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Abstract

A critical component of model predictive control (MPC) in building energy management sys-
tems is the ability to reject exogenous disturbances such as occupant-induced heat loads,
appliance loads, ambient temperature, and solar radiation. During the design phase of model
predictive control, engineers typically select a limited set of disturbance scenarios through
handcrafting or sampling from simple distributions. However, this approach often fails to
capture a representative set of scenarios that elicit diverse closed-loop behaviors across the
full operational envelope. This work addresses this limitation by proposing a combinatorial
multi-armed bandit (CMAB) framework for systematically discovering representative distur-
bance scenarios using real building data. We formulate the scenario selection problem as a
diversity maximization task, where the reward function quantifies the behavioral diversity of
closed-loop responses through information-theoretic criteria such as dynamic time warping
distance. The proposed approach treats the building simulation environment as a black-box
system, making it applicable to complex, proprietary, or non-differentiable building models
commonly encountered in practice. To address data scarcity challenges, we extend the frame-
work by incorporating time-series generative models, specifically diffusion-based networks, to
synthetically augment limited real datasets. Experimental validation using a commercial net-
zero energy building demonstrates that synthetic data augmentation significantly enriches
the diversity of discovered scenarios compared to using real data alone, as evidenced through
principal component analysis and uniform manifold approximation projections. The CMAB
algorithm successfully identified representative scenarios that revealed controller vulnerabil-
ities not detected by conventional selection methods, leading to practical improvements in
HVAC system design. The approach scales linearly with the number of scenarios and bandit
iterations, making it computationally feasible for grid-interactive building energy manage-
ment applications.
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W Disturbance space GEB Grid-interactive effi-
I Scoring function cient building
M Black-box model GPU Graphics processing
S Super arm set unit
r Reward HP Heat pump
S Super arm MAB  Multi-arm bandit
T Length of time for MAE  Mean absolute error
time-series data MASE Mean absolute
t Time index scaled error
Ti Number of times MBRL Model-based rein-
arm i been played forcement learning
4 Disturbance MPC  Model predictive
BES Building energy sys- control
tem PCA Principal  compo-
BESS  Battery energy stor- nent analysis
age system . PV Photovoltaic
CPU Cep tral processing TSGN Time-series genera-
unit .
CUCB Combinatorial up- tive network
P UCB Upper confidence
per confidence bound
bound
DDPM Denoising diffusion ~ UMAP  Uniform  manifold
probabilistic model app.roximation &
FFT Fast Fourier trans- projection
form

1. Introduction

Model predictive control (MPC), which solves model-
based optimization problems in real time to account for
constrained multivariable dynamic systems, has proven a
good solution to automated building energy management,
for general building energy systems (BES); this is evident
from the experiments reported in [1, 2, 3]. MPC is de-
signed to achieve near-optimality and safety, supported by
well-established stability theory, under the assumptions of
a high-quality predictive model and a reasonably narrow
range of possible disturbances [4]. However, BESs are sub-
ject to complex exogenous disturbances, such as solar radia-
tion effects, occupant-driven thermal loads, plug loads, and
ambient conditions [5, 6], many of which exhibit significant
variability due to human behavior. Such wide disturbance
variations can degrade the closed-loop control performance
of standard MPC. Although feedback mechanisms offer
inherent robustness, relying solely on feedback may be
insufficient when rejecting time-varying large-magnitude
disturbance patterns. To combat disturbances, stochastic
MPC (SMPC) and robust MPC (RMPC) have been ex-
tensively studied for BES applications [5, 7, 8, 9, 10, 11]:
these methods are especially powerful owing to their ability
to explicitly account for, and protect against, uncertainty.

Incorporating disturbance rejection into MPC via RMPC
or SMPC typically requires assumptions about the distur-
bance set, manifesting in clear deterministic bounds or
probability distributions over possible disturbance realiza-
tions. However, closed-loop performance is highly sensitive
to the quality of these assumptions. RMPC often leads
to conservative designs because disturbance ranges must

cover variations linked to seasonality, occupancy behavior,
and lifestyle [12]. To capture all such variability, exces-
sively conservative uncertainty sets may be needed. SMPC
can mitigate this conservatism by leveraging probabilistic
models, but standard assumptions such as Gaussianity are
often imposed for computational tractability [13], which
are not reflective of the true disturbance distribution.

With measured data collected from the target GEB,
designers could, in principle, make more informed assump-
tions by analyzing the empirical disturbance distribution.
However, using realistic distributions often leads to com-
plex SMPC optimization problems, motivating the use of
a finite set of disturbance scenarios (i.e., fixed-length time-
series samples) for controller design and validation. In
practice, scenario sets are frequently handcrafted, often
limited to a small number of typical or extreme cases, such
as mean profiles or worst-case disturbances. An open and
important question is how to automatically construct a rep-
resentative set of disturbance scenarios that induce “novel"
or “unusual" closed-loop dynamics, capturing diverse per-
formance behaviors beyond those observed previously. Ex-
tracting such a set from historical disturbance data could
significantly improve controller evaluation and robustness
validation. Prior work [14] applied Bayesian active learn-
ing techniques, specifically InfoBAX [15], combined with
synthetic disturbance generation via RAFT-VG [16], to dis-
cover disturbance scenarios corresponding to the best- and
worst-case closed-loop performance. While this approach
demonstrated efficient identification of extreme outcomes,
it primarily focused on finding top- and bottom-k perfor-
mance scenarios rather than capturing the full diversity
of possible closed-loop behaviors. In contrast, the present
work aims to identify a broader range of diverse scenarios
systematically and efficiently.

In this work, we develop a general framework to effi-
ciently identify representative disturbance scenarios that
elicit diverse closed-loop behaviors, formulating the prob-
lem within a multi-armed bandit (MAB) framework [17, 18].
Efficiency is critical because closed-loop building simula-
tions are often computationally expensive. In MAB prob-
lems, an agent sequentially selects actions (arms) to opti-
mize cumulative rewards under uncertainty. We extend this
setup to combinatorial MABs (CMABs) [19], allowing selec-
tion of multiple disturbance scenarios (or arms) per round.
Given a legacy MPC law for a target GEB and access to
a GEB simulation model, we introduce a model-agnostic
CMAB algorithm that sequentially selects a set of finite
disturbance scenarios to maximize an information-theoretic
criterion measuring closed-loop behavioral diversity (such
as pairwise dynamic time warping (DTW) distance). Dis-
turbance scenarios are constructed as fixed-length time-
series (e.g., 24-hour profiles) encompassing ambient temper-
ature, solar irradiance, and internal heat gains. Two major
challenges commonly arise in practice: (i) the combinato-
rial nature of the disturbance scenario space and (ii) the
opacity of the building simulation environment, where the
disturbance-to-performance mapping is often a black-box



due to proprietary or non-differentiable components, such
as commercial MPC solvers [20].

Furthermore, we extend our framework to address small-
data settings, where the historical disturbance data for
the target GEB may be insufficient. In such cases, we
leverage time-series generative models (TSGMs) to syn-
thetically augment the disturbance dataset. Conventional
models such as nonlinear autoregressive models with ex-
ogenous inputs (NARX) [21] may be unsuitable for com-
plex, long-range correlated building profiles. More ad-
vanced approaches, including generative adversarial net-
works (GANSs) [22], variational autoencoders (VAEs) [23],
and their hybridizations [16, 24, 25, 26, 27, 28], have been
proposed to better capture the intricacies of building en-
ergy profiles while mitigating known limitations such as
mode collapse in GANs [29] or underfitting in VAEs [30].
As an illustrative example, this paper applies a recent
time-series diffusion network, Diffusion-TS [31], to generate
realistic disturbance scenarios. Diffusion models [32, 33]
have surpassed GANs in image and text generation tasks
by offering more stable training and avoiding adversarial
collapse [29]. Their application to time-series generation
has gained momentum [34, 35, 36|, particularly for tasks
such as imputation, forecasting, and unconditional genera-
tion. Diffusion-TS, a non-autoregressive denoising diffusion
probabilistic model (DDPM), has demonstrated strong per-
formance across multiple synthetic data tasks, motivating
its use here to enhance exploration in small-data regimes.

The major contributions of this work are as follows:

1. We introduce a novel problem formulation for identify-
ing representative disturbance scenarios via a CMAB
approach, which, to our knowledge, has not been
previously explored in the context of BES and GEB.

2. We develop and apply an efficient CMAB algorithm
to solve the proposed scenario selection problem.

3. We propose a practical small-data extension by incor-
porating synthetic disturbances generated through
state-of-the-art time-series generative models (TS-
GMs).

4. We demonstrate through extensive simulation experi-
ments that synthetic data augmentation significantly
improves the diversity and representativeness of dis-
covered disturbance scenarios, supporting more ro-
bust closed-loop controller evaluation.

5. We provide empirical evidence that the representative
scenarios obtained can shed light on the performance
of the legacy closed-loop system that had been de-
signed only using nominal scenarios; we demonstrate
that our CMAB-based representative scenarios can
inform redesign, adding practical value in building
energy management systems.

A schematic overview of the proposed framework is
provided in Figure 1. The main steps, as enumerated
in the contributions, include: using, or augmenting with
synthetic data, a dataset of real disturbance scenarios to
assess MPC (or its variants) performance on a closed-loop

simulation model of a GEB. With the help of CMABs, we
will efficiently determine a subset of disturbances that result
in the most diverse (according to some time-series distance
metric) output trajectories. The subset obtained with the
highest reward will be deemed the set of representative
scenarios.

The remainder of this paper is organized as follows. Sec-
tion 2 summarizes the relevant background and motivation
for the work. Section 3 describes the proposed methodology
and supporting theory. Section 4 presents our results on a
realistic GEB system and we provide concluding remarks
in Section 5.

2. Motivation

2.1. Problem Statement

Dynamic simulators of buildings, including GEBs, can
be represented by the mathematical model

Yot = M (xo; o, Woit) + Vo, (1)

where x € R"™ denotes an internal state representation
of the building dynamics and u € R"™ denotes control
inputs or setpoints to the system determined by some
control policy; e.g. switching patterns of power electronic
components, thermostat settings, or HVAC inputs such as
compressor speed. The variable w € R"» denotes exogenous
disturbance variables affecting the grid-interactive building
such as ambient conditions, solar radiation, cloud cover,
or occupant-induced heat loads/plug loads. The outputs
y € R™ of the mathematical model M are assumed to
be available for measurement, or reliably estimated (but
often noisy, modeled by the additive white Gaussian noise
v ~ N(0,X) for some covariance matrix ¥ = £T > 0).

We assume that these outputs contain elements that
are indicative of the closed-loop performance. The notation
(-)o.r indicates a sequence of vectors, with sequence length
T + 1 where each element of the sequence represents the
vector at time ¢ on the range {0,1,...,T}; that is yo.r €
R"XT+1)  The modeling equation (1) implies that, given
an initial state of the system xq, a control trajectory ug.T,
and exogenous disturbance trajectory wy.r, simulating the
dynamics yields a trajectory of corresponding outputs yo.7.

Executing a simulation depends solely on the structure
of the model M. In modern simulation environments such
as EnergyPlus or Modelica, it is not uncommon for M to
contain components that are non-trivial to analyze using
analytical methods. For instance, software blocks may
contain proprietary information, or exhibit high model-
ing complexity (e.g., finite-element models for airflow or
refrigerant flow dynamics). These complex blocks render
analysis of M difficult, often impractical, to handle in a
computationally efficient manner for design or analysis. In
such cases, it is reasonable to make as few assumptions
on the structure of M as possible and treat the model as
a ‘black-box’ function that can be simulated to acquire
quantitative metrics of performance. This obviates the
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Figure 1: Schematic overview of the proposed framework: identifying representative disturbance scenarios using combinatorial multi-armed
bandits (CMABSs) and supporting small-data settings with synthetic augmentation via diffusion-based time-series generative models (TSGMs).

need to assume that we can directly access the structure
of the model, for instance to take gradients, or directly
handle the underlying system of equations.

Before we formalize the problem statement, we intro-
duce the following definition.

Definition 1 (Disturbance Scenario). Let
Wy C Ran(Tﬂ)

be the set of all admissible disturbance trajectories of length
T +1, and let mw be a probability distribution on Wr. A
disturbance scenario of length T is a sample wo.T ~ Tw.

Definition 1 explicitly places a joint distribution 7ty
over entire disturbance trajectories, capturing any temporal
correlations or scenario-level structure (for example, diurnal
weather cycles or scheduled occupancy patterns). This
framing allows us to pose the central question of this work:
Given a closed-loop black-boz building dynamics simulator
M, how do different length-T disturbance scenarios wo.r ~
niw influence the closed-loop system trajectories?

In practice, controllers are often designed for a nominal
(or worst-case) disturbance scenario but must be validated
under a variety of realistic conditions: varying ambient
weather, internal loads, or occupancy profiles, in order
to assess robustness. Accordingly, a systematic, model-
agnostic algorithm for identifying disturbance scenarios
that span the space of possible output behaviors is critical
both for performance assessment using digital twins and for
informing the redesign or adaptation of control strategies.

Based on Definition 1, we define a collection of K € N
disturbance scenarios by

K
Wier = {wgf)T}kﬂ ’

(k)
0:T .
the collection Wk r. Then, for some initial state x(() ), and
(k)

0:T?

where w, - is the k-th length-T disturbance scenario in

control sequence u we can simulate output trajectories

K
a | (k) (k) _ (k) (k) (k)
Yir = {yO:T}kzl swhere yo. = M(xg”, g, 7). (2)
Definition 2 (Diversity). Given a distance measure dy :
Y xY — [0,00) between trajectories, the diversity of the

collection Yg 1 in (2) is defined as

D(Yk,r) = ﬁ Z dy (y(()l)T’ y(()])T)

1<i<j<K

Definition 2 quantifies the span of the collection of
outputs based on a chosen distance metric dy. If we choose
7 to be a scoring function that quantifies the diversity of
a collection of output signals Yx r, then we can obtain a
representative set of disturbance scenarios by maximizing
the diversity of these output trajectories. That is,

WI:,T = argmax 7 (D (Yxr1)). (3)
Wk, rCcWk,T

Here, ‘Wk t denotes the space of admissible length-T sce-
narios.



2.2. Proposed Solution

Several challenges arise in solving (3). First, the objec-
tive function is ‘black-box’. This is because the map from
Wkt to Yk T requires a simulation through the black-box
model M. Therefore, acquiring gradients and using local
information is computationally intractable. Second, the
admissible space of solutions Wx T is not straightforward
to model such that (3) is tractable. We reiterate that W r
are disturbance time-series wq.r of length T, but in order
for such disturbances to be domain-feasible, one cannot
randomly select such disturbance trajectories; instead, they
must be drawn from 7w, which does not admit a simple
closed-form representation. While handcrafting nominal
disturbance scenarios may be possible for certain kinds of
disturbances such as solar radiation, it is not a scalable
approach and requires considerable time and effort, along
with customization for specific use-cases. Furthermore,
some disturbances such as occupancy-driven heat-loads are
much harder to design by hand, and susceptible to changing
social patterns (e.g., pre- vs. post-pandemic) and technical
advancements.

A more practical path forward is to use disturbance data
directly; that is, partition the measured disturbance into
disturbance scenarios on fixed time lengths, e.g. T = 24 hr.
Such datasets are often available, because the disturbances
in question, though hard to predict long-term, are mea-
surable with satisfactory accuracy by sensors equipped in
the building system. By fixing the length T, one can split
a long trace of collected w data into the form Wg r, and
the resulting diversity maximization problem (3) becomes
a combinatorial problem. Such a combinatorial problem
still needs to be solved efficiently in case the number of sce-
narios in Wk r is large, especially because each simulation
may take considerable time to execute to completion.

When available data is too small, we can resort to
synthesizing artificial data using time-series generative net-
works (TSGNs) (see Fig. 1); in particular, we study the
utility of time-series diffusion networks to construct syn-
thetic disturbance scenarios that can be appended to a
small-sized dataset collected from the building. A benefit
of using generative models for this purpose is that they
can generate an arbitrarily large number of scenarios as
needed. For this paper, we empirically find the synthetic
scenarios from our chosen diffusion-based TSGN to be both
plausible/realistic and useful, including in regimes where
the TSGN can only be trained on 1,000 real scenarios or
less. Further investigation of trade-offs relating to the
choice of TSGN method and/or training data are beyond
the scope of this paper and left to future work. Since the
TSGNs can generate very large amounts of synthetic data,
one way of keeping the size of W 7 manageable is by per-
forming time-series clustering [37] on the synthetic samples
(or indeed real samples if the amount of real data is very
large), and consider the cluster centers as the elements of
the search space. In either case, TSGNs provide an avenue
to distill the complex search space Wi r to a rich lattice
of disturbance scenarios.

Once the search space Wi T is fixed, we can pose (3) as
a combinatorial black-box optimization problem. In this
paper, we propose the use of multi-arm bandits (MABs)
to obtain the representative set of disturbance scenarios.
There are a few reasons for this. First, MABs are well
established algorithms capable of handling combinatorial
problems with complex objective functions [17] while being
supported by theoretical guarantees on regret decay rates.
Second, bandit algorithms perform well despite noise in
the objective. In this work, there are two sources of noise:
the first is the explicit sensor or process noise v described
in (1) which captures the model’s inherent uncertainty and
real-world sensor noise.

Another more intricate source of noise is if one uses
pre-clustering to whittle down the set Wk r to a manage-
able size. Since a cluster center may not directly represent
a feasible disturbance trajectory, we propose randomly
selecting a disturbance trajectory embedded within the
cluster itself since such a disturbance trajectory will either
be real, or synthesized based on a TSGN replicating the
real disturbance time-series distribution. Since we rely on
a random selection procedure of elements within a cluster,
the simulated outputs will be different even when the same
cluster center index is chosen twice. Such an approach in-
evitably introduces noise in evaluating the scoring function
I. To combat this, we propose the use of MABs that are
effective in handling such stochasticity.

3. Methodology

The proposed workflow for selecting representative dis-
turbance scenarios is shown in Figure 2. We frame the
problem in this work as a CMAB problem, in which we
apply a well-known CMAB algorithm: combinatorial upper
confidence bound (CUCB). We consider two cases: (i) the
big-data case, where we have access to a large number
of disturbance scenarios, and (ii) the small-data case, a
Diffusion-TS network generates synthetic disturbance data
to augment the original dataset.

3.1. Finding Representative Scenarios with MABs

MAB is a special type of sequential decision-making
framework [17], characterized by a set of arms (e.g., a
particular action to a decision problem) and a scoring func-
tion or reward obtained by ‘pulling’ an arm (e.g., outcome
observed upon executing the action). Among variants of
MABs, we are specifically interested in combinatorial MABs
(CMABS) [19, 38|, where the reward is defined based on a
subset of arms, rather than an individual arm. Unlike most
of the typical MAB problems that aim to identify the best
arm while incurring minimal regret, CMAB aims to identify
a best set of arms with a fixed cardinality while incurring
minimal regret. Here, regret formalizes the sub-optimality
encountered while dealing with the exploration-exploitation
dilemma inherent in such sequential decision making prob-
lems. As described in Section 2, we seek to identify a set
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of disturbance scenarios that “best” maximizes (3) while
exploring combinatorially many subsets.

In our problem, the arms of the CMAB are the K sce-
narios in the disturbance dataset Wx r. Given a subset of
arms (a subset of arms is referred to as a super arm), we
evaluate the scoring function I by executing a closed-loop
GEB simulation with each of the selected scenarios and
aggregating the outcomes or observables of those simula-
tions. Typical CMAB algorithms are iterative in nature,
where, in each round, the algorithms propose a potential
subset candidate that solves (3), evaluates 7, and then
repeats the process until a termination criterion is met.
More concretely, to formulate problem (3) as a CMAB
problem, each arm i is defined as a disturbance scenario
Wi T; and we suppose the total number of arms is N, where
N is the number of samples drawn from the space Wi t to
make the action space finite. In practical terms, N is the
size of the available dataset of disturbance scenarios. The
corresponding output trajectory ygf% of arm k is a noisy
sequence of observables obtained by executing a closed-loop
GEB simulation with the k-th arm’s associated disturbance
scenario. Clearly, the total number of super arms is (I\ILS),
which for moderately large Nj; is difficult to exhaustively
search, especially when each closed-loop simulation is slow.

Let us now discuss the reward 7 for super arm S; in
round f, whose objective is to maximize diversity among
the simulated outputs. We do this by computing the aver-
age pairwise DTW distance between all observed output
trajectories. Specifically, by simulating all scenarios in the

super arm Sy, we obtain the set of output sequences YI(<t)T’
whose k-th output sequence is y(()lf)T = M(xo,uélf%,wgf)T).

One can then compute the pairwise dynamic-time-warped
(DTW) distance between each pair of these K output se-
quences, and average the DTW distances as an aggregated

score. Given two trajectories yél;;"l and y((f%z), the DTW
distance is given by

P,y |,

(s1,52)€m

min
nellrn,n,

DTW(y(l) (2) ) —

0:Ty” yO:T2

where Ilr, 1, denotes the set of all valid alignment paths
7t between the indices of the two trajectories, and p(-, ) is
a local distance metric (e.g., Euclidean distance). Maxi-
mizing the average pairwise DTW distance maximizes the
diversity of the time-series sequences.

To this end, a popular CMAB algorithm is CUCB,
described in Algorithm 1, which has several desirable theo-
retical properties. The main is (roughly) that, for a user-
defined threshold of sub-optimality, one can estimate how
many rounds the CMAB needs to be iterated to achieve
that level of sub-optimality [19].

CUCB extends the classical upper confidence bound
algorithm for solving conventional MAB problems [39]. Let
T; denote the total number of times arm i has been played
up to round ¢, and let fi; denote the empirical mean of all
observed outcomes {J; g} for arm i up to round t, that is
fi = 252:1 J; r/T;. CUCB defines the outcome expectation
variable [i; for each arm i as the upper confidence bound
(UCB) of the empirical outcome mean [I;, given by

D=4 3logt
Wi = Hi —2Ti .

The UCB balances exploration and exploitation, enabling
the algorithm to select arms with both high empirical
means (large [I;) and low play counts (small T;). In the
early stage, the algorithm is more “explorative” due to the
smaller value of Tj; in the later stage, the algorithm is more
“exploitive" due to the larger value of T;.

(4)



Algorithm 1 CUCB Algorithm

Required: Super arm size K;
Admissible disturbance scenarios space Wk T;
Total number of CUCB rounds No;
Number of times arm i has been played T;

Time-series clustering:

if [Wg 1| is too large then
Specify number of arms Ny
TS-cLUusTER(Wk T, N5)

else
Ns « Wk 1l

end if

Initialization:

for each arm i =1,...,Ns do
Select an arbitrary super arm S € S such that i € S
SIMULATION(S)

: end for

for t =Ns,...,Ns + No do
for each armi=1,...,Ns do

Compute UCB:

e e e
AN N

D=t 3lnt
Wi = i o,

16: end for

17: Select the top-K arms with the highest UCB values as
the super arm S;

18: SIMULATION(S})

19: end for

20: Select the representative super arm S* as the one with the
largest 1

21: function T'S-cLUSTER(Wg T, N5)

22: Perform time-series clustering algorithm on Wg r to
generate Ns clusters.
23: return clustered data

24: end function

25: function SIMULATION(S)

26: Perform GEB simulation for disturbances in S
27: Calculate observed outcome 7; g for each arm i € S
28: Calculate reward I for S

29: Update T; and fi; for alli € S
30: end function

3.2. Generating Synthetic Data via Time-Series Diffusion
Models

In this work, we investigate the benefits of supplement-
ing real disturbance scenarios with synthetically-generated
ones, especially in situations where the number Ny of avail-
able real scenarios is too small. As generator, we propose
leveraging the recent Diffusion-TS model [31], a TSGN that
can generate fixed-length time series. Diffusion-TS extends
the denoising diffusion probabilistic models (DDPMs) pro-
posed in [33]. Same as the DDPM, Diffusion-TS is based
on diffusion, i.e., two core reciprocal processes: a forward
noising process and a backward denoising process. For the
forward process, independent Gaussian noise €; ~ N(0, )
is gradually added to an input sample wo € R? drawn from

an unknown data distribution to create a noised sequence
w1y, Wa, - ,wr ending at wr ~ N(0,I) and following the
discrete Markov process

wr = vl—[ﬂtwt_l +\/,B_t€t/ (5)

with {B: € (0, 1)}th1 a variance schedule pre-specified by
the user. In this subsection, t denotes the time-step of
the diffusion process, not the time-index of the discrete-
time dynamics in the simulator. Using a; := 1 — ; and
ay = Hizl ax and the reparameterization trick from [40],
we can also express each sequence step as a noisy version
of input x( following

wy = Vawo + V1 — @&, (6)

with & ~ N(0,I).

Conversely, the backward process should map a Gaus-
sian noise sample wr ~ N(0,I) back to an input sample
wo. However, performing this process exactly would re-
quire access to typically intractable quantities, such as
the conditional distribution of w;_; given w;. Diffusion
circumvents this issue by learning a parameterized model
to approximate the backward process.

Diffusion-TS differs from the original DDPM framework
[33] in predicting directly an input sample estimate, i.e.,
Wo(wy, t, 0), with O the parameterization of the predictor
model, and by changing the objective away from likelihood
maximization. The training objective is instead the mini-
mization of a distance between the input sample wq and its
predicted estimate @Wo(wy, t, 0) for any t. More precisely,
Diffusion-TS proposes to minimize a weighted combination
of the L, distances between a) original and estimated sig-
nals, and b) original and estimate signal Fourier transforms,
computed via fast Fourier transform (FFT) [41]. Addition-
ally, inspired by the performance gain obtained in DDPM
from a similar modification, a weight w; is added to down-
weight, in relative terms, the loss corresponding to smaller
diffusion step values t. The loss is ultimately expressed as

Lo = Et,w, [)/t (Aillwo — Do(wy, t, O)||3
+ Aol | FFT (wo) — FFT(@o(wr, t, O)IF)]

Aap(1-ay)
Bi
tained through the forward process in (6), and A1, A5 are

hyperparameters specified by user.

where y; = with A a small constant, w; is ob-

The predictor network for @ is structured as a transformer-

like encoder-decoder architecture with stacked blocks de-
signed to better capture multi-scale patterns and correla-
tions within time-series data [31]. Each of the D decoder
blocks is built around a backbone combined a residual
multi-head self-attention layer followed by a residual multi-
head cross-attention layer. The resulting output, for j-th
block, is then converted into three distinct time series. The
first, “output” Rj, is fed to the next decoder block. The
second, “trend synthesis” Vj, is a time series correspond-
ing to the sum of a fitted small-degree polynomial with



the time-average of R;. The third, “seasonality and error
synthesis” S;, is a time series corresponding to the superpo-
sition of a finite number of fitted phase-shifted frequency
components. The final estimate is computed as the sum of
the “synthesis” time series from all decoder blocks, and the
time-series output from the last one:

D
@olws, t,0) = Rp + Z (Vi+5)). (7)
=1

Here, we first train Diffusion-TS on the entire set of
real disturbance scenarios we collected from a real build-
ing. Then, we generate any desired number of synthetic
disturbance scenarios from our trained network as esti-
mates Wo(wr,T,0) for random Gaussian noise samples
wt ~ N(0,I). The hyperparameters of the diffusion model
and solver that we use are provided in Table 1. In order
to maintain realistic synthetic profiles, some amount of
post-processing may have to be done, for instance ensure
solar irradiance is zero during night hours corresponding
to the day of the year, along with other smoothing and
filtering as required, to ensure realistic rates-of-change or
magnitudes.

MobDEL PARAMETERS

Sequence length 96
Dimension of input/output features 3
Number of encoder blocks 4
Number of decoder blocks 4
Model hidden dimension 96 (24 x 4)
Number of attention heads 4

Number of diffusion sampling steps 100
Variance schedule {f} cosine

Transformer feed-forward hidden dimension 384 (96 x 4)
Transformer attention dropout probability 0.0
Transformer residual dropout probability 0.0
Seasonality convolution kernel length 3
Seasonality convolution padding length 1
OPTIMIZER PARAMETERS
Base learning rate 1.0e-5
Maximum number of epochs 10 000

Number of batches for gradient accumulation 2

Model save frequency (epochs) 1 000
EMA decay factor 0.995
EMA update interval (training steps) 10
SCHEDULER PARAMETERS
Learning-rate reduction factor 0.5
Scheduler patience (epochs) 300
Minimum learning rate 1.0e-5
Minimum change threshold 1.0e-1
Threshold mode relative
Learning rate after warm-up 8.0e-4
Number of warm-up steps 100

Table 1: Combined hyper-parameter configuration used in our
diffusion-transformer experiments.

3.8. Customization for Large Disturbance Datasets
Despite the potential of improving the optimal achiev-
able reward for the CMAB problem by adding additional
arms to the original arm set, it would also make the theoret-
ical regret bound of the CUCB algorithm worse; c.f. [19]. In

other words, more bandit rounds Noyap would be required
to attain a good solution, which is not desirable because
each simulation is expensive. This situation may arise if
we greatly expand the number of admissible disturbance
scenarios by incorporating synthetic disturbances.

To counteract this, one approach is to use time series k-
means clustering [42] to partition disturbance scenarios into
multiple clusters, where each cluster contains disturbance
scenarios with similar (in some metric) trajectories. We
then treat each cluster as an independent arm and apply the
CUCB algorithm to select the K representative clusters with
diverse output trajectories. With the clustering approach,
the CUCB algorithm would randomly pick a disturbance
scenario from the disturbance set of the selected cluster
i € [N;] to perform simulation, introducing randomness to
the problem, which MABs are well-equipped to handle. An
alternative to random selection is to choose the disturbance
scenario closest to the cluster center, which is how we
proceed in this paper. The expected reward r,(St) of
playing super arm S; can then be calculated using the
output trajectories of each disturbance scenarios in super
arm S;.

Figure 2 illustrates the overall workflow of our proposed
solution framework for discovering disturbance scenarios
(clusters) that produce diverse simulation output trajecto-
ries. We begin by collecting disturbance scenarios from real
data. If the number of disturbance scenarios is too small,
we train a TSGM, such as the Diffusion-TS [31], on the
real disturbance data set to generate synthetic disturbance
scenarios. If the number of disturbance scenarios (including
both real and synthetic data) is too large, we employ a
time-series clustering algorithm to partition the scenarios
into multiple clusters. The CUCB algorithm is then applied
to the clustered disturbance scenarios. For comparison, we
also perform CUCB directly on the original, non-clustered
disturbance data. Ultimately, the CUCB algorithm selects
a set of representative disturbances (or cluster centers) that
best capture the diversity of simulation output trajectories.

4. Experimental Results

4.1. Grid-interactive building simulation model

4.1.1. Zone thermal dynamics

An air-to-air heat pump (HP) system comprises of out-
door and indoor heat exchangers, a single-speed compressor,
and an expansion valve, facilitating efficient thermal regu-
lation within a single-zone residential space. The system
operates in two modes—cooling and heating—by modulat-
ing refrigerant flow to absorb or release heat within the
indoor unit’s heat exchanger, ensuring precise temperature
control. This study presents control-oriented models for
the building zone, HP, and thermostat, which collectively
optimize system performance to maintain the desired in-
door climate. The proposed thermal dynamic framework is
applicable to both ducted and ductless HP configurations



by appropriately parameterizing system capacity and effi-
ciency, offering a scalable solution for residential thermal
management.

We model a single-zone space for the purposes of illus-
trating our approach. In particular, we use the 4-state RC
model [43] given by,

. 3
Cwere Twee = R (Tsaw + Twipe — 2Tone,,) (8a)
wall
. 3
CWintTWint = R (Twext + T'sin - 2TWint) (Sb)
wall
. Tamb - T; Tamb - ’En Tsin - ’En
CinTin = + + 8c
Rwind Rdoor Rwint ( )
Titm - Tin Tsar - Tin
+ + — Ppp + Pint + Psol,
Ri Rroof hP ‘ solin
. T. - T; 1, rnd — T; m
CitmTitm = U g : + PSO'itm/ (8d)

+
Ri Rfloc)r

where the four-dimensional state includes the exterior wall
temperature (T, ), the interior wall temperature (Ty,,),
the indoor air temperature of the zone (T;,), and the in-
ternal thermal mass (Tim). The single-dimensional control
input is the heat pump heating or cooling capacity (Php).
The system is perturbed by three exogenous disturbances
to the zone: 1) the ambient temperature Typp, 2) the power
influx due to solar irradiance I contributing to indoor air
temperature and indoor thermal mass, and 3) the inter-
nal heat load Pj,; generated, for instance, by appliances,
occupants, etc.

The thermal capacitances are given by Cy,., Cw.., Cin,
and Cj,n corresponding to the states. The thermal re-
sistances are Rdoor, Rwall; Rwi,, Rwind, Ri, along with the
ground resistance Ryoor, and the values of these parameters
are provided in Table 2. Note that the ground temper-
ature Tgmg does not matter if floor is well insulated, i.e.
Rioor = 0.

Other variables in (8) may be expressed directly in
terms of the state, input, and disturbance variables iden-
tified above. Specifically, (8) includes several additional
temperatures are required to describe the thermal dynam-
ics, which we describe next. In (8), Ty, is the wall surface
temperature of the inner wall, Tg,, and Tg,, represent the
combined effect of solar radiation, outdoor air temperature,
and convective heat transfer on the exterior wall and roof
outer surface respectively, and and Tgq is the ground tem-
perature. Here, T;, may be calculated by the conservation
law while Ti,, and T, are affine transformations of the
disturbance variables,

(Tw;nt - Tsin)/(Rwall/?’) = (Tsin - Tin)/Rwi"t/ (93)
’TSEIW = (awext)/(hwext)FWextI + Tamb’ (9b)
Tsar = (Qwpoor)/ (Mot ) Futoor L + Tamb,  (9¢)

Additional heat inputs to the space due to solar radiation
include:

Psolwi,\d = AwindeindnsoII/ (10)

which models the solar heat gain through windows; 7
denotes the solar heat gain coefficient that abstracts the
fraction of radiation that actually enters the building space.
This total solar heat is then split into

Peo,, = fPSOIWind’ Pooly, = (1- f)PSOIWInd (11>

which represent contributions towards heating the indoor
air and the internal thermal mass, respectively. Some
specific calculations involving view factors and window
areas are left unwritten for brevity; we refer the reader
to [43, 44] for further details.

Note that the heat pump capacity Py, is an auxiliary
variable introduced to simplify the model (15). In prac-
tice, Ppp relates to the compressor power in the physical
world Peomp via the following piecewise linear function that
separates the coefficients of performance in each operating
mode, Tlheat and Tlcool s

_ {Phpnheat if Php = 0/
Pcomp =

. (12)
otherwise.

Phpncool

In addition to the heat generated by internal and ex-
ternal sources, the grid-interactive building has access to
battery storage, and photovoltaic (PV) systems for harness-
ing solar energy. In particular, the PV and battery system
offers an additional degree of control as we can control the
charge and discharge of the battery. Specifically, we assume
the battery has first-order charge/discharge dynamics given
by

Pbatdis

, 13
TMbatys ( )

Qbat = nbatchgpbatchg -
where both charge and discharge cycles operate at different
efficiencies. Here, we require,

Pbatchg =0or Pbatdi5 = Or (14>

pointwise-in-time to enforce mutually exclusive operating
regimes.

Using a zero-order hold with sampling time At, we
model the dynamics of the single-zone space system (in-
cluding Qpat) using the following discrete-time, perturbed,
linear dynamics,

Xt41 = Axy + Buy + Fwy, (15)

with state x; = [Tw.., Tw,., Tins Titm, Qbat] € R?, input u; =
[Php, Poater, » Poata, ] € R3, disturbance
w; = [Tamb, I, Pint] € R3, and matrices A, B, F with ap-
propriate dimensions defined using (8), (9), (10), (11), and
(13). Table 2 describes the simulation parameters used in
this work.

4.2. Constraints on the system

We now briefly describe the physical constraints on the
system (15) that must be satisfied for a desirable opera-
tion. Since we will use the discrete-time dynamics (15), we
enforce these constraints at the discrete points in time.



‘ Parameter Value ‘ Parameter Value
Cw,y 118 X 107 | Cw, 1.18 x 107
Cin 6.66 x 10° | Citm 1.63 x 107
Ryall 45% 1073 | Ryoof 54 x 1072
Ritoor 00 | Ryind 1x 1071
Ryoor 19% 1072 | Ry, 71x 1074
R; 22 x 1074 0.30
Theat 3.50 | 7Mcool 2.70
Nsol 0.19 | Nch, Ndis 0.93x 1076
Fu, i —wi, 0.50 | Froof—in 0.20
Fu,,—in 0.30 | aw,, 0.13
Qroof 0.05 | Mroof 3.45
M, 20.0 Wer 52.2
Awind 6.10 | Aoof 65.9
Npv 25 | Apy 1.685 sq. m.
NOCt 50 TStC 25.0 deg—C
Tlstc 0.19 | Mgt 0.90
nT 0.005 | Thoc 25.0 deg-C

Table 2: Grid-interactive building simulation model parameters.
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Figure 3: Grid-interactive building model schematic. States are

shown in purple.

Recall that the measured variable from the battery
system is the state-of-charge (SOC), given by

SOC = Qpar/Q2,

where Qp2** is maximum energy stored in the battery. We

enforce hard bounds on SOC by bounding Qyat,
Qi < Qo < Q™

Additionally, we place the following constraints on the
inputs,

(16)

P < Ppp < PR, (17a)
0 < Prat,, < Poct (1=spy,,, ), (17b)
0 < Poaty, < Placxsp,, (17¢)
0<spy,,, <1 (17d)

Note that (17b) and (17¢) together enforce (14) exactly
when sp,,, € {0, 1}. To keep the formulation convex, we
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relax sp,, € {0,1} and impose an interval constraint on
SPyy, € [0,1] in (17d) instead.

Using an additional (slack) scalar variable st, > 0, we
enforce a soft constraint on the indoor air temperature of
the zone T;,, i.e., T, € [Tinmi“, T%*] for some user-specified
parameters T."", T, Specifically, we enforce the follow-
ing additional constraint on the system,

T = s, < T < T +51,,,

st, = 0.

(18a)
(18b)

By design, st,, when positive, is the margin of violation of
the constraint T, € [T, T™**]. We use the same slack
variable st for all time instants.

4.2.1. Control objective

We formulate a convex objective | as a function of
the state x and input u to balance the economic needs
and desirable performance of the system. Specifically, the
objective imposes two soft constraints on the system —
minimize the use of compressor and minimize the margin
of violation of temperature constraint (18). Additionally,
the objective aims to minimize the power bought from the
grid, which we formalize next.

Let Py, denote the power to be bought from or sold to
the grid at each time step, with

A
Pbuy - (Pbatchg + Php) - (PbatdiS + va)
S———— —
power drawn from building power supplied to building

(19)
Here, Pp, denotes the power output of the photovoltaic
(PV) system. We model Py, as a function of various system
and environmental parameters,

Thoe — 20
va = NpVApvnStCTN&tI [1 - (T]T (Tamb + OQTI - Tstc))] .
(20)

The total power generation depends on the number of PV
panels, Np,, and the area of each panel, Ay, along with
the panel efficiency under Standard Test Conditions (STC),
Nste, and a system loss efficiency factor, 1jg¢. The incident
solar irradiance, I, directly affects the power output, while
temperature-dependent losses are accounted for through
the term inside the brackets. These losses are influenced
by the ambient temperature, T,mp, the Nominal Operating
Cell Temperature (NOCT), Toc, and the STC reference
temperature, Ty, with the efficiency reduction governed
by the temperature coefficient, 7. The NOCT parameter
is used to estimate the actual cell temperature based on
real-world irradiance conditions. This equation provides a
comprehensive representation of PV power generation by
incorporating both irradiance and temperature-dependent
performance variations.

To achieve these preferences (minimizing power bought
from the grid as well as enforcement of soft constraints),



we consider the following convex objective defined for a
planning horizon N,

N
](xl M) = Z max ((Pbuy)tl 0) + /\HP“ (Php)O:N_ln 1 (21)
t=0
+ /\TinSTin + APbatchg Spbatchg 4

where Aup, A1, , APy, > 0 are user-specified weights. Here,

max ((Pbuy) ¢ 0) corresponds to the power bought from the
grid since instants where power is sold to grid will have
Py <0, and (Php)():N_1 denotes the sequence of Py, inputs
over the planning horizon N. In (21), we use {;-norm on
Py, to promote sparsity.

4.2.2. Predictive control algorithm

We use a receeding horizon control algorithm to control
(15) subject to the physical constraints (16)—(18) and min-
imize the objective (21) Specifically, we solve the following
(convex) optimization problem,

minimize Cost | in (21),

subject to Dynamics (15),
SOC hard constraint (16),
Input constraints (17),
Tin soft constraint (18).

(22)

Starting from an initial state xg, we iteratively solve (22) for
a sample disturbance sequence obtained from the generative
model, apply the control input ug, and repeat until a pre-
specified simulation window T. The convex MPC problem
is implemented in Python using CVXPY [45] and solved with
the ECOS solver [46], with a planning horizon of 32 time
steps, which is equivalent to 8 hours.

4.8. Quality of diversity maximized scenarios

4.3.1. Real data

To begin with, we demonstrate the feasibility of our
proposed solution framework for discovering diverse distur-
bance scenarios and output trajectories on the real distur-
bance dataset (number of disturbance scenarios N = 602);
all these scenarios are collected from the real building. Fol-
low with the procedure shown in Figure 2, we partition
the 602 disturbance scenarios into 50 clusters before imple-
menting the CUCB algorithm to decrease the number of
arm m. Our objective is to find the representative super
arm containing K = 5 arms out of the 50 arms. We specify
number of round Ncycp = 500 for the CUCB algorithm.
Figure 4 shows the representative diverse disturbance sce-
narios and the corresponding simulation output trajectories
recommended by CUCB on the real disturbance data set.
From the left to the right column in Figure 4, we calculate
the DTW distance with only the P,y trajectory, the Py,
trajectory, and both output trajectories.

Figure 4 distils the full set of 602 real-world disturbance
days into the five most informative scenarios, obtained with
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the CUCB combinatorial-bandit where diversity is quan-
tified on, from left to right, Py, alone, Py, alone, and
the joint trajectory {Ppuy, Ppv}. In each column the upper
three traces depict the exogenous drivers—global irradi-
ance, internal heat gains, and ambient temperature—while
the bottom two traces display the photovoltaic power ex-
port Py, and the net grid exchange Py,,. When diversity
is maximised on Py, (left panel), the bandit favours com-
binations in which similar solar availability collides with
contrasting temperature and load profiles, producing a
wide spread in grid imports despite modest variation in
Ppy. Conversely, maximising diversity on Pp, (centre panel)
emphasises days with sharply different irradiance envelopes;
P, now ranges from near-zero generation under persistent
cloud cover to bell-shaped curves that clip at the inverter
limit on clear days, while Py, collapses into a narrow
band because surplus PV largely offsets demand. The
joint-metric selection (right panel) uncovers disturbance
triplets that decouple the usual solar—grid anti-correlation:
e.g. a cold yet intensely sunny winter day yields simul-
taneous peaks in both P, and the heating-driven Py,
whereas a mild overcast shoulder season forces the building
to rely almost exclusively on the grid. Taken together,
Fig. 4 shows that, even within measured data, the ban-
dit can isolate a compact scenario ensemble that stresses
the controller along orthogonal operating axes—generation
saturation, load-dominant import, and bidirectional power
flow—thereby furnishing a rigorous basis for robustness
assessment.

4.3.2. Benefits of synthetic data

As mentioned in Section 3.2, small number of arms m
would limit the achievable optimal expectation reward for
the CMAB problem. Creating synthetic disturbance scenar-
ios enhances the diversity of the existing real disturbance
dataset, potentially increasing the achievable optimal ex-
pected reward. To validate this, we visualize the projected
disturbance time series in a 2D latent space using Principal
Component Analysis (PCA) and Uniform Manifold Ap-
proximation and Projection (UMAP). Figure 5 compares
the real disturbance data with 10k synthetic scenarios gen-
erated by Diffusion-TS. The results show that synthetic
disturbances expand the covered latent region, demonstrat-
ing their ability to improve the diversity of the real distur-
bance dataset. With real data only, points cluster tightly
around a single elongated manifold that reflects the seasonal
co-variation of irradiance and temperature. Adding 10k
diffusion-TS samples inflates that manifold in all directions:
previously empty regions corresponding to low-temperature
and low-irradiance winter anomalies, or to high-irradiance
shoulder-season days with negligible internal gains, are now
densely populated. Moreover, UMAP reveals new satel-
lite clusters whose separation implies qualitatively distinct
disturbance regimes: for instance, high-gain evening pro-
files decoupled from daytime solar, or abrupt temperature
ramps uncorrelated with irradiance. This geometric expan-
sion corroborates the performance gains reported in Fig. 6:
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Figure 4: Diversity maximized scenarios for real disturbance data discovered by CUCB with DTW distance calculated using the Py (in W)
output trajectory (Left), the Py, (in W) output trajectory (Middle), and both Py, and Pp, output trajectories (Right). The top 3 rows are the
disturbance scenarios and the bottom 2 rows are the simulation output trajectories.

a larger, more isotropic latent footprint translates into
more diverse closed-loop responses, thereby strengthening
confidence in controller robustness across the full, and now
better explored, operational envelope.

In this section, we further add 1,000 (denoted by 1k) syn-
thetic disturbance scenarios generated by the Diffusion-TS
model into the original dataset to investigate the potential
improvement of the achievable reward for CUCB. Follow
the procedure in Figure 2, we partition the total of 1,602
disturbance scenarios into 100 clusters to decrease the num-
ber of arm m. The objective is to find the super arm with
representative K = 8 arms out of the 100 arms. We spec-
ify the number of round Ncycs = 2,000 for the CUCB
algorithm. Figure 6 shows the representative diverse distur-
bance scenarios and its corresponding output trajectories
recommended from CUCB on the real+1k synthetic distur-
bance data set. The synthetic augmentation widens every

disturbance dimension: extreme irradiance swings now in-
clude both prolonged low-sun periods and high-frequency
transients; internal gains span evening-centric residential
occupancy as well as daytime commercial profiles; and am-
bient temperature envelopes capture both heat-wave and
cold-snap boundaries. These richer inputs propagate to the
outputs: P, trajectories not only scale to higher peaks but
also exhibit intermittent midday ramps characteristic of
broken-cloud conditions, whereas P,y stretches from sus-
tained negative values—day-long export under surplus PV
and muted demand—to deep import spikes driven by coin-
cident low-solar, high-load episodes. Importantly, scenarios
chosen on the joint diversity metric reveal operating points
absent from the real-only set, such as a summer storm
where solar production collapses abruptly while latent cool-
ing loads remain high, forcing a rapid swing from export
to import. Juxtaposition with Fig. 4 thus highlights the



value of generative augmentation: it exposes a broader en-
velope of coupled solar-temperature—load states, enabling
the designer to probe controller performance under rare
yet plausible extremes that historical measurements never
recorded.
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Figure 5: Projection of disturbance scenarios on 2-d latent space
using PCA (top row) and UMAP (bottom row) for real and 10k
synthetic disturbance data.

Furthermore, we want to understand the impact of
adding synthetic data on different size of the real data
set that we can access. Hence, we demonstrate the best
achieved rewards defined in section 3.3 for CUCB on dif-
ferent size of the real data (20%,60%, and 100% or the
original data set) and different size of the real data + 1k
synthetic data. For the case with only 20%, 60%, and 100%
real data, we partition the disturbance scenarios into 10,
30, and 50 clusters. For the case with 20%,60%, and 100%
real data+1k synthetic data, we partition the disturbance
scenarios into 70, 85, and 100 clusters. We set the number
of representative scenario K = 10 for both real and real+1k
synthetic data set. Results for the 20% and 60% real data
are the mean of the randomly selected 5 data set. Achieved
reward for different size of the real data are shown in Figure
7. As shown in Figure 7, incorporating synthetic data sig-
nificantly enhances CUCB’s achieved optimal reward. This
improvement is particularly pronounced when the original
real dataset is small, highlighting the benefits of synthetic
data augmentation.

4.4. Comparative study with state-of-the-art

To demonstrate the benefit of framing the optimization
problem shown in Eq. 3 as a CMAB problem and apply
the CUCB algorithm for tackling it, we further compare
the performance of the CUCB algorithm with two greedy
approaches with and without clustering information. We
consider both the real data set and the data set with real +
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1k synthetic disturbance scenarios as the separate case stud-
ies. Again, we implement TS k-means clustering method
to partition disturbance scenarios into different clusters
to decrease the total number of arms. The objective for
all baseline methods is to select the best-K representative
clusters (arms) from the total m clusters (arms) to achieve
the highest reward defined in section 3.3.

For the greedy approach without clustering information,
we don’t implement the clustering approach and treat each
disturbance scenario as an individual arm. Hence, each
arm i consists of single disturbance scenario, i.e. N; = 1.
In every round of the algorithm, we perform simulations
for all remaining disturbance scenarios in the disturbance
data set Wyt = {w(()],()T}N
Ik

to obtain the simulation out-

A

put trajectory set Yi,r

©1" We select the i-th
Yor[,_,- We select the i-

disturbance scenario whose corresp_onding simulation out-
put trajectory y, . has the largest mean pairwise DTW

distance from all other output trajectories yé:T, where
j #1 € N. The selected disturbance/outcome is removed
from the disturbance/outcome set in each iteration, and
the process continues until K disturbance scenarios are se-
lected. Details for the greedy approach without clustering
information are shown in Algorithm 2.

For the greedy approach with clustering information,
we apply TS k-means clustering algorithm to partition
disturbance scenarios into m clusters. We randomly select
a disturbance scenario from all remaining m clusters and
perform simulation to geri'?rate the simulation output tra-
jectory set Yy, T = {ygf%}k .
the i-th cluster whose corresponding simulation output
trajectory yé:T has the largest mean pairwise DTW dis-

at each iteration. We select

tance from all other cluster’s output trajectories yéw where
j # i € m. We remove the selected cluster from the cluster
set at every round. The algorithm stops when we sample
K clusters. Detailed descriptions of the greedy approach
with clustering information are provided in Algorithm 3.

Due to the intractability of finding the true optimal
super arm S* from the large number of possible combina-
tions in the super arm set, the regret defined in section 3.1
cannot be computed directly. Therefore, we use the best
achieved reward up to round ¢ as the evaluation metric for
all methods. Noted that all simulation considered in the
experiments section is noise-free.

We firstly demonstrate results on real disturbance data
set. We partition 602 disturbance scenarios into 50 clus-
ters. We consider K = 5, 10, 20 representative clusters with
diverse simulation outputs trajectories. For the CUCB
algorithm, we set the number of rounds Ngycg = 500. The
optimal rewards achieved by greedy approaches and the
CUCRB algorithm are shown in Table 3. Next, we compare
the performance of CUCB with the greedy approaches on
the data set with real + 1k synthetic disturbance scenarios.
We partition the 1,602 disturbance scenarios into 100 clus-
ters. We set the number of rounds Ncuycg = 1, 500 for the
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Figure 6: Diversity maximized scenarios for real + 1k synthetic data with DTW distance calculated using the Py, (in W) output trajectory
(Left), the Py, (in W) output trajectory (Middle), and both Py, and Pp, output trajectories (Right). The top 3 rows are the disturbance
scenarios and the bottom 2 rows are the simulation output trajectories.
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Figure 7: Best reward achieved by CUCB with different size of real
disturbance data set. The blue bar shows the results with only N%
of the original real dataset. The orange bar shows the results with
N% of the original real dataset + 1k synthetic data. We observe that
adding synthetic data can improve the achieved reward and has the
greatest benefit while the real data size is small.

CUCB algorithm. Again, we consider K = 5,10, 20 repre-
sentative clusters. Optimal reward achieved by all methods
are shown in Table 3. Noted that results for CUCB are the
mean across 10 replicates, with each replicate differs from
the initialization step. As presented in Table 3, CUCB con-
sistently attains the highest reward across different values of
K for both real and real+synthetic datasets. Furthermore,
the inclusion of synthetic data leads to higher reward values
across all methods, further reinforcing the advantages of
synthetic data augmentation, as discussed in Section 4.3.2.

4.5. Ablation Studies

4.5.1. Alternative diversity metrics for performance evalu-
ation

We investigate the impact of different diversity metrics

on the output scenarios selected by CUCB. Specifically, we

evaluate the Euclidean distance and Pearson correlation



ALGORITHM

Proposed CUCB (Real)
Proposed CUCB (Real + 1k Synthetic)
Greedy with clustering (Real)
Greedy with clustering (Real + 1k Synthetic)
Greedy without clustering (Real)
Greedy without clustering (Real + 1k Synthetic)

REwARD (K=5) | REwARD(K=10) | REwArRD (K=20)
7.18 (0.14) 7.43 (0.08) 6.86 (0.09)
7.80 (0.21) 7.85(0.24) 7.82(0.13)
4.90 (1.96) 6.13 (1.49) 5.75 (0.75)
3.96 (0.58) 4.89 (0.57) 5.15 (0.38)

0.02 0.03 0.04
1.41 1.99 2.63

Table 3: Best rewards achieved by different algorithms on the Real and Real + 1k Synthetic disturbance data set. Parenthetic numbers

represents the standard deviation across 10 replicates.

Algorithm 2 Greedy approach without clustering infor-
mation

1: Input: Number of disturbance scenario N, number
of representative disturbance scenarios K, disturbance
data set Wi

2: for k={0,...,K—1} do

Perform simulation for all disturbance scenariosN in
Wiyt to obtain output trajectory set Yy 2 {y(()n%}
“In=1
fori=1,...,Ndo

5: Calculate the mean of pairwise DTW distance
DTW; between y! .. and all y/ ;. such that i #j € N

6: end for

7 Select wé:T such that the corresponding y(i):T has
the largest DTW;
Wi \w!) -, N=N-1
9: end for

Algorithm 3 Greedy approach with clustering information

1: Input: Number of clusters m, number of representative
cluster K, admissible disturbance scenario space Wk r

2: while k < K do
Randomly select a disturbance scenario from each
remaining cluster and perform simulation to get out-

(k"™
{yO:T>k:1
fori=1,...,m do

5: Calculate the mean of pairwise DTW distance
DTW; between y/ . and all y) . such that i # j € m
6: end for
: Select cluster i such that the corresponding output
Yo.r has the largest DTW;

A

come trajectories set Yy, 1

8: k=k+1
: Remove cluster i, m =m —1
10: end while

metrics as alternatives, which are two of the most common
approaches for measuring time series similarity; c.f. [47].
To ensure a fair comparison, we fix the random seed across
all steps, including the inherent randomness in the CUCB
algorithm, for each diversity metric. The experiment is
conducted on the real disturbance dataset with K = 5 and
500 CUCB iterations, under a noiseless setting.

As shown in Figure 8, different diversity metrics lead
to different representative disturbance scenarios and corre-
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RanNpoM | CLOSEST-TO-CENTER
Reward (K=5) | 7.18 (0.14) 7.26 (0.10)
Reward (K=10) | 7.43 (0.08) 7.64 (0.05)
Reward (K=20) | 6.86 (0.09) 7.14 (0.13)

Table 4: Achieved reward for the CUCB algorithm using random
and closest-to-center disturbance scenario selection. Format: mean
(standard deviation) across 10 replicates.

sponding output trajectories recommended by the CUCB
algorithm. In general, both the DTW and Euclidean dis-
tance metrics produce diverse output scenarios that span
a broad range of signal shapes and values. In contrast,
while the Pearson correlation metric also yields diverse
scenarios, the resulting value range is narrower compared
to DTW and Euclidean distance. In particular, it fails to
identify heat load scenarios as diverse as the others, and
the peak solar irradiances, which result in the peak Ppyy
and Pp, being considerably higher for DTW and Euclidean
approaches. This can be explained by realizing that the
Pearson correlation is proportional to a normalized Eu-
clidean distance [47], which means it captures differences
in the shape of time series data rather than differences in
magnitude.

This ablation study highlights the importance of select-
ing an appropriate diversity metric for the CUCB algorithm.
The DTW distance metric is particularly effective in cap-
turing both the shape and magnitude of time series data,
making it a suitable choice for this application.

4.5.2. Effect of random vs. deterministic intra-cluster sce-
nario selection

If clustering is performed, and a cluster center is used
as a proxy for an arm, then if that arm is pulled, there
are two ways to ensure the selection of a realistic scenario
from the cluster: (i) randomly select a scenario from the
cluster, or (ii) select the scenario closest to the cluster
center. The first approach is stochastic, while the second is
deterministic. Here, we compare these two approaches in
terms of their performance in CUCB. Note that choosing
the actual cluster center as the representative scenario is
not always a viable option, as the clustering method does
not guarantee that the center is a valid scenario.

We compare the CUCB performance using both selec-
tion approaches on the real disturbance dataset. Rewards
are averaged over 10 replicates, with the number of CUCB
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Figure 8: Illustrating the effect of diversity measures on CUCB performance. (Left) DTW distance, (Mid) Euclidean distance, and (Right)
Pearson correlation. The top 3 rows are the disturbance scenarios and the bottom 2 rows are the simulation output trajectories.

iterations set to 500. As shown in Table 4, the deter-
ministic approach yields consistently higher rewards for
varying K. However, the relatively small difference in per-
formance suggests that the random method is a robust and
effective choice. Although the closest-to-center selection
approach can achieve slightly higher rewards than the ran-
dom approach, it has the drawback of repeatedly allocating
simulation budget to the same disturbance scenarios be-
cause the same arm would be repeatedly selected during
the CUCB algorithm with high chances. This limits the
number of distinct scenarios explored within a fixed sim-
ulation budget. We also visually compare the final set of
scenarios obtained by each approach in Figure 9. Although
the difference in reward is relatively small, the resulting
scenario sets differ significantly in composition, as expected.
Both methods are capable of discovering diverse scenarios,
but the random approach tends to generate output scenar-
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ios that are more distributed across the signal range, while
the closest-to-center approach is more likely to identify
extreme cases—such as the flat Py, profiles highlighted in
green and red in the right column. An advantage of the
closest-to-center approach is that is repeatable.

4.5.8. Effect of varying number of representative scenarios

To investigate the effect of the number of representative
scenarios K on the performance of the CUCB algorithm,
we conduct additional experiments on the real disturbance
data set. Following the same experimental setup as in Table
3, we cluster the disturbances into 50 groups and repeat
each experiment 10 times, running the CUCB algorithm
for 500 iterations per trial. As illustrated in Figure 10,
the achieved reward initially increases with K, reaching a
peak at K = 7, after which it begins to decline. This trend
is explained as follows: when K is too small, CUCB may
fail to capture the diversity of representative disturbance
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Figure 9: Scenarios obtained when selecting randomly within a cluster
vs. the closest-to-center scenario. The top 3 rows are the disturbance
scenarios and the bottom 2 rows are the simulation output trajectories.

scenarios, leading to suboptimal selections. Conversely,
when K is too large, the algorithm tends to select scenarios

that are similar to those already in the representative set.

This redundancy reduces the achieved reward, as it is
defined by the average pairwise DTW distance between all
selected outcomes. In other words, an excessively large K
may lead CUCB to choose overlapping scenarios, thereby
diminishing the overall diversity and reward.

2 3 45 6 7 8 910111213 14 1516 17 18 19 20
K (Number of Representative Scenarios)

Figure 10: Impact of different K values on the achieved reward for the
CUCB algorithm. Result shows the mean and one standard deviation
across 10 replicates.

4.5.4. Simulation with additive Gaussian noise
In the experiments presented above, we considered only
the noiseless setting for the building simulation model. To
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o (kW) CUCB GREEDY+CLUSTER
0 (noiseless) | 7.43 (0.08) 6.13 (1.49)
0.1 7.48 (0.09) 1.66 (1.55)
0.5 7.25 (0.14) 3.23 (0.92)
1 6.99 (0.27) 3.18 (0.76)

Table 5: Effect of varying noise levels on performance outputs. Format:
mean (standard deviation) across 10 replicates.

evaluate the robustness of the CUCB algorithm and greedy
approaches under noisy conditions, we introduce i.i.d. Gaus-
sian noise € ~ N(0,0) to the performance outputs from
the simulation model and report the effect of varying the
noise level 0. As shown in Table 5, the performance of
the CUCB algorithm remains comparable to the noiseless
case for 0 = 0.1 kW and 0.5 kW. Even when the noise
level increases to 0 = 1 kW, CUCB exhibits only a slight
performance degradation and remains competitive. These
results suggest that the CUCB algorithm is robust to mod-
erate levels of noise in the simulation data. In contrast,
the performance of the greedy approach deteriorates signif-
icantly as noise increases, indicating greater sensitivity to
perturbations in the output.

4.6. Time complexity for baseline algorithms

Beyond reward optimization, computational efficiency
is a crucial factor when evaluating different algorithms due
to the computationally expensive nature of general building
simulation models. Our time complexity analysis assumes
a constant simulation time per bandit round, independent
of the disturbance values. The time complexity of CUCB
depends on the number of arms m, the number of rounds
Ncucs, and the number of representative clusters K. The
initialization step requires m - K simulations, as indicated
in lines 8-12 of Algorithm 1. The iterative step, beginning
at line 13, executes K simulations per round, resulting
in a total of Ncucp - K simulations. Consequently, the
time complexity of CUCB is O((m + Ncucs) - K). Notably,
Ncucs is a hyperparameter that can be pre-specified by
the user.

For the greedy approach without clustering, time com-
plexity is determined by the total number of disturbance
scenarios N. Each iteration performs N — K simulations,
leading to a time complexity of O(N - K). In contrast,
the greedy approach with clustering executes a total of
Zlktol (m — k) simulations, resulting in a time complexity of
O(m - K). In the general case where N > m, N > Ncucs,
and N > K, the greedy approach without clustering has
the highest time complexity. By selecting Ncucp < m,
CUCB achieves the same time complexity as the greedy
approach with clustering information. Given CUCB’s su-
perior empirical performance in terms of achieved rewards
and its competitive time complexity compared to greedy
approaches, we conclude that CUCB is the most suitable
algorithm for solving the optimization problem in Eq. 3.



4.7. Controller redesign with representative scenarios

We conducted experiments to demonstrate that our
CUCB-based scenario selection method identifies critical
operating conditions that conventional approaches miss.
These experiments show how the selected scenarios can
guide practical improvements to HVAC controller design.

We compared three scenario selection methods using
the MPC controller described in (22): random search (RS),
greedy selection, and our proposed CUCB algorithm. Each
method selected K = 5 representative disturbance scenarios
from real building data. We tested whether the controller
could maintain room temperatures between 22°C and 24°C
during work hours, while managing energy consumption.
The experiment had two phases. First, we tested the
existing or ‘legacy’ MPC controller with scenarios from
each selection method. Second, we redesigned the MPC
(i.e. heat pump and battery storage) based on constraint
violations revealed by the CUCB scenarios and retested
performance.

Figure 11 shows room temperature trajectories and
HVAC control inputs for each scenario selection method.
Subplots [A] and [B] show that random search and greedy
selection produce scenarios where the controller maintains
comfortable temperatures throughout the day. All tem-
perature trajectories stay within the 22-24°C bounds with
stable performance. Subplot [C] presents a different result:
the CUCB algorithm successfully identified scenarios that
caused the controller to violate temperature constraints.
Multiple scenarios push room temperatures above 24°C
during afternoon hours (noon-3 PM). These are not caused
by unrealistic scenarios: they represent legitimate combi-
nations of occupancy, solar gain, and ambient conditions
that the baseline RS and even Greedy failed to find. In
fact, the green lines are historical data points that have
been recorded in the building. The red dashed lines are
induced by scenarios that were synthetically generated,
although we confirm they were realistic also, due to post-
processing to ensure physically meaningful scenarios were
retained. Out of K = 5 scenarios, only one real scenario
violates constraints, whereas two synthetic scenarios do.
This highlights the CUCB algorithm’s ability to discover
challenging conditions that other methods miss and the
utility of synthesizing realistic scenarios with generative
networks. Subplot [E] shows the MPC cannot handle these
representative scenarios. The heat pump inputs saturate
during constraint violations, indicating insufficient system
capacity.

We used insights from the CUCB scenarios to redesign
the HVAC system. We increased heat pump capacity
by 15% and doubled the battery capacity to enforce the
MPC specifications. Subplots (D) and (F) confirm the
effectiveness of the redesign. The new closed-loop system
maintains all temperatures within comfort bounds, even for
previously problematic scenarios. Temperature regulation
improves during critical afternoon periods. As can be seen
in subplot [F] one of the synthetic scenarios requires the
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entire heat pump capacity to maintain temperature within
specified ranges.

5. Conclusions

This work presented a combinatorial MAB framework
that selects an informative set of disturbance scenarios for
assessing the closed-loop behaviour of GEBs. By treat-
ing scenario selection as a diversity-maximisation prob-
lem on measured outputs—specifically the photovoltaic
power Py, and the net grid exchange Py,,—and by us-
ing dynamic-time-warping distances as the bandit reward,
the proposed CUCB algorithm condensed six hundred real
disturbance days into only five representative cases while
retaining the extreme values and temporal patterns needed
to assess the performance of the controller. The approach
enjoys a sub-linear regret bound and a computational cost
that scales linearly with the number of arms and bandit
rounds, making it practical for large data sets and expensive
simulations.

Applied to a stochastic MPC-controlled single-zone
building, the CUCB-selected scenarios reproduced the full
range of grid import, export and bidirectional flow observed
in the original data, whereas conventional greedy heuristics
captured at most two-thirds of that range. When historical
data were scarce, a diffusion-based time-series generator
produced synthetic disturbances that enlarged the latent
disturbance manifold and increased the diversity reward by
up to a quarter. These artificial trajectories introduced op-
erating conditions that were absent from the measurements
yet crucial for uncovering vulnerabilities in the closed-loop.

This paper takes a step to indicate that bandit-driven
scenario selection offers a rigorous, data-centred alterna-
tive to manual or worst-case testing and can dramatically
reduce the number of simulations required for performance
certification. Because the method is agnostic to both the
choice of outputs and the underlying control strategy, it
can be transferred to multiple zones, and even smart city
settings. Synthetic augmentation further extends its appli-
cability to newly commissioned buildings where available
data is small.

Future work. The paper considered a single-zone model and
deterministic forecasts; this can be extended to multi-zone
or district-scale simulations and probabilistic forecasting
in the flavor of [48]. In fact, the proposed scenario selec-
tion method scales naturally to multi-zone systems, albeit
with added computational cost. The algorithm remains un-
changed, with multivariate outputs handled via a weighted
DTW-based reward, and zone coupling captured implicitly
through the black-box simulator. Additional work is also
needed to benchmark alternative generative models, to
explore adaptive bandit policies for online scenario discov-
ery. Together, these steps will help establish bandit-driven
scenario generation as a standard tool for designing and
validating GEB energy management systems.
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Figure 11: Room temperature profiles from the initial closed-loop MPC are shown for the randomly selected scenarios (top left), the
greedy-selected scenarios (top right), and the CUCB-selected scenarios (middle left). The middle right figure shows the room temperature
profiles for the CUCB-selected scenarios under the redesigned closed-loop MPC. The bottom left and bottom right figures illustrate the initial
and redesigned controller actions, respectively, and the resized capacity of the HVAC is shown from 1kW to 1.5kW.
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