moving direction at each control step.

The comparison baseline was a pose-based Cartesian
control without any consideration of perception. Since we
can record the ground-truth goal configuration of the robot
when we define the goal pose of the box, using its precise
joint encoders, the pose-based Cartesian control is simply a
proportional control in Cartesian space. This control algo-
rithm serves as an upper bound on performance for any VS
algorithm, since the true goal 3D pose is given to it directly
and the industrial robot has excellent repeatability (0.1 mm).

Figure 3 shows the trajectories of both controllers from
different starting poses (four corners of a square) with the
same goal pose (the center of the square). The left plot shows
the case where the starting poses do not have rotational
deviations with respect to the goal pose, whereas the right
plot shows trials with a 20-degree rotational deviation. The
trajectories of the pose-based Cartesian controller are the
dashed black lines and the ones from our algorithm are the
solid colored curves. Although the two controllers choose
different routes, the results show that our algorithm can still
reach the goal from different starting poses. Since we only
estimate the interaction matrix at the goal point in these test
cases, the trajectory might not be optimal. However, in this
experiment, our goal was to show that a greedy VS controller
using the learned dynamics can accomplish goal-reaching
tasks on holonomic systems without knowing the tracked
object’s CAD model and without any camera calibration.

Table III shows evaluation results of our algorithm on 50
different starting poses with y- and z-axis deviations ranging
from −30 mm to 30 mm and rotation angle deviations rang-
ing from −30 degrees to 30 degrees. Since we can accurately
obtain the ground truth about the robot’s configuration from
the encoders, the distance between the final pose of the

TABLE III
PERFORMANCE OF THE GREEDY CONTROLLER WITHIN A HORIZON OF

50 CONTROL STEPS IN THE OBJECT HANDLING ENVIRONMENT

Task Dyn. component RMSE (mm) NRMSE Dyn. component MAE (deg) NMAE
Pure Trans Trans 0.3116 0.0119 Rot N/A

Trans + Rot 1.5521 0.0592 0.2691 0.0110

trajectory and the goal pose can be measured in Cartesian
space. Because the robot has good repeatability, the error of
the pose-based Cartesian space controller is close to zero.
Therefore, the error in the table shows how close the VS
controller is to this lower bound. These results demonstrate
that the proposed algorithm can accurately reach the target
pose using only image information.

E. Evaluation of iLQR with Compact State on the Non-
Holonomic System

We experimentally validated that the greedy controller
described in Section VI-D cannot control the mobile robot to
do certain goal-reaching tasks because of its nonholonomic
constraints. In contrast to the greedy controller, a sequential
controller such as iLQR ([9]) was experimentally proven to
achieve most of the goal-reaching tasks in the simulated
navigation environment. Therefore, in this subsection, we
report the evaluation of the effectiveness of using compact
state and learned dynamics in designing an iLQR-based VS
controller in the real-world navigation environment.

We consider two kinds of goal-reaching tasks: turn-in-
place tasks and general tasks. For turn-in-place tasks, the
robot is asked to turn its heading to align with the given
target heading. Task A is defined as 90 degree turn-in-place
and task B is defined as 180 degree turn-in-place.

Regarding general goal-reaching tasks, we set the goal
state as the center of the table with the heading pointing at
the positive x axis and placed the robot at a random position
on the table with a random heading. Since the robot needs
to turn and move at the same time in order to reach the goal,
this general task can evaluate the ability of the controller to
jointly determine two control inputs vn and ωn, under the
nonholonomic constraint.

Across different goal-reaching tasks, we select two dif-
ficulty levels of the scenarios. The simpler among them is
to place the robot at the negative x axis (on the left-hand
side of the goal state) pointing at −45 degrees, which is
denoted as task C. The more difficult task is to place the
robot at the negative y axis (the lower side of the goal state)
with the same heading as the goal state, which is denoted as
task D. We differentiate the level by the magnitude of the
projection of the initial feedback error e[0] = s[0] − s∗ on
the initial heading vector (δx, δy)T . The simpler task has a
non-zero projection and the more difficult one has a nearly
zero projection. The more difficult one is commonly known
as the parallel parking scenario, where a nonholonmic robot
cannot reach the goal state by simply moving sideways.

We believe that PBVS can serve as a comparable algorithm
for our proposed method. However, PBVS needs to estimate
the robot’s 3D pose beforehand and different pose estimators



TABLE IV
COMPARISON BETWEEN PBVS AND OUR METHOD WITHIN A HORIZON

OF 50 CONTROL STEPS IN THE SIMULATOR

Task Method Dyn. component MAE (deg) NMAE Dyn. component RMSE (pixel) NRMSE

A PBVS Rot 0.2153 0.0010 Trans N/AOurs 1.0779 0.0051

B PBVS Rot 0.3807 0.0018 Trans N/AOurs 2.0745 0.0098

C PBVS Rot 0.7874 0.0254 Trans 0.2119 0.0068
Ours 1.1373 0.0358 0.8134 0.0256

D PBVS Rot 0.8224 0.0064 Trans 0.2076 0.0016
Ours 1.0143 0.0079 0.7971 0.0062

Fig. 4. Comparison between nominal trajectory from iLQR and closed-loop
trajectory in the real-world. The iLQR controller will bring the misaligned
state back to the nominal trajectory and eventually reach the goal.

may have different prediction errors. To have a fair compar-
ison, we compare our method with PBVS in the simulator
since the robot’s ground-truth 3D pose and dynamics can
be directly obtained. Therefore, PBVS is regarded as the
performance upper bound of our algorithm.

Table IV shows the error between the final pose of
the robot and the goal pose after the iLQR controller is
applied over 50 steps. Based on Table IV, our algorithm
has comparable results to PBVS. Since the best we can do
is obtain ground-truth pose and dynamics, this table shows
that our developed algorithm is close to this upper bound.

To evaluate overall performance on nonholonomic systems
in the real-world, we combined the compact state descriptor,
the learned dynamics, and the controller. Since closed-loop
controllers are known to regulate dynamics well and are
generally robust to uncertainties in the dynamics, the focus
of this section is to examine whether a closed-loop controller
can still achieve the goal given imperfect dynamics.

Based on Figure 4, the rollout (actual) and nominal
(planned) trajectories are somewhat different from each
other, but the goal can still be reached via the feedback
control law. The reason is that when the state deviates from

TABLE V
PERFORMANCE OF THE ILQR CONTROLLER WITHIN A HORIZON OF 30

CONTROL STEPS IN THE REAL-WORLD

Task Dyn. component MAE (deg) NMAE Dyn. component RMSE (pixel) NRMSE
A

Rot

4.6632 1.4306

Trans
N/AB 7.4607 3.7076

C 11.8958 1.1052 23.9420 0.1742
D 15.4372 0.0945 19.5438 0.1276

the nominal trajectory due to uncertainties in the dynamics,
the controller will act to bring the system’s state back to
the nominal trajectory through the optimal control gains.
Based on Table V, the closed-loop iLQR controller can not
only bring the robot to the goal, but also minimizes the
accumulated error in the learned dynamics function. After
30 horizon steps, the error is largely minimized compared to
the prediction error after 30 steps shown in Table II.

VII. CONCLUSION AND FUTURE WORK

The proposed method for VS control of robots using
images from an uncalibrated camera constructs compact
state representations of the robot’s configuration and uses
transition dynamics learned from collected execution traces
to compute control velocities to reach a desired goal state
identified directly by its image. The method was verified
experimentally for planar motion of both a fully actuated
manipulator arm as well as an underactuated mobile robot
with nonholonomic constraints. The key step of the proposed
method is the estimation of a homography transform between
the image positions of distinct keypoints belonging to the
robot in the current image and those in a reference image,
which can be done quickly and robustly even when not the
same set of keypoints is observed at each time step, making it
robust to noise and variations in illumination. This approach
is based on the assumption that the tracked keypoints are
coplanar, which is largely justified for overhead placement of
the camera. In future work, we plan to relax this assumption,
possibly using more than one camera, and also extending the
method to full 3D spatial motion.

REFERENCES

[1] F. Chaumette, S. Hutchinson, and P. Corke, “Visual servoing,” Hand-
book of Robotics, 2nd ed., pp. 841–866, 2016.

[2] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, “Mobile robots,”
Robotics: Modelling, Planning and Control, pp. 469–521, 2009.

[3] K. Usher, P. Ridley, and P. Corke, “Visual servoing of a car-
like vehicle-an application of omnidirectional vision,” in 2003 IEEE
International Conference on Robotics and Automation (Cat. No.
03CH37422), vol. 3. IEEE, 2003, pp. 4288–4293.

[4] X. Zhang, Y. Fang, B. Li, and J. Wang, “Visual servoing of nonholo-
nomic mobile robots with uncalibrated camera-to-robot parameters,”
IEEE Transactions on Industrial Electronics, vol. 64, no. 1, pp. 390–
400, 2016.

[5] C. Wang, Y. Mei, Z. Liang, and Q. Jia, “Dynamic feedback tracking
control of non-holonomic mobile robots with unknown camera pa-
rameters,” Transactions of the Institute of Measurement and Control,
vol. 32, no. 2, pp. 155–169, 2010.

[6] H. Chen, S. Ding, X. Chen, L. Wang, C. Zhu, and W. Chen, “Global
finite-time stabilization for nonholonomic mobile robots based on
visual servoing,” International Journal of Advanced Robotic Systems,
vol. 11, no. 11, p. 180, 2014.

[7] S. Benhimane and E. Malis, “Homography-based 2d visual tracking
and servoing,” The International Journal of Robotics Research, vol. 26,
no. 7, pp. 661–676, 2007.

[8] A. Chiuso and G. Pillonetto, “System identification: A machine learn-
ing perspective,” Annual Review of Control, Robotics, and Autonomous
Systems, vol. 2, no. 1, pp. 281–304, 2019.

[9] W. Li and E. Todorov, “Iterative linear quadratic regulator design
for nonlinear biological movement systems,” in First International
Conference on Informatics in Control, Automation and Robotics,
vol. 2. SciTePress, 2004, pp. 222–229.

[10] D. G. Lowe, “Distinctive image features from scale-invariant key-
points,” International Journal of Computer Vision, vol. 60, pp. 91–110,
2004.


	Title Page
	page 2

	/projects/www/html/my/publications/docs/TR2025-094.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8


