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Abstract
While ASR achieves superhuman performance on clean benchmarks, it struggles in real-world
scenarios like meeting transcription, where word error rates exceed 35% versus under 3% on
clean data. This lecture examines the challenges of robust ASR for conversational speech,
including noise, reverberation, multiple speakers, and overlapped speech (>15% of meeting
duration). The lecture covers evaluation methodologies for long-form multi-speaker audio,
including concatenated minimum permutation WER (cpWER), and surveys key datasets
from AMI to current benchmarks like CHiME-7/8 and NOTSOFAR1. Technical approaches
are categorized into front-end methods (speech separation, beamforming, target speaker ex-
traction) and back-end methods (self-supervised features, serialized output training, target-
speaker ASR). Robust ASR remains an active research area with significant opportunities,
particularly as large language models enable new applications like automated meeting sum-
marization. Key challenges include speaker tracking, training-inference mismatches, and
integrating speech separation, diarization, and recognition components.
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• Overview of speech separation and enhancement (SSE)

• Single-channel SSE addressing permutation issue

• Signal-processing-based multi-channel SSE and dereverberation

• DNN-based multi-channel SSE

• Advanced topics

Agenda
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• Multiple utterances are overlapped and contaminated by noise and reverberation.

Challenges in Far-Field Conversational Speech
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• We aim to isolate desired speech signals from mixtures. 

Speech Separation and Enhancement (SSE)
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Speech Separation and Enhancement (SSE)
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• Acoustic propagation from the source position to a microphone can be characterized by a 
room impulse response (RIR) [Kuttruff2016].

– We typically assume the acoustic propagation is linear and time-invariant.

– RIR depends not only on the source and microphone positions but also room settings.

Acoustic Propagation

Image is from https://www.beat-kaufmann.com 8
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• Acoustic propagation from the source position to a microphone can be characterized by a 
room impulse response (RIR) [Kuttruff2016].

– We typically assume the acoustic propagation is linear and time-invariant.

– RIR depends not only on the speaker and microphone positions but also room settings.

• Microphone records the superposition of 𝐾 source images and noise. 

Mathematical Notation of Mixing Process  

9

: “image” of source 𝑘 at microphone 𝑚
: 𝑘th dry source signal

NoiseMixture
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• Audio signal is typically encoded to the TF domain by short-time Fourier transform (STFT).
– STFT Magnitude is easy to interpret.

– We can perform both single- and multi-channel processing efficiently in the STFT domain.

Time-Frequency (TF) Analysis as Encoding

10

Time-domain signal Sliding window STFT magnitude STFT phase

Recording Speech enhancement Play backSTFT Inverse STFT
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• Non-negative TF mask suppresses interference signals at each TF bin.

TF Masking [Lyon1983, Weintraub1985, Wang+2006] 
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Speech

Dog

Mixture

TF mask for enhancing speech
(White part will be emphasized!)

Output

TF masks have been extended from non-negative value 
to complex value, i.e., more processing freedom. 
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• Beamformer suppresses interference signals using spatial information.
– Popular beamformers retain signals coming from a specific direction (i.e., target speaker’s direction).

– Interference signals from other directions will be suppressed.

Beamforming (Linear Spatial Filtering) [Trees2004, Benesty+2008]
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• Beamformer suppresses interference signals using spatial information.
– Popular beamformers retain signals coming from a specific direction (i.e., target speaker’s direction).

– Interference signals from other directions will be suppressed.

Beamforming (Linear Spatial Filtering) [Trees2004, Benesty+2008]

13

Beamforming is realized by applying time-invariant filters 
and summing up the results from all channels.
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• Beamformer suppresses interference signals using spatial information.
– Popular beamformers retain signals coming from a specific direction (i.e., target speaker’s direction).

– Interference signals from other directions will be suppressed.

Beamforming (Linear Spatial Filtering) [Trees2004, Benesty+2008]
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In the STFT domain, this can be approximated by a 
frequency-band-wise inner product [Gannot+2017].    
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• Intrusive metrics require a ground-truth signal 
– These metrics have been widely used for benchmarking SSE methods.

– Ground-truth signals are accessible, when simulating mixtures by artificially summing up sources.

• Non-intrusive metrics are computed only from the enhanced/separated signals.
– These metrics are easy to use with the recordings under realistic situations. 

Performance Evaluation Metrics

15

SI-SDR    

SNR

SDR (WB)-PESQ (E)-STOI

ViSQOL

TorchAudio-Squim DNSMOS  UTMOS

WER
Spk. similarity

Signal-level Perceptual
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• Asteroid [Pariente+2020]: Focusing on SSE and is easy to use

• SpeechBrain [Ravanelli+2021]: Providing easy-to-start tutorials*

• ESPnet-SE [Li+2020, Lu+2022]: Supporting the end-to-end training of SSE and ASR modules

• Pyroomacoustics [Scheibler+2018]: Supporting RIR simulation via the image source method
– Several array signal processing techniques are also implemented.

Open Tools for SSE

* https://github.com/speechbrain/speechbrain/blob/develop/docs/tutorials/tasks/source-separation.ipynb 16
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• Overview of speech separation and enhancement (SSE)

• Single-channel SSE addressing permutation issue

• Signal-processing-based multi-channel SSE and dereverberation

• DNN-based multi-channel SSE

• Advanced topics
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• DNN predicts a mask for each speaker whose range is typically in [0, 1].

• Various ideal masks have been explored as targets.

• You can also use a loss function defined in the time domain. 

DNN-Based Mask Estimation [Wang+2018]

18

DNN

Wiener mask Phase-sensitive mask
(maximum SNR in real-valued masks)

Log magnitude
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• STFT/inverse STFT are replaced by trainable 1D convolution/deconvolution.
– These trainable encoder/decoder have a potential to improve the upper bound of masking.

– This direction was dominant from 2018, Conv-TasNet [Luo+2018] to 2022.

• Dual-path modeling [Luo+2020]

– The Encoded sequence is segmented to efficiently
handle huge number of time frames. 

Trainable Encoder/Decoder and End-to-End Training

19

Recording

Mask estimation
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• Temporal convolutional network (TCN):
– TCN typically considers the frequency axis of STFT as the “channel” of the 1D convolution.

– Dilation is doubled in each layer to increase receptive fields.

• LSTM/Transformer/Mamba:
– LSTM has been widely used and is still strong compared with other speech tasks.

– Transformer shows promising results when combined with local processing, but not as essential as in 
other speech tasks.

– Mamba’s efficiency with respect to the sequence length is suitable for SSE.

Progress in Network Architectures

20
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• DNN directly predicts complex STFT coefficients for each speaker [Wang+2020, 2021].

• TF dual-path modeling is widely used for complex spectral mapping [Yang+2022].
– Each time frame (or frequency band) is handled separately.

– Transformer with ConvSwiGLU works well as a sequence model [Saijo+2024].

SOTA Approach in Single-Channel SSE
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• The ground-truth signals are given as a set, and their order is not well-defined.

• Alignment between the ground-truth and estimates is required for computing the errors.

• Permutation-invariant-training (PIT) calculates the losses for all possible permutations and 
backpropagates the smallest loss [Kolbæk+2017].

Permutation Issue in Separation

22
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• The ground-truth signals are given as a set, and their order is not well-defined.

• Alignment between the ground-truth and estimates is required for computing the errors.

• Permutation-invariant-training (PIT) calculates the losses for all possible permutations and 
backpropagates the smallest loss [Kolbæk+2017].

Permutation Issue in Separation
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• DNN extracts the target speaker specified by a given cue [Delcroix+2018].
– There is no permutation issue during training.

– The DNN output is always one stream regardless of the number of speakers in a mixture.

Another Approach: Target Speaker Extraction (TSE)

24
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• DNN extracts the target speaker specified by a given cue [Delcroix+2018].
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– The DNN output is always one stream regardless of the number of speakers in a mixture.

Another Approach: Target Speaker Extraction (TSE)
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• Room impulse responses (RIRs) are convoluted with dry sources in the time domain.

• This convolutive process is approximated by an instantaneous one with STFT.

• We typically aim to predict the source image at the reference channel                 . 

Mixing Process of Multi-Channel Audio

27

Transfer function in the frequency domain 
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• Beamformer suppresses interference signals using spatial information.
– Popular beamformers retain signals coming from the direction of the target speaker.

– Interference signals from other directions will be suppressed.

Beamforming (Linear Spatial Filtering) [Trees2004, Benesty+2008]

28
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In the STFT domain, this can be approximated by 
a frequency band-wise inner product.    

Beamformer    
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• DS beamformer relies on a time-difference-of-arrival (TDoA).
– Sound from the right side reaches a microphone on the right side faster.

– TDoA can be calculated from the array geometry and sound source direction.

• Relative transfer function (RTF) is calculated from the TDoA. 
– The RTF describes the difference in sound propagation relative to the reference channel.

Delay-and-Sum (DS) Beamformer (1/2)

29
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• DS beamformer compensates for TDoA of the target signal and takes the average. 

• The target signal is preserved while the signals from other directions are suppressed.
– Interference signals are averaged with phase differences and cancel each other.

Delay-and-Sum (DS) Beamformer (2/2)

30

DS beamformer depends only on RTF (or steering 
vector)  and is independent of the observed signals.
→ Its performance is typically insufficient.
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• Minimum variance distortionless response (MVDR) beamformer minimizes the power of 
interference signals in the beamforming output while preserving the target signal.

– MVDR beamformer adaptively steers null toward other sources.

–  It has been widely used as a front-end for ASR due to its distortionless property.

MVDR beamformer 

31

Analytic solution

Called spatial covariance matrix (SCM)
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• The SCM of the target signal is easier to estimate than RTF in some cases.

• The MVDR beamformer has been reformulated with SCMs.

Another Derivation of MVDR beamformer 

32

One-hot vector indicating the 
reference channel 
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• The SCM of the target signal is easier to estimate than RTF in some cases.

• The MVDR beamformer has been reformulated with SCMs.

Another Derivation of MVDR beamformer 

33

One-hot vector indicating the 
reference channel 

How to estimate the SCMs and/or RTFs? 

1. We can compute SCMs and RTFs from single-source segments.
2. Blind source separation (BSS) aims to estimate the spatial and source

information only from the observed mixtures 
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• Complex Gaussian mixture model (cGMM) [Ito+2014,Otsuka+2014]

– STFT coefficients of the observed signal are represented as the “mixture” of Gaussians.

– cGMM assigns one source to each TF bin motivated by the sparseness of speech in the STFT domain.

• The distribution can be seen like this (not rigorous).

BSS Based on Spatial Probabilistic Models

34

Source-wise complex Gaussian distribution 
with time-varying SCMMixing weight
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• cGMM’s data generation process is as follows:

• EM algorithm has been used for maximum-likelihood estimation of the parameters.

• EM algorithm alternately updates the posterior of the indicator and the parameters to 
maximize the evidence lower bound (ELBO).

Overview of cGMM Algorithm

35

Latent speaker indicator

Parameters

E-step
Updating the variational 
posterior of the indicator   

M-step
Updating the parameters 
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• E-step maximizes the posterior of the indicator with the current parameters.

• M-step maximizes the ELBO for the parameters with the given variational posterior. 

Details of CGMM Algorithm

36
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• GSS guides a variant of cGMM, called cACGMM, by using diarization results.
– The diarization results provide the number of speakers in a mixture.

– The results tie together all the frequency bands, which is helpful in avoiding the permutation problem.

• GSS has been widely used in the recent CHiME challenges with its accelerated version.

Guided Source Separation (GSS) [Boeddeker+2018]

37

1 when the 𝑘′th speaker is active, 0 otherwise
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• Independent vector analysis (IVA) [Kim+2006, Hiroe+2006]:
– IVA assumes the determined scenario, i.e., # of spks. = # of mics., and aims to estimate the inverse of 

the mixing matrix (demixing matrix).

– IVA jointly estimates the demixing matrix and the source activity based on the statistical independence 
between sources and that the source followed time-varying Gaussian distribution.

– Majorization minimization algorithms have been widely used to solve the optimization 
problems of IVA and its variants.

Other BSS Techniques

38

Ideally, the demixing matrix will converge to the inverse of the mixing matrix. 
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• Reverberation degrades speech intelligibility and makes speech recognition harder.

• WPE suppresses the late reverberation by predicting it from the past observation.

Weighted Prediction Error (WPE) for Dereverberation [Nakatani+2010]

39

WPE has been widely used in the 
CHiME challenges.  

Image is from https://www.beat-kaufmann.com
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• Pros: We do not have to care about the train-test mismatch.
– Signal-Processing-Based methods adapt the model to each scene.

– Spatial probabilistic models work well as a prior.

• Cons: The assumption in spatial models might not be satisfied in complex situations.
– Many models assume the scene is static, i.e., speakers do not move around.

– Manually-designed speech models, e.g., sparsity, have a gap from real speech characteristics.

• Cons: Signal-Processing-Based methods rely too much on the spatial information.
– Their performance is limited when the number of microphones are limited.

– IVA variants are not applicable to the underdetermined situation.

Pros and Cons in Signal-Processing-Based Methods 

40
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• TF masks estimated by a DNN have been used to compute SCMs.
– TF masks indicate the TF bins dominated by the target source.

• We can use DNNs pre-trained on single-channel data with a mask-level loss.

Application of Mask Estimation Network [Heymann+2016, Erdogan+2016]

42
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• Ideal masks for single-channel TF masking are not optimal for estimating SCMs.

• We can backprop a signal-level loss through beamforming.
– The DNNs will be optimized for the SCM estimation.

– In my experience, TF masks become more sparse (selecting TF bins not contaminated by other sources).

• Mask-based beamforming inherits the pros and cons of beamforming.
– Pros: It is robust to the domain mismatch and compatible with different microphone arrays.

– Cons: Its performance is still limited in underdetermined situations with diffuse noise. 

End-to-End Training of Mask-based beamforming

43
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• A DNN directly estimates complex STFT coefficients.
– Input: Real and imaginary part of the mixture at all the channels.

– Output: Real and imaginary part of each source image at the reference channel.

• DNN performs time-varying non-linear spatial processing.
– Pros: It can suppress the interference sources more aggressively than classical beamforming.

– Cons: It introduces processing artifacts that are harmful for ASR.

– Cons: It is less robust to the domain mismatch, e.g., array-geometry, speaker-microphone distances, … 

Multi-Channel Complex Spectral Mapping [Wang+2020,2021]

44
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• We would like to handle various array configurations with a single model.
– Concatenation of STFTs for each channel can not generalize to different numbers of microphones.

• TAC uses average pooling across channels to handle arbitrary numbers of microphones.
– TAC transforms features in a channel-wise manner and takes the average of them.

– The averaged feature is further processed and concatenated with the channel-wise feature.

Transform-Average-Concatenate (TAC) [Luo+2020]

45
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• A DNN for mask estimation is trained based on the likelihood of cACGMM.
– We need only multi-channel mixtures as training data, i.e., unsupervised training.

• The DNN is expected to learn speech characteristics and overlapping patterns.
– This approach has a potential to outperform pure signal-processing-based methods. 

Unsupervised Training with The cACGMM objective [Drude+2019]

46

Mask estimation DNN Pooling

M-step E-step Likelihood

Mask-based beamforming

CHiME-4 WER (%) 

cACGMM 13.06

DNN Supervised 7.71

DNN Unsupervised 7.80
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• Neural FCA [Bando+2021] trains a large VAE in which the decoder is based on a well-
developed spatial probabilistic model (FCA).

– Its objective is reconstruction of the input mixture like VAE (the maximization of ELBO).

– Each source is estimated by time-varying multi-channel Wiener filter.

Unsupervised Training with Full-Rank Component Analysis (FCA)

Figure is from https://speakerdeck.com/yoshipon/eusipco-2023-neural-fast-full-rank-spatial-covariance-analysis-for-blind-source-separation 47
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• RAS leverages two-channel mixtures to train a monaural separation model [Aralikatti+2023].

• The DNN is trained to separate the left-channel mixture so that the right-channel mixture 
can be reconstructed from the separated sources.

• RAS and its variants can train any SSE
models (complex spectral mapping).

Unsupervised Training Using Reverberation as Supervision (RAS)

48

Separate mixture

Compensate the RTFs Take the consistency with the 
right-channel as a loss function

SI-SDR [dB] PESQ

Enhanced RAS [Saijo+2024] 13.9 3.55

Supervised 15.8 3.89
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• SSE models trained with popular signal-level loss is not optimal as a frontend for ASR.
– Artifacts caused by SSE is very harmful for ASR [Iwamoto+2022].

• Integrating SSE and ASR models into an end-to-end system [Ochiai+2017, von neumann+2020].
– The SSE model will be optimized as a front-end for ASR.

– The ASR model will be aware of artifacts from imperfect separation.

Overview of SIMO- and MIMO-IRIS [Masuyama+2025]

50
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• The modularity allows us to leverage pre-trained models.

• We first pre-train the SSE and ASR models with popular loss functions.

• Then, the SSE and ASR models are integrated and fine-tuned in an end-to-end manner.

Training of SIMO- and MIMO-IRIS

51
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• SDR and WER under a noisy reverberant condition.
– The integration of the SOTA models works well, at least on static in-domain data.

– Joint fine-tuning improved WER further but degraded SDR (a signal-level SSE metric).

– WavLM fine-tuning easily overfitted to training data compared with SSE fine-tuning in my experience. 

Results of SIMO-/MIMO-IRIS on WHAMR! dataset

52

Fine-tuned modules SDR [dB] WER (%)

Monaural TF-GridNet / WavLM No 9.0 11.6

Monaural TF-GridNet / WavLM ASR 9.0 5.7

Monaural TF-GridNet / WavLM SSE, ASR 4.0 3.1

Two-channel TF-GridNet / WavLM No 11.1 8.3

Two-channel TF-GridNet / WavLM ASR 11.1 3.9

Two-channel TF-GridNet / WavLM SSE, ASR 7.9 2.3

Mask-based beamforming / Fbank [Zhang+2022] SSE, ASR -2.27 28.9
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• We would like to separate any types of sound of interest.
– Music source separation: Vocal, Bass, Drums, Other instruments

– Universal source separation: Sound effects (dog barking, wind noise, …)

– Cinematic audio source separation: Speech, Music, Mixture of sound effects/events

General Audio Source Separation

This demo is provided by Gordon Wichern 53
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• TUSS controls separation outputs with learnable prompts.
– Various separation tasks are covered by combinations of prompts.

– The cross-prompt module performs MHSA across prompts and embeddings of the mixture.

Task-Aware Unified Source Separation (TUSS) [Saijo+2025]

54
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• TUSS output with prompts: <Speech>, <Music-mix>,  <SFX-mix>

TUSS Demo (1/3)
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• TUSS output with prompts: <Speech>, <Vocals>, <Other inst.>, <SFX-mix>

TUSS Demo (2/3)
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• TUSS output with prompts: <Speech>, <Vocals>, <Other inst.>, <SFX>, <SFX>

TUSS Demo (3/3)
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• Performance of SSE has been dramatically improved.
– PIT enables us to train speaker separation networks in a supervised manner.

– Complex spectral mapping with TF dual-path modeling has shown promising results on benchmarks.

• Hybrids of DNNs and signal processing are still preferred for separating real conversations.
– GSS, cACGMM conditioned by (neural) diarization, is a standard in the recent CHiME challenge series.

• Unsupervised training based on spatial information is an active research topic.
– Spatial probabilistic models (cGMM and FCA) have been leveraged to derive loss functions.

– RAS and its variants are based on a weaker non-probabilistic model.

– Unsupervised training with single-channel data is also an active topic, e.g., MixIt [Wisdom+2020].

• Real-world data is still challenging!
– Domain mismatch between artificially generated mixtures and real far-field conversation recordings

– Dynamic situation (moving speakers and/or microphones, variable number of speakers)

Conclusion

58
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