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bio-mass monitoring applications in large water bodies.
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Dynamic Sensor Scheduling for Spatio-temporal Monitoring of Water Bodies

Vedang M. Deshpande†, Abraham Vinod

Abstract— We present a formulation for dynamic sensor
scheduling for environment monitoring applications using
multi-agent systems. The domain of interest is represented
by a parameterized state-space model which captures spatio-
temporal correlations of the environment. The parameters of
the model are adapted online as new measurements become
available. We introduce an improved greedy approach that
simultaneously determines the optimal sensing locations and
assigns agents to these locations; and this approach minimizes
travel costs incurred by the mobile agents while satisfying
the dynamic reachability constraints. We provide performance
guarantees for the algorithms under certain conditions and
derive their polynomial-time computational complexities. We
demonstrate the proposed approach for bio-mass monitoring
applications in large water bodies.

I. INTRODUCTION

Monitoring of environmental processes using mobile
agents has gained substantial attention in recent years [1]–
[3]. Such environmental processes are spatio-temporally cor-
related and often span large geographical areas. However, the
resources available for data collection and monitoring, such
as sensors and mobile agents (e.g., aerial drones, ground and
underwater vehicles), are typically limited. This raises an im-
portant question: how can we efficiently utilize these limited
resources to achieve optimal monitoring performance?

Many studies have tackled this problem [4], [5], offering
different approaches to address its various aspects includ-
ing energy aware motion planning [4], informative path
planning [5]. Recently, there has been a significant focus
on development of data-driven methods for monitoring of
spatio-temporal processes that are difficult to model using
physical principles [5]. However, these methods may require
large amount of data collection or yield suboptimal results
for processes that can be modeled, at least partially, using
physics.

In this paper, we consider the monitoring problem for
a class of spatio-temporal processes which can be repre-
sented by state-space models wherein certain aspects of the
model may be unknown or subject to uncertainties. This
is motivated by the characteristic challenges encountered
in bio-mass monitoring applications in large water bodies.
Monitoring, prediction and control of bio-mass (e.g. algae
and bacteria) in both natural and man-made water bod-
ies is an important problem because unchecked bio-mass
growth may pose serious threats to the public health and
infrastructure [6], [7]. Consequently, several previous studies
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have dedicated efforts to develop predictions models of bio-
mass growth [6], [8], [9]. However, several parameters of
these models may be subject to uncertainties and require
real-world measurements for model calibration efforts and
accurate predictions [9].

Remote satellite images of the water bodies are routinely
used for monitoring algal blooms over large geographical
areas [7]. However, such measurements may be expensive to
obtain, often affected by the weather conditions and provide
only preliminary guidance for deploying additional local
monitoring resources [7]. Therefore, monitoring efforts have
to rely on physically collected samples from water bodies
for accurate measurements. In practice, locations of physical
measurements are often fixed a priori or selected randomly
[10], which may lead to sub-optimal monitoring performance
over longer durations. How to optimally deploy a dynamic
team of mobile agents for the bio-mass monitoring task –
remains largely an unexplored research area.

To this end, we present a formulation to optimally monitor
a class of spatio-temporal processes represented by state-
space models using a team of mobile agents. The pri-
mary contribution this work is the development of greedy
algorithms that concurrently determine the optimal sens-
ing locations and assigns agents to these locations. This
approach minimizes travel costs while satisfying the dy-
namic constraints imposed on the mobile agents. We provide
performance guarantees for the algorithms under certain
conditions and derive their polynomial-time computational
complexities.

The greedy methods have been widely used for solving
sensor/actuator selection problems [11]–[14] because they
provide tractable solutions to otherwise intractable NP-hard
combinatorial optimization problems. These methods also
enjoy certain performance guarantees [15]. The key novelty
of this work lies in the explicit integration of dynamic
constraints imposed on mobile agents into the greedy al-
gorithm, ensuring that the chosen sensor locations result in
a dynamically feasible assignment for the agents.

II. PROBLEM FORMULATION

Consider a spatio-temporal environment, i.e., an environ-
ment where quantities of interest varies both in space and
time. Denoting the spatial distribution of the quantites of
interest by the vector 𝑥𝑘 ∈ R𝑛𝑥 , we model its temporal
evolution,

𝑥𝑘+1 = 𝑓 (𝑥𝑘 , 𝑢𝑘 ;𝜃) + 𝑤𝑘 , (1)

where the evolution function 𝑓 (·) is parameterized by the
parameter vector 𝜃 ∈ R𝑛𝜃 which may be unknown. 𝑢𝑘 ∈ R𝑛𝑢



denotes known external signals that affect the process evo-
lution and 𝑤𝑘 ∈ R𝑛𝑥 denotes additive zero mean Gaussian
uncertainty of covariance 𝑄𝑘 which may arise due to external
disturbances or unmodeled process dynamics.

The process model (1) may arise as a result of spatio-
temporal discretizations of partial differential equations
(PDEs) or ordinary differential equations (ODEs) that de-
scribe the underlying process over continuous domains, e.g.,
see (18) in Section IV. The process model (1) admits a broad
class of spatio-temporal environmental processes including
bio-mass growth in water bodies [9].

The monitoring of processes characterized by (1) entails
accurate dynamic estimation of the state vector 𝑥𝑘 and the
parameters 𝜃 using limited sensor data. We assume the
following measurement model.

𝑦
{𝑖}
𝑘

= 𝑐⊤𝑖 𝑥𝑘 + 𝜂
{𝑖}
𝑘
, (2)

where 𝑦
{𝑖}
𝑘
∈ R denotes the measurement obtained from

the 𝑖th sensor and 𝑖 ∈ 𝒮, and the set 𝒮 := {1, 2, · · · 𝑛𝒮}
of cardinality |𝒮| = 𝑛𝒮 denotes the set of all available
sensors. 𝜂{𝑖}

𝑘
∈ R denotes the zero mean Gaussian noise

with covariance 𝜎2
𝑖

that corrupts the sensor measurement.
The sensor measurement model is assumed to be linear for

the simplicity of discussion and the vectors 𝑐𝑖 are assumed
to be free of uncertainty as sensor measurement models are
typically known. However, these assumptions can be readily
relaxed in the technical details presented in the following
sections.

Since 𝑥𝑘 denotes the process state variables discretized
over a spatial grid, the elements of 𝑥𝑘 correspond to the pro-
cess variables at different grid locations. Therefore, sensors
in the set 𝒮 may correspond to different locations where a
measurement can be obtained. Since environmental processes
are typically modeled over large geographical areas, the
number of total available sensors or sensing locations in
𝑛𝒮 can be very large. However, the number of obtainable
measurements is often constrained by the limited resources,
i.e., the availability of mobile agents (e.g., aerial drones or
underwater vehicles) that travel to specific locations to obtain
the measurements.

In general, identifying an optimal time-varying (sub)set
of sensors (or sensing locations) that provides best moni-
toring or estimation performance over the entire monitoring
duration is non-trivial because it is a combinatorial NP-hard
problem. For brevity of discussion, we restrict the problem
scope wherein an agent can obtain a measurement from at
most one sensing location at each time step. Moreover, each
agent must be assigned a dynamically feasible sensing task
at each time step to ensure full utilization of the available
mobile agents. Therefore, in addition to optimizing the
estimation performance, we are also interested in identifying
a dynamically feasible assignment of agents to the sens-
ing locations. Furthermore, agent assignments incur some
assignment-costs, e.g., cost of travel from current location to
the next assigned location. Therefore, it is also of interest
to identify an agent-sensor assignment that incurs minimal

travel costs. Finally, this problem of identifying the sensors
and tasking the agents must be dynamically solved at every
time step as the process (1) evolves over time. To this end,
we tackle the problem of dynamic sensor scheduling which
is stated below.

Problem 1. Design a tractable, iterative algorithm that at
time step 𝑘 determines an optimal sensor subset 𝒮𝑘 of
cardinality 𝑁ag that: (i) minimizes the uncertainty in the
estimates of 𝑥𝑘 and 𝜃; (ii) yields a dynamically feasible
assignment of agents to the identified sensing locations; and
(iii) incurs a minimal travel cost.

A. Data Assimilation using EKF

We consider an extended Kalman filter (EKF) for assim-
ilating sensor measurements and estimating the state vector
𝑥𝑘 and parameters 𝜃 [16]. We rewrite (1) and (2) in the
following form that is amenable for simultaneous state and
parameter estimation.

�̃�𝑘+1 =

[
𝑥𝑘+1
𝜃𝑘+1

]
=

[
𝑓 (𝑥𝑘 , 𝑢𝑘 ;𝜃𝑘)

𝜃𝑘

]
= 𝑓 (�̃�𝑘 , 𝑢𝑘) + �̃�𝑘 (3a)

𝑦
{𝑖}
𝑘

= 𝑐𝑖
⊤ �̃�𝑘 + 𝜂{𝑖}𝑘 , (3b)

where �̃�𝑘 :=
[
𝑥⊤
𝑘

𝜃⊤
𝑘

]⊤
is the augmented state vector to be

estimated, �̃�𝑘 denotes the augmented zero-mean Gaussian
process uncertainty with block-diagonal covariance matrix
�̃�𝑘 := blkdiag(𝑄𝑘 , 𝑄

𝜃
𝑘
). The noise covariance 𝑄𝜃

𝑘
corre-

sponding to the parameters is typically assigned a small
value. Furthermore, the sensor measurement model is up-
dated to account for additional states in the augmented state
vector, i.e, 𝑐𝑖 =

[
𝑐⊤
𝑖

0⊤𝑛𝜃
]⊤

, where 0𝑛𝜃 denotes a zero vector
in R𝑛𝜃 .

The posterior and prior distributions of the state estimate at
time 𝑘 are assumed to be Gaussian and characterized by the
mean-covariance pairs (�̃�+

𝑘
, �̃�+

𝑘
) and (�̃�−

𝑘
, �̃�−

𝑘
) respectively.

The EKF equations to estimate the augmented vector �̃�𝑘 are
presented next.

Using the augmented model (3), the equations correspond-
ing to the prediction or time-update step of EKF are given
as follows:

�̃�−𝑘 = 𝑓 (�̃�𝑘−1 , 𝑢𝑘−1) (4a)

�̃�−𝑘 = �̃�𝑘−1𝑃
+
𝑘−1�̃�

⊤
𝑘−1 + �̃�𝑘−1 (4b)

where

�̃�𝑘 :=
𝜕 𝑓

𝜕�̃�
(�̃�𝑘 , 𝑢𝑘) =

[
𝜕 𝑓
𝜕𝑥 (𝑥𝑘 , 𝑢𝑘 ;𝜃𝑘)

𝜕 𝑓
𝜕𝜃 (𝑥𝑘 , 𝑢𝑘 ;𝜃𝑘)

0 𝐼

]
(5)

and 𝐼 denotes an identity matrix of the suitable dimension.
Given the prior estimate (4), the posterior estimate is

obtained by the following measurement update step of the
EKF

�̃�𝑘 = (�̃�−𝑘 �̃�
⊤
𝑘 )(�̃�𝑘 �̃�

−
𝑘 �̃�
⊤
𝑘 + 𝑅𝑘)

−1 (6a)

�̃�+
𝑘
= �̃�−𝑘 + �̃�𝑘

(
𝑦𝑘 − �̃�𝑘 �̃�

−
𝑘

)
(6b)

�̃�+
𝑘
= (𝐼 − �̃�𝑘�̃�𝑘)�̃�−𝑘 (6c)



where

�̃�𝑘 =

[
𝑐𝑖1 𝑐𝑖2 · · ·
0 0 · · ·

]⊤
(7)

is the measurement matrix corresponding to the set of
selected sensors 𝒮𝑘 = {𝑖1 , 𝑖2 , · · · 𝑖𝑁ag} ⊆ 𝒮 at time step 𝑘.

B. Estimation Quality

The uncertainty in the estimate �̃�𝑘 is commonly quantified
using the volume of the confidence ellipsoid centered at the
mean. This volume, characterized by the determinant of the
covariance matrix of the Gaussian distribution, serves as a
widely accepted measure of estimation uncertainty [12].

Accordingly, we define the following objective

𝐽est(𝒮𝑘) = logdet
(
𝑃+
𝑘

)
, (8)

which we aim to minimize. This objective quantifies the
uncertainty in posterior filter estimates as a function of the
sensor set 𝒮𝑘 selected at time step 𝑘. Notably, the log-
determinant function, logdet(·), is a submodular function of
selected sensors, which allows us to provide certain perfor-
mance guarantees for the greedy algorithms (see Section III).

C. Dynamical Constraints and Cost of Travel

We now turn our attention to ensuring that the sensor
schedule generated is feasible for the mobile agents team.
Specifically, we restrict the possible sensor locations in
consideration to only those locations that are reachable from
the current agent locations. In other words, these reachability
constraints enforce physical constraints arising from dynam-
ics of the mobile agents.

For a grid world, given the current agents team location,
we can compute the set of locations reachable by the team
with a pre-specified number of steps 𝑁steps using any of
the existing shortest path algorithms, e.g., Dijkstra, A★ [17].
Here, lower 𝑁steps facilitates more frequent measurements,
while larger 𝑁steps allows for broader coverage of the envi-
ronment. As a side-product, we also obtain 𝐷𝑖 𝑗 , the shortest
distance between the mobile agent 𝑖’s current location and a
candidate sensor location 𝑗 in the grid.

In our implementation, we assume that the locations
or grid-cells that are within 𝑁steps steps from the current
location of an agent are reachable, where moving to an
adjacent cell counts as one step and moving to a diagonal
location is not allowed.

Thus, for a given location of the 𝑖th mobile agent, we can
identify 𝒞𝑖 – the coverage set of the 𝑖th agent, i.e., the set
of all sensors that are reachable from its current location. In
particular,

𝒞𝑖 := { 𝑗 | 𝑗 ∈ 𝒮 , 𝐷𝑖 𝑗 ≤ 𝑁steps}. (9)

For clarity of discussion, we denote assignment of 𝑖th agent
to the sensing location 𝑗 ∈ 𝒮 by an ordered tuple (𝑖 , 𝑗). We
next define dynamically feasible assignment as follows.

Definition 1. An assignment set

𝒜𝑘 := {(𝑖 , 𝑗𝑖)| 𝑗𝑖 ∈ 𝒮 , 𝑖 = 1, 2, · · · , 𝑁ag} (10)

is said to be dynamically feasible if 𝑗𝑖 ∈ 𝒞𝑖 ∀𝑖 ∈
{1, 2, · · · , 𝑁ag}, and 𝑗𝑖1 ≠ 𝑗𝑖2 ∀𝑖1 , 𝑖2 ∈ {1, 2, · · · , 𝑁ag}

The definition essentially enforces the constraint that every
agent gets assigned a sensor that lies in its coverage set, and
no two agents get assigned the same sensor location.

The cost of travel for the assignment (𝑖 , 𝑗) is simply 𝐷𝑖 𝑗 .
Therefore, the total cost of travel for an assignment set
defined in (10) is given by

𝐽travel(𝒜𝑘) =
∑
𝑖

𝐷𝑖 𝑗𝑖 (11)

which we are interested in minimizing. This measure can
be readily extended to incorporate additional factors such as
energy consumption, battery limitations, travel duration, and
other operational costs [18].

In this work, we make the following assumptions — (i) the
sensor scheduling need not account for collision avoidance
between agents, and (ii) there are no obstacles/no-fly zones
in the environment. The first assumption may be relaxed in
practice by considering multi-agent motion planners at the
cost of increased computational effort. We make the second
assumption for the sake of brevity, and can be easily relaxed
by appropriately defining coverage sets for the agents.

III. MAIN RESULTS

Considering Problem 1, and the objectives (8) and (11),
we state the bi-criterion optimization problem as follows

min
𝒜𝑘

[
𝐽est
𝐽travel

]
subject to 𝒜𝑘 being dynamically feasible.

(12)

It is noted that the set of selected sensor 𝒮𝑘 is already a
part of𝒜𝑘 , hence, it is not written as an explicit optimization
variable in (12). Problem (12) is a vector optimization which
can not be directly solved. A standard approach to solve
such problems is to scalarize of the objective function [19].
However, such an approach may not be tractable in this case
as 𝒜𝑘 is a combinatorial variable. Instead, we introduce
a greedy algorithm for simultaneous sensor selection and
agent assignment which yields a feasible solution to (12)
in polynomial time.

The remainder of this section is structured as follows.
First, we briefly review the classical greedy approach for
minimization of only 𝐽est. Next, we summarize an improved
greedy approach to solve (12) and discuss its computational
complexity.

A. Minimizing 𝐽est

In this section, we briefly review the classical approach
for minimization of 𝐽est. That is, we only consider the first
objective in (12) while ignoring 𝐽travel and the assignment
constraints.

First, we note that

arg min
𝒮𝑘 , |𝒮𝑘 |=𝑁ag

𝐽est(𝒮𝑘) = arg max
𝒮𝑘 , |𝒮𝑘 |=𝑁ag

𝐽′est(𝒮𝑘) (13)



where

𝐽′est(𝒮𝑘) :=logdet
(
(�̃�+

𝑘
)−1) (14)

=logdet ©­«(�̃�−𝑘 )−1 +
∑
𝑖∈𝒮𝑘

𝜎−2
𝑖 𝑐𝑖𝑐

⊤
𝑖

ª®¬ (15)

which follows from the information form of Kalman update
[16], and 𝜎−2

𝑖
𝑐𝑖𝑐
⊤
𝑖

denotes the information matrix of the
sensor 𝑖 ∈ 𝒮𝑘 .

We note the following result.

Lemma 1. The function 𝐽′est : 2𝒮 ↦→ R is a submodular
monotonic function ∀𝒮𝑘 ⊆ 𝒮.

Proof. The proof follows similar arguments as in [12,
Lemma 1]. □

Maximization of 𝐽′est corresponds to the maximization of
monotonic submodular function. Therefore, classical greedy
methods are guaranteed to yield a solution that is within
a factor of (1 − 1/𝑒) of the optimal solution [15]. We
summarize the classical greedy approach [12] in Algorithm 1
for maximization of 𝐽′est.

Algorithm 1 GREEDY SENSOR SELECTION (CLASSICAL)

1: Input: 𝒮
2: Initialize: �̃�(+)

𝑘
= �̃�−

𝑘
, 𝒮𝑘 = ∅

3: for 𝑗 = 1, 2, · · · , 𝑁ag do
4: 𝒮avail

𝑘
← 𝒮 \𝒮𝑘

5: 𝑠∗ ← arg max𝑠∈𝒮avail
𝑘

logdet
(
(�̃�+
𝑘
)−1 + 𝜎−2

𝑠 𝑐𝑠 𝑐
⊤
𝑠

)
6: 𝒮𝑘 ← 𝒮𝑘 ∪ {𝑠∗}
7: (�̃�+

𝑘
)−1 ← (�̃�+

𝑘
)−1 + 𝜎−2

𝑠∗ 𝑐𝑠∗ 𝑐
⊤
𝑠∗

8: end for

In each iteration of the greedy algorithm, a sensor is
selected that results in in the largest increment in the ob-
jective 𝐽′est. This is effectively implemented by updating the
covariance matrix in the last line of the algorithm for every
selected sensor which utilizes the sequential measurements
assimilation of the Kalman update [16] for a simplified
evaluation of objective increments in Step 5.

Algorithm 1 ignores 𝐽travel and does not guarantee the
dynamic feasibility of the chosen sensor set. In the following
subsection, we present an improved greedy algorithm that
addresses these limitations of Algorithm 1.

B. Simultaneous Greedy Sensor Selection and Agent Assign-
ment

We introduce a greedy approach in Algorithm 2 to solve
(12). A greedy selection of 𝒮𝑘 to maximize the objective
function 𝐽′est entails, in each iteration, selection of one sensor
that results in the largest increment in the objective function,
until 𝑁ag sensors have been selected. Heuristics incorporated
in Algorithm 2 aim to minimize the travel cost while guar-
anteeing that the selected sensor set yields a dynamically
feasible assignment of agents and the sensors.

The input to Algorithm 2 is the coverage sets of all agents
at the current time step as defined in (9), and it runs for 𝑁ag

iterations to select one sensor in each iteration. The set of
available sensors to choose from, 𝒮avail

𝑘
, is determined to be

all sensors in
⋃𝒞 except 𝒮𝑘 – the sensors already selected

in the previous iterations of the algorithm. This ensures that
no sensor gets selected more than once.

In lines 5–7 of the algorithm, a sensor is selected that
yields the maximum increment in the objective value, and
ties, if any, are settled arbitrarily; and the covariance matrix
is updated for the selected sensor.

In lines 8–11 of the algorithm, the selected sensor is
assigned to one of the nearest agents that is currently un-
tasked and reachable from the selected sensor. Note that
𝐷𝑖𝑠∗ denotes the distance of 𝑖th agent from the sensor 𝑠∗,
and it is our objective to minimize the travel cost incurred
by the mobile agent. The coverage set of the assigned agent
is removed from 𝒞 in line 11 to ensure that each agent gets
assigned exactly one sensor.

Algorithm 2 GREEDY SENSOR SELECTION WITH SIMULTA-
NEOUS AGENT ASSIGNMENT

1: Input: 𝒞 = {𝒞1 , 𝒞2 · · · 𝒞𝑁ag }
2: Initialize: �̃�(+)

𝑘
= �̃�−

𝑘
, 𝒮𝑘 = ∅, 𝒜𝑘 = ∅

3: for 𝑗 = 1, 2, · · · , 𝑁ag do
4: 𝒮avail

𝑘
← ⋃𝒞 \𝒮𝑘

5: 𝑠∗ ← arg max𝑠∈𝒮avail
𝑘
(𝑐⊤𝑠 �̃�+𝑘 𝑐𝑠 )/𝜎

2
𝑠

6: 𝒮𝑘 ← 𝒮𝑘 ∪ {𝑠∗}

7: �̃�+
𝑘
← �̃�+

𝑘
− �̃�+

𝑘
𝑐𝑠∗

(
1 + 𝑐⊤

𝑠∗ �̃�
+
𝑘
𝑐𝑠∗

𝜎2
𝑠∗

)−1
𝑐⊤𝑠∗ �̃�

+
𝑘

8: 𝒩 ← {𝑖 | 𝑠∗ ∈ 𝒞𝑖 ∈ 𝒞}
9: 𝑖∗ ← arg min𝑖∈𝒩 𝐷𝑖𝑠∗

10: Task agent 𝑖∗ to sense 𝑠∗: 𝒜 ← 𝒜 ∪ {(𝑖∗ , 𝑠∗)}
11: 𝒞 ← 𝒞\{𝒞𝑖∗ }
12: end for

Note that Steps 5–7 of Algorithms 1 and 2 are equivalent.
Using matrix determinant lemma,

det
(
(�̃�+

𝑘
)−1 + 𝜎−2

𝑖 𝑐𝑖𝑐
⊤
𝑖

)
=

(
1 +

𝑐⊤
𝑖
�̃�+
𝑘
𝑐𝑖

𝜎2
𝑖

)
det

(
(�̃�+

𝑘
)−1) ,

(16)

the Step 5 of Algorithm 1 can be equivalently reduced to
Step 5 of Algorithm 2. Similarly, Step 7 of Algorithm 1 can
be equivalently written in standard covariance update form
shown in Step 7 of Algorithm 2. These equivalent substitu-
tions reduce the overall time complexity of the algorithm,
which is discussed next.

Proposition 1. Algorithm 2 has the worst-case time com-
plexity of

𝒪
(
𝑁ag𝑛𝒞(𝑛𝑥 + 𝑛𝜃)2 + 𝑛𝒞𝑁3

ag
)
,

where 𝑛𝒞 := |⋃𝒞|.
Proof. Step 5 is a quadratic term with a complexity of
𝒪((𝑛𝑥 + 𝑛𝜃)2). This term is computed 𝒪(𝑛𝒞) times in each
iteration. Step 7 contains outer product of vectors and matrix
addition, both of which have a computational complexity of
𝒪((𝑛𝑥 + 𝑛𝜃)2). Therefore, Steps 5 and 7 together have a



total complexity of 𝒪(𝑛𝒞(𝑛𝑥 + 𝑛𝜃)2) per iteration. In each
iteration, Step 8 checks set membership which has the worst-
case complexity of 𝒪(𝑛𝒞𝑁2

ag). Step 9 finds the minimum in
a vector with the worst-case complexity of 𝒪(𝑛𝒞). There-
fore, total complexity of all iterations of Algorithm 2 is
𝒪(𝑁ag𝑛𝒞(𝑛𝑥 + 𝑛𝜃)2 + 𝑛𝒞𝑁3

ag). □

The heuristics incorporated in Algorithm 2 to satisfy the
dynamic feasibility of assignment mean that its optimality
guarantees are not yet established. Nevertheless, it performs
well in practice, as evidenced in the numerical results section.
However, some performance guarantees can be offered under
specific conditions, which are discussed in the following
subsection.

C. Common Coverage Sets

We consider a special scenario in which coverage sets are
identical for all agents, i.e., 𝒞1 = 𝒞2 = · · · = 𝒞𝑁ag . Such a
scenario may arise when all agents are located in the close
proximity of each other or when allowable 𝑁steps used in
identifying reachable sets is sufficiently large to cover all
candidate sensor locations.

When 𝒞1 = 𝒞2 = · · · = 𝒞𝑁ag , we can decouple the
problem of sensor selection from agent assignment since any
set 𝒮𝑘 ⊆

⋃𝒞 of cardinality 𝑁ag will result in a dynamically
feasible assignment. In such a case, we may adopt a two-step
approach summarized in Algorithm 3.

Algorithm 3 GREEDY SENSOR SELECTION FOLLOWED BY
LINEAR ASSIGNMENT

1: Input: 𝒞 = {𝒞1 , 𝒞2 · · · 𝒞𝑁ag }
2: Initialize: �̃�(+)

𝑘
= �̃�−

𝑘
, 𝒮𝑘 = ∅

3: for 𝑗 = 1, 2, · · · , 𝑁ag do
4: 𝒮avail

𝑘
← ⋃𝒞 \𝒮𝑘

5: 𝑠∗ ← arg max𝑠∈𝒮avail
𝑘
(𝑐⊤𝑠 �̃�+𝑘 𝑐𝑠 )/𝜎

2
𝑠

6: 𝒮𝑘 ← 𝒮𝑘 ∪ {𝑠∗}

7: �̃�+
𝑘
← �̃�+

𝑘
− �̃�+

𝑘
𝑐𝑠∗

(
1 + 𝑐⊤

𝑠∗ �̃�
+
𝑘
𝑐𝑠∗

𝜎2
𝑠∗

)−1
𝑐⊤𝑠∗ �̃�

+
𝑘

8: end for
9: Given 𝒮𝑘 , solve (17) for an optimal assignment

We first greedily select 𝑁ag sensors by ignoring the assign-
ment Steps 8–11 of the Algorithm 2. Subsequently, we solve
a linear assignment problem to assign the selected sensor
locations to individual agents to minimize the total cost of
travel. Recall that linear assignment problems are a special
class of integer linear programs, that admit polynomial time
solutions [20].

In our application, consider the scenario of 𝑁ag mobile
agents that must be assigned 𝑁ag selected sensing locations.
We formulate an assignment problem with the following
structure,

minimize
∑

1≤𝑖≤𝑁ag ,1≤ 𝑗≤𝑁ag
𝐷𝑖 𝑗𝑍𝑖 𝑗

subject to 𝑍 ∈ {0, 1}𝑁ag×𝑁ag ,
11×𝑁ag𝑍 ≤ 1, 𝑍1𝑁ag×1 ≤ 1.

(17)

Specifically, given a collection of costs 𝐷 ∈ R𝑁ag×𝑁ag where
𝐷𝑖 𝑗 is the shortest distance between the 𝑖th agent and the
𝑗th selected sensor location, the linear assignment problem
seeks to identify an assignment 𝑍 where 𝑍𝑖 𝑗 = 1 implies
that mobile agent 𝑖 is assigned to the sensing location 𝑗, and
the constraints 11×𝑁ag𝑍 ≤ 1, 𝑍1𝑁ag×1 ≤ 1 ensures that each
sensing location is assigned at most one mobile agent and
each mobile agent is assigned at most one sensing location,
respectively.

Optimality of Algorithm 3:: Steps 3–8 of the Algorithm 3
is the classical greedy approach to maximize a monotonic
submodular function, therefore, it is guaranteed to yield a
solution that is within a factor of (1 − 1/𝑒) of the optimal
solution [15]. Problem (17) can be solved exactly in poly-
nomial time.

Proposition 2. Algorithm 3 has the worst-case time com-
plexity of

𝒪
(
𝑁ag𝑛𝒞(𝑛𝑥 + 𝑛𝜃)2 + 𝑁2

ag log(𝑁ag)
)
,

where 𝑛𝒞 := |⋃𝒞|.
Proof. Complexity of steps 3–8 is 𝒪(𝑁ag𝑛𝒞(𝑛𝑥 + 𝑛𝜃)2)
(see Proposition 1), and Problem (17) has the worst-case
complexity of 𝒪(𝑁2

ag log(𝑁ag)) [21]. □

IV. NUMERICAL RESULTS

A. System Model:

For this study, we consider the following dynamical model
for bio-mass (e.g., algae) growth in water bodies (see [6], [8],
[9] for more details),

¤𝑥(𝑡) = 𝑎
𝑢(𝑡) − 𝑥(𝑡)

𝑢(𝑡) 𝑥(𝑡) +
2∑
𝑖=1

𝑏𝑖
𝜕2𝑥(𝑡)
𝜕𝑧2

𝑖

. (18)

where 𝑥(𝑡) denotes the bio-mass density at an arbitrary
location, 𝑎, 𝑏𝑖 are uncertain parameters, 𝑢(𝑡) is a known
signal that accounts for effects due to external disturbances,
and 𝑧𝑖 is the 𝑖th spatial dimension.

We note that (18) is a simplified representation of bio-mass
growth in water bodies. Nonetheless, it captures fundamental
characteristics of bio-mass growth. The rate of change of
bio-mass density is a spatio-temporal function of the current
density. The first term on right hand side of (18) resembles
the logistic population growth whose carrying capacity is
limited by 𝑢(𝑡). The carrying capacity or the maximum
sustainable bio-mass density in water bodies is affected by
many external factors including available amount of nutri-
ents, ambient lighting conditions and temperatures, amount
of precipitation, etc. In favor of a simple model, we have
lumped these external effects into the signal 𝑢(𝑡) which is
assumed to be known.

The second term in (18) accounts for the diffusion of bio-
mass from high-density locations to low-density locations.
We assume a simple case in which the density varies over
two-dimensional spatial domain (e.g., the water surface), and
ignore the third spatial dimension. We note that, in reality, the
gravity plays an important role in diffusion of mass density,



especially, in deep water bodies and should be accounted for
in realistic models.

We discretize (18) over a uniformly spaced two-
dimensional 𝑛grid × 𝑛grid grid or cells-matrix. We stack the
columns of this cells-matrix which results in a discretized
state vector 𝑥𝑘 ∈ R𝑛𝑥 , 𝑛𝑥 = 𝑛2

grid, whose elements corre-
spond to densities in different cells and its evolution can
be written in the form (1). The diffusion terms i.e. the
second derivatives are approximated using finite differences.
All variables, parameters and signals are assumed to be non-
dimensional, and we sample the temporal evolution such that
Δ𝑡 = 𝑡𝑘+1 − 𝑡𝑘 = 1. The external signal 𝑢(𝑡) and parameters
𝜃 := [𝑎, 𝑏1 , 𝑏2] ∈ R3 are assumed to identical for all grid
cells.

B. Sensors:

For this case study, the set of all available sensors 𝒮 cor-
responds to the all possible locations or grid cells where bio-
mass density can be measured. Thus, there are total |𝒮| = 𝑛𝑥
sensing locations. In (2), 𝑐𝑖 ∈ R𝑛𝑥 is a standard basis vector
whose 𝑖th element is unity. In other words, the 𝑖th sensor
measures bio-mass density at the cell corresponding to 𝑖th

element of 𝑥𝑘 . Mobile agents are assumed to equipped with
onboard instrumentation to measure densities and transmit
the measurement data to a centralized planner.

C. Results:

Case: Single Agent: We consider a case where the (18) is
discretized in a 3×3 grid, i.e., 𝑛grid = 3, 𝑛𝑥 = 9. We assume
there is a single mobile agent that can travel one step (left,
right, up or down) between two successive measurement
instances, i.e., 𝑁ag = 1, 𝑁steps = 1. Following covariance
values were used in the implementation of the filter: 𝑄𝑘 =

0.1𝐼, 𝑄𝜃
𝑘
= 0.05𝐼, 𝑅𝑘 = 0.01𝐼, and �̃�0 = 0.2𝐼. Values of the

parameters were set to 𝑎∗ = 0.2, 𝑏∗1 = 0.05, 𝑏∗2 = 0.05 as a
reference for simulating sensor measurements. The external
signal 𝑢(𝑡) was set to 𝑢(𝑡𝑘) = 15 + 5 sin(𝑡𝑘).

The objective is to monitor the discretized domain using
the single agent, i.e., to identify the next optimal cell location
for measuring the bio-mass density. The state trajectories
estimated using the Algorithm 2 and a random policy are
shown in Fig. 1, and the sensing schedule, i.e., path traversed
by the agent in first 10 steps is shown in Fig. 2. Since Al-
gorithm 2 identifies one-step locally optimal sensor location
in each iteration, we note that for this case where 𝑁ag = 1,
the greedy approach yields the globally optimal solution.

Fig. 1 highlights the efficacy of an optimal sensor schedule
as it aims to minimize the overall uncertainty across all states
at each step. On the other hand, the state uncertainty with
a random schedule - which ignores any uncertainty measure
- can be large for some states. For example, consider the
cells 𝑥7 and 𝑥8 which were not measured in first 10 steps of
the random schedule. As seen in Fig. 1, the uncertainty in
these two cells is quite large around 𝑡𝑘 = 10 for a random
schedule, whereas the greedy schedule makes measurements
of these cells to minimize the overall uncertainty. The worst
case uncertainty in state and parameter estimates quantified

Fig. 1: Estimated bio-mass density in different cells. Shaded
area shows the 1𝜎 confidence interval.

Fig. 2: Path traversed by the mobile agent in first 10
steps using greedy approach (left) and random policy (right)
starting at the top left corner of the grid.

by det(�̃�+
𝑘
) across all time steps was found to be 8.6× 10−4

for the greedy, and 4.1 × 10−2 for the random schedule.
Case: Multiple Agents: We consider the case where the

(18) is discretized in a 5×5 grid, i.e., 𝑛grid = 5, 𝑛𝑥 = 25 and
there are 𝑁ag = 3 mobile agents. It is assumed that the agents
can travel a maximum of 𝑁steps = 5 between two successive
measurements. All other parameter values were set identical
to the previous case. In order to study performance of
the proposed algorithm, we consider two additional sensor
scheduling approaches that are variants of the Algorithm 2
with some randomizations. In the first approach, referred to
as Greedy-Rand, we modify Step 9 of the Algorithm 2 to
randomly select an agent from the set 𝒩 instead of choosing

Fig. 3: Boxplot of the cumulative sum
∑
𝑘 logdet((𝑃+

𝑘
)−1)

(normalized by values of Algorithm 2).



Fig. 4: Boxplot of estimation RMSE (normalized by values
of Algorithm 2).

Fig. 5: Boxplot of travel cost (normalized by values of
Algorithm 2).

one of the agents with smallest travel costs. In the second
approach, referred to as Rand-Rand, we modify both Steps
5 and 9 of the Algorithm 2 to randomly select a sensor
location from 𝒮avail

𝑘
and then assign an agent randomly.

Only sensor and/or agent selection steps are modified in both
Greedy-Rand and Rand-Rand approaches while other steps
are identical to Algorithm 2. Therefore, both Greedy-Rand
and Rand-Rand approaches yield a solution with a dynam-
ically feasible assignment. We compared the performance
of different approaches using 50 Monte-Carlo runs of EKF
wherein each filter run was initialized with random agent
locations and state initial conditions; and the initializations
were identical for different approaches in the same run. Each
filter trajectory consisted of 25 times steps. Fig. 3, Fig. 4, and
Fig. 5 show boxplots of various performance metrics for the
three approaches under consideration; and their values were
normalized by the values of Algorithm 2 in each filter run.
While the median is showed by solid lines in boxplots, the
dashed lines denote the mean.

Fig. 3 shows
∑
𝑘 logdet((𝑃+

𝑘
)−1), the cumulative sum in

a filter run of the objective function 𝐽′est that we aimed to
maximize. Fig. 4 shows the root mean square error (RMSE)
of filter estimates calculated with respect to reference trajec-
tories. While the estimation performances of Algorithm 2
and Greedy-Rand were found to be comparable, Rand-
Rand approach demonstrated relatively poorer performance
especially in terms of the estimation RMSE. Thus, Fig. 3
and Fig. 4 underscore the efficacy of a greedy approach for
an optimal sensor selection. Fig. 5 shows the cumulative
total travel cost for all agents in a filter run. Algorithm 2
demonstrated the smallest travel cost as it assigns one of

Fig. 6: Boxplot of travel cost (normalized by values of
Algorithm 2, 𝑁steps = ∞).

the closest agents to the selected sensor location in every
iteration of the algorithm. On the other hand, both Greedy-
Rand and Rand-Rand rely on random agent assignments,
thus, incurred significantly higher travel costs.

We consider a special case discussed in Section III-
C. In particular, we assume that an agent can reach any
sensing location in the domain from its current location, i.e.,
𝑁steps = ∞. In such a scenario, coverage sets of different
agents are identical and equal to 𝒮. We compared the
performance of Algorithm 2, Greedy-Rand, and Algorithm 3
for this case. All three approaches demonstrated identical
estimation performance (not shown), since they all select
identical sensor sets at each measurement instance. On the
other hand, travel costs for these approaches were found to be
significantly different and are shown in Fig. 6. Algorithm 3,
which optimally assigns agents after sensors have already
been selected, incurred the smallest travel cost. Approx-
imately 10% higher travel cost incurred by Algorithm 2
can be attributed to potentially sub-optimal (nearest) agent
assignment it makes simultaneously with the greedy sensor
selection in each iteration. While Algorithm 3 yields a feasi-
ble one-to-one assignment solution under specific conditions,
e.g., identical coverage sets, Algorithm 2 is guaranteed to
provide a feasible solution for arbitrary coverage sets.

Scalability: Fig. 7 and Fig. 8 show scalability results
for estimation performance and computational cost of Al-
gorithm 2. Fig. 7 illustrates the mean cumulative sum∑
𝑘 logdet((𝑃+

𝑘
)−1), averaged over 50 Monte Carlo EKF

runs with random initializations. Increasing the number of
allowable steps 𝑁steps generally improves estimation perfor-
mance, particularly when the number of agents 𝑁ag is small,
due to greater flexibility in sensor selection. However, this
benefit diminishes as 𝑁ag increases. Estimation performance
improves significantly with more agents, as this enables
richer data collection from the environment. Nonetheless, the
marginal gains in performance decrease with each additional
agent.

Fig. 8 presents the average computation time of Algo-
rithm 2 per filtering step. As expected, the computational
time increases with both the number of grid cells and the
number of agents, due to the growing complexity of the
sensor selection problem. The algorithm maintains compute
times within a few seconds even for large grid sizes and
a modest number (≤ 10) of agents – a configuration rep-
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resentative of typical deployment scenarios – demonstrating
its practical viability for spatio-temporal monitoring applica-
tions.

V. CONCLUSIONS

In this paper, we formulated a dynamic sensor scheduling
approach for monitoring a class of spatio-temporal environ-
mental processes. We proposed an improved greedy algo-
rithm that optimally selects sensing locations and assigns
agents to these locations, minimizing travel costs while
satisfying the dynamic reachability constraints. Although
performance guarantees for the proposed algorithm were pro-
vided under specific conditions, general guarantees remain
unestablished and warrant further investigation. Nonetheless,
the proposed approach demonstrated promising monitoring
performance in simulation results.
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