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Abstract

This paper introduces a transformer-based generative net-
work for rapid parameter estimation of Modelica building
models using simulation data from a Functional Mock-up
Unit (FMU). Utilizing the MixedAirC0O2 model from
the Modelica Buildings library, we simulate a single-zone
mixed-air volume with detailed thermal and CO, dynam-
ics. By varying eight physical parameters and randomizing
occupancy profiles across 100 simulated systems, we gen-
erate a comprehensive dataset. The transformer encoder,
informed by room temperature and CO, concentration out-
puts, predicts the underlying physical parameters with high
accuracy and without re-tuning (hence, “zero-shot”). This
approach eliminates the need for iterative optimization
or can be used to warm-start such optimization-based ap-
proaches, enabling real-time control, monitoring, and fault
detection in FMU-based workflows.

Keywords: transformer networks, dynamic simulation, sys-
tem identification, model calibration, functional mockup
interface, machine learning.

1 Introduction

Accurate modeling of building energy systems is critical
for the design and operation of advanced control strate-
gies such as model predictive control (MPC), fault detec-
tion, and digital twins (Zhan, Chakrabarty, et al. 2023).
Physics-based modeling tools, such as those based on the
Modelica language, offer a powerful framework for cap-
turing the thermal, ventilation, and air quality dynamics of
buildings through component-based system representations.
However, the reliability of these models depends heavily
on accurate parameter values, which can be challenging
to determine in practice due to limited access to detailed
building specifications, aging infrastructure, or changes in
operational conditions over time (Chakrabarty et al. 2021;
Wiillhorst et al. 2022).

Parameter estimation methods bridge this gap by cali-
brating model parameters to match observed output data.
In the context of Modelica models exported as Func-
tional Mock-up Units (FMUs) (Blochwitz et al. 2011),
parameter estimation typically involves executing repeated
simulations while adjusting model parameters to mini-

mize the mismatch between simulation outputs and mea-
sured signals, such as temperature or CO, concentration.
Classical approaches—including gradient-based optimiza-
tion (Cafias et al. 2023), Bayesian calibration (Li et al.
2025), and black-box global optimization methods—have
been successfully applied in this domain (Chakrabarty et
al. 2021). Tools like RAPID (Vanfretti et al. 2016) pro-
vide modular ways to link external optimization routines
to FMU simulations, supporting a range of problem for-
mulations from gray-box modeling to model order reduc-
tion (Bres 2021). Despite their success, these methods can
be computationally expensive, particularly when applied
to large-scale simulation studies or real-time control tasks,
due to their reliance on iterative optimization loops (Balali
et al. 2023). Additionally, the authors of (Zhang and Mikel-
sons 2023) present a sensitivity-guided, iterative frame-
work that combines BayesFlow and a physics-enhanced
variational auto-encoder to improve parameter identifi-
cation and data generation for model calibration. Their
method enhances efficiency and accuracy by focusing on
the most sensitive parameters during each iteration.

Herein, we study a fundamentally different paradigm:
using transformer networks to learn the mapping from sys-
tem outputs to model parameters directly from Modelica
simulations. The idea is rooted in the principle that, for a
well-defined family of parameterized models, there exists
a functional relationship between the parameters and the
corresponding output trajectories under typical excitation.
By simulating a large number of such model instances of-
fline, varying both physical parameters and disturbance
conditions, we can train a transformer network to approxi-
mate the inverse mapping: from observed outputs back to
the parameters that generated them. This multi-source pa-
rameter estimation has been investigated in the context of
Modelica-based dynamical simulation only recently (Zhan,
Wichern, et al. 2022; Li et al. 2025).

We focus on the use of transformer architectures, which
have recently emerged as state-of-the-art tools for modeling
sequential data in natural language processing, time-series
forecasting, and symbolic regression (Vaswani et al. 2017).
Transformer networks are a generative machine learning
tool that excel at capturing long-range dependencies and
temporal patterns, making them well-suited for analyzing



building simulation data, which often involves complex
interactions between building materials and fluid flows,
occupancy, and external weather conditions over extended
time periods. Moreover, transformers have demonstrated
impressive “zero-shot” capabilities: they often generalize
well to entirely new forecasting or control tasks even with-
out any additional fine-tuning. By leveraging pretraining
on diverse datasets, they can transfer learned representa-
tions of temporal structure and physical dynamics to novel
scenarios (such as predicting thermal loads in previously
unseen building types or adapting to different climate con-
ditions) simply by framing the problem in a compatible
input format. This flexibility not only accelerates deploy-
ment in new environments but also reduces the need for
costly labeled data when extending models to emerging
use cases.

To evaluate our transformer-based approach to parame-
ter estimation, we consider a simplified room-level building
model implemented in Modelica and exported as an FMU.
The model simulates the dynamics of air temperature and
CO, concentration in a mixed-air volume, subject to exter-
nal disturbances such as solar radiation and time-varying
occupancy. Eight key physical parameters are varied across
2000 simulations: floor area, room height, room volume,
external wall thermal resistance, window U-factor, window
solar absorption fraction, exhaust air mass flow rate, and
CO, emission rate per person. In each simulation, occu-
pant presence schedules are also randomized to introduce
realistic variability in internal gains. The output signals
from each run—specifically, the room air temperature and
CO, concentration—are collected at five-minute intervals
for a full week, resulting in multichannel time series of
high resolution. These serve as inputs to a patch-wise trans-
former encoder, followed by a multi-layer regression head
that predicts the underlying parameter vector.

Compared to traditional parameter estimation methods,
our approach offers two key advantages. First, it decouples
the expensive optimization loop from the online estimation
process. Once trained, the model can infer parameters from
new output signals in a single forward pass, enabling rapid
estimation that is suitable for time-sensitive applications
such as adaptive control or live performance monitoring.
Second, the neural network can leverage the full temporal
structure of the input signals, including cross-channel cor-
relations and delayed dependencies, which may be difficult
to exploit effectively with handcrafted objective functions
or scalar error metrics used in classical methods. While
this approach does not replace traditional calibration frame-
works, particularly in applications requiring safety-critical
design, it offers a complementary tool for use cases where
speed and scalability are paramount. Moreover, since the
method is data-driven but trained entirely on simulated
data, it mitigates the need for large amounts of real-world
measurement data, making it practical in warm-starting
optimization-based parameter estimation algorithms.

By integrating modern machine learning with estab-
lished Modelica modeling workflows, this work aims to ex-

pand the toolkit available for building energy analysis, en-
abling faster, scalable, and data-informed modeling work-
flows for real-world systems. Specific contributions of this
paper include: (i) proposing a transformer-based neural ar-
chitecture for estimating physical parameters from building
simulation output time series; (ii) demonstrating the effec-
tiveness of zero-shot parameter estimation on a dataset
generated using a Modelica FMU of a mixed-air room
model, with randomized physical parameters and occu-
pancy profiles, and (iii) empirical validation of the trained
model, showing that it can accurately recover eight key
physical building parameters that may vary as the building
ages, or are difficult to measure, despite significant climate
and occupant-induced variation.

The remainder of this paper is organized as follows. Sec-
tion 2 formulates the parameter estimation problem and
describes our FMU-based simulation model, including the
MixedAirCO2 benchmark, the procedure for exporting
it as an FMU, and the generation of a large, randomized
dataset for pretraining. Section 3 details the design of our
patch-wise transformer encoder and regression head, in-
cluding embedding, positional encoding, attention layers,
and pooling strategy. Section 4 presents the experimen-
tal setup and results: we begin by assessing zero-shot es-
timation accuracy across a range of context lengths (:=
sequences of measurement data collected for parameter
estimation, to be used as contextual inputs for the gener-
ative network), then benchmark our transformer against
non-transformer baselines to highlight the superiority of
attention-based models in achieving robust zero-shot per-
formance under varying data quantities. Section 5 sum-
marizes our conclusions and outlines directions for future
work, including extensions to probabilistic transformers
for uncertainty quantification.

2 Motivation

2.1 Problem Statement

We consider a parameterized dynamical system represented
by a Modelica-based Functional Mock-up Unit (FMU):

Y(t>:f(pad(t)at)v (D

where p € R™ is a vector of unknown physical parameters,
d(z) denotes time-varying disturbances (e.g., occupancy-
driven internal gains), and y(z) € R" are the observable
outputs over time such as indoor air temperature and
CO, concentration. Our goal is to learn a parameter es-
timator gg : R7*" — R™ that maps output trajectories
yi.r ={y(t1),...,y(tr)} to estimates of the underlying pa-
rameters. Formally, we write this as

p=2e(y1.r) = p, 2

where 6 denotes some parameterization of the map g, e.g.,
weights of a deep neural network. We reiterate that unlike
traditional optimization-based parameter estimation meth-
ods which solve an inverse problem for each new instance



of contextual data yi.7, we propose to learn this mapping
directly from synthetic data generated offline.

2.2 FMU-based Multi-Source Data Collection

We use an FMU  extracted from  the
Examples.MixedAirC0O2 model from the Mod-
elica Buildings 11.0 library (Wetter et al. 2014)
as the simulation model with default TMY3 file for
meteorological data; see Figure 1 for the graphical
layer representation in Dymola. This model represents
a single thermal zone with a detailed energy and CO,
balance, incorporating contributions from internal gains,
air infiltration, ventilation, and weather-driven boundary
conditions. The model includes thermal mass, surface
convection and radiation, and moisture dynamics, making
it: (i) representative of building simulation use cases, and
(ii) easily extendable to multi-zone office buildings.

The zone is served by a mixing box that supplies out-
door air and recirculated return air based on a CO,-based
control strategy. To perform parameter estimation under
realistic operating conditions, we utilize closed-loop data,
where the PI controller remains active with gain constants
carefully tuned to balance tracking performance and distur-
bance rejection. We also add small-gain sinusoids to the
control action in order to provide some excitation for the
inputs. We already know that the outputs are sufficiently
sensitive to the persistently exciting inputs and will induce
persistently excited outputs that we will use for learning.
This configuration preserves feedback actuation, as evident
from the Fig. 1, and allows the system’s response to exoge-
nous inputs (e.g., occupancy profiles, weather disturbances,
and internal loads) to be interpreted in the context of both
the building’s physical properties and the control dynamics.
This setup is not only realistic, but the identification prob-
lem is challenging because of varying occupancy profiles
and weather conditions.

The physical parameters varied in each simulation are
summarized in Table 1. Each parameter is sampled uni-
formly within the specified range. Each simulation spans
1 year of operation, sampled every 60 minutes (3600 sec-
onds), resulting in 7 = 8760 time steps per simulation. The
output signal at each time step is the room air temperature
T and the CO, concentration: y(r) = [T(t) CO, ()].

Occupant-driven internal gains are also randomized by
varying: (i) occupant count (persons), (ii) start time and
duration of occupancy, (iii) daily schedules. However, oc-
cupant information is not provided to the model at inference
time, reflecting practical limitations.

2.3 FMU Export Procedure

To enable parameter estimation using external (to Mod-
elica) optimization tools, we export the MixedAirCO2
model as a functional mock-up unit (FMU) using Dymola
2024 (Dassault Systemes 2023). The following steps sum-
marize the FMU export process:

1. CONTROL CONFIGURATION. We disable the internal

PI CO, controller.

2. PARAMETER EXPOSURE. Key physical parameters
targeted for estimation are re-declared as input
Real variables within the Modelica model. This al-
lows external modification during estimation without
having to continuously recompile the FMU.

3. SOLVER AND TIME SETTINGS. Simulation is con-
figured for a 1-year period with a storage step size
of 1 hr to match the measurement data resolution.
The CVODE solver (Cohen, Hindmarsh, Dubois, et
al. 1996) is selected for robust handling of stiff sys-
tem dynamics during FMU export and tolerances and
solver step-sizes are set to default.

4. FMU GENERATION. The FMU is generated using
Dymola’s Advanced menu with the following set-
tings:

e FMI version: 2.0
* FMI type: Model Exchange
¢ Solver: CVODE

5. VERIFICATION. The resulting FMU is validated us-
ing fmpy! in Python 3.11 to confirm correct loading,
access to exposed parameters, and consistency of sim-
ulated outputs with the original Modelica model under
default disturbance input profiles.

In summary, this export procedure ensures that the
physics-oriented Modelica model is encapsulated in a
reusable and differentiable FMU format, suitable for inte-
gration with external state-of-the-art deep learning tools for
which widespread Modelica support at the time of writing
remains limited.

2.4 Multi-Source Dataset and Dataloader

Figure 2 presents multiscale building simulation outputs:
daily temperature cycles with subtle day-to-day shifts,
sharp occupancy-driven internal-gain spikes, multi-day
ambient-temperature fronts, and a nonlinear, saturating
heating response. This highlights the complex disturbances
and actuator dynamics that make parameter estimation
challenging.

The collected dataset is split into training (80 systems
with uniquely sampled parameters), validation (10 sys-
tems), and test sets (10 systems). Channel-wise normaliza-
tion is applied based on the training data statistics. Dur-
ing evaluation, model accuracy is assessed by comparing
predicted parameter vectors p to ground truth vectors p
over the test set. We found it easier to work with loga-
rithmic transforms of the parameters than the parameters
themselves due to their values showing varying orders of
magnitude.

Thttps://github.com/CATIA-Systems/FMPy



Table 1. Physical parameters varied in simulation experiments. Each parameter is sampled uniformly within the specified range.

nPer

Parameter Name Description Unit Range
gaicCo2.k CO; emission rate per person kg/s [6x107% 1.2x1077]
roo.AFlo Floor area m? [60.0, 200.0]
roo.hRoo Room height m [2.5, 4.0]
roo.V Room volume m? [40.0, 300.0]
matExtWal.R External wall thermal resistance ~ K-m?/W [0.5, 3.0]
glaSys.UFra Window U-value W/m?-K [1.0, 3.0]
glaSys.absSolFra Window solar absorptance - [0.3, 0.7]
moOut_flow Exhaust air mass flow rate kg/s [0.05, 0.5]
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Figure 1. Graphical representation of adapted MixedAirCO2 .mo model from Modelica Buildings Library, with additional PI

control loop closed on room air temperature.

Data loading is implemented via PyTorch 2.0’s cus-
tom Dataset class that wraps the full collection of mul-
tivariate time-series records and their corresponding tar-
get vectors. Rather than returning entire sequences, the
Dataset’s length is defined by a “virtual epoch” size,
and each call to getitem randomly selects one series
and then extracts a contiguous subsequence of fixed length
from it. This subsequence is returned together with the
associated target vector. By sampling both the series in-
dex and the time-window start position at each access,
the Dataset generates a diverse set of training exam-
ples each epoch without explicit shuffling. We then wrap
this Dataset in a standard DataLoader with a chosen
batch size, yielding batches of subsequences and targets
for efficient mini-batch training. Randomization inside the

Dataset ensures variety in each batch.

More concretely, given contextualizing measurement
inputs Y € R2*T*" and static outputs P € RZ*" across Q
systems, each training sample is constructed as follows:

1. Asystemindex ¢ € {1,...,Q} is drawn uniformly at
random.

2. Astartindex tg € {0,...,T — L} is sampled uniformly.
3. A temporal window yg s,:0+L-1 € REX" is extracted.
4. The target is the corresponding output vector p, € R".

The dataset returns tuples (Y,P) with fixed window length
L and configurable epoch size M.
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Figure 2. Example multi-system simulation outputs from FMU
over one week; with loops closed on carbon dioxide and room
air temperature. The outputs have been induced by time-varying
disturbances, including fluctuating internal gains, multi-day am-
bient temperature fronts, and heating power responses.

3 Transformer-Based Parameter Esti-
mator

We employ a patch-wise transformer encoder for parameter
estimation from multivariate time series, followed by a
deep multilayer perceptron (MLP) head for final prediction.
The full architecture is referred to as the patch transformer,
and is composed of five main components:

1. PATCH EMBEDDING. The input time series Y €
RB*Txn g separated into patches by a 1-D convo-
lution: zy = Conv1Dstide=r,, kemel=,, (YT"), where ¢ »
is the patch size and T is the sequence length. This
transforms the input to B x (T /¢,,) x d.

2. POSITIONAL ENCODING. A sinusoidal positional en-
coding e € R7/%*4 js added to the patch embeddings,
providing temporal awareness.

3. TRANSFORMER ENCODER BACKBONE. A stack of
L standard transformer encoder layers as described
in (Vaswani et al. 2017), each with H attention heads
and feedforward width dg, processes the sequence
z;, = TransformerEnc(zo +e).

4. GLOBAL POOLING. A global average pooling layer
aggregates the token outputs:

5. REGRESSION HEAD. A MLP with LeakyReL.U acti-
vations and LayerNorm at the input maps the pooled
embedding to the target vector p € RE*™,

Our patch transformer is inspired by the Patcher model
introduced in (Ou et al. 2022), which employs a patch-
wise transformer encoder. Unlike the Patcher model, we
replaced the mixture-of-experts decoder with a regression
head, which is simply composed of fully connected layers.

The hyperparameters used in the patch transformer esti-
mator are listed in Table 2. We did not perform extensive
hyperparameter search, and expect that a smaller network
will likely suffice if optimized by Bayesian neural archi-
tecture search (Nasrin et al. 2022) or an automated tool
like Optuna (Akiba et al. 2019). All linear and convolu-

Table 2. Patch Transformer Hyperparameters

Hyperparameter Value
Input channels C 2
Patch size ¢, 12
Embedding dimension d 64

Number of Transformer layers L 4

Number of attention heads H 8

Feedforward dimension dg 256

Dropout 0.2

Output dimension doy 8

Activation LeakyReLU(x=0.2)

Sinusoidal (fixed)
Global average pooling

Positional Encoding
Pooling

tional layers are initialized using Xavier normal initializa-
tion (Glorot and Bengio 2010). Biases are zero-initialized.

The patch transformer parameter estimator combines
localized feature extraction and global sequence modeling,
which is critical for capturing the complex temporal dy-
namics inherent in multivariate time series from building
systems. Patch embedding via 1D convolution reduces
sequence length and emphasizes local temporal correla-
tions, while the transformer encoder captures long-range
dependencies using self-attention, avoiding the limitations
of recurrence-based methods. The use of sinusoidal posi-
tional encoding preserves temporal order, and global aver-
age pooling enables efficient dimensionality reduction and
regularization. A deep MLP regressor maps the aggregated
latent representation to parameter estimates, allowing flexi-
ble modeling of non-linear, non-convex mappings typical
in grey-box system identification.

Compared to alternatives, this architecture provides sev-
eral advantages. Unlike RNN-based models (e.g., LSTM,
GRU), it enables full parallelization during training and
better handles long-range dependencies without gradient
degradation. CNN-only approaches lack adaptability to
temporal variation, and MLPs trained on raw sequences
fail to encode temporal structure. The transformer’s abil-
ity to dynamically attend across patches, combined with
the efficiency of patch-wise tokenization, makes it more
expressive and scalable. This inductive bias, along with its
modular structure, is expected to offer improved accuracy
and robustness over conventional baselines for zero-shot
parameter estimation in building energy models.



4 Results and Discussion

All experiments were conducted on a MacBook Pro
equipped with an Apple M3-Max system-on-a-chip fea-
turing 16 cores (12 performance cores and 4 efficiency
cores) and 64 GB of unified memory. Training on CPU for
the patch transformer required between 1-2h. The Adamax
optimizer is used for training with a learning rate of 0.001
for 2000 training iterations, the batch size is B = 16.

4.1 Test Setup

We evaluate the trained transformer regressor on held-out
time—series snippets drawn from the same one-year sim-
ulation of 100 independent systems. Each snippet spans
a fixed “context window” of length L (in hours), chosen
from {24, 48, 96, 168, 360, 720}. For each L:

1. We randomly sample Ny, = 1000 disjoint windows
of length L from the full dataset, forming a fest subset.

2. The network (whose inputs had been normalized and
whose outputs were predicted in base-10 logarithmic
scale) is applied in inference mode to each window,
yielding Piogio. We recover physical parameter esti-
mates by

i; = 1QPlogl0

3. The true parameter vector p for each system is like-
wise converted from logj( back to the original units.

4. We compute two metrics over the test set:

¢ The coefficient of determination for each param-
eter

Nyi ~\2
Lo (pi—pi)

N . _ 2 )
ot (pi—p)

where p is the sample mean of the true values.
* The relative accuracy for each estimate,

RZ=1—

| pi— pil

pi

Ai =1 ; 3)

which is 1 for a perfect match and is smaller as
the absolute relative error grows.

4.2 Patch Transformer Results

In Fig. 3, we test the quality of the outputs generated by
the FMU over 21 days. We first use 7 days as an input
to the transformer model, as illustrated by the blue trace,
and from this infer a set of predicted parameters for the
model. Note that for this test we switch off persistently
exciting noise on the controls to promote realism. By sim-
ulating with the predicted parameters for the 14 days after
the 7 days of context input, we see that the error in the
predictions is small, as is evident by the overlap between
the orange dashed predicted trajectory and the blue solid
true trajectory. Figure 4 presents scatter plots comparing
predicted versus true values for eight key parameters of

a thermal building model under varied contextual inputs.
Each subplot corresponds to a distinct physical parame-
ter. Red dots denote individual predictions, while the solid
black line indicates the ideal identity mapping (i.e., perfect
prediction). Each subplot reports the coefficient of deter-
mination (R?) to quantify regression accuracy. The model
demonstrates excellent predictive performance (R > 0.95)
across most parameters, with only a modest drop in per-
formance for the room height. The relatively lower score
likely arises from its weaker influence on the observable
outputs used for inference. Unlike parameters such as floor
area or ventilation mass flow rate, which directly impact air
volume exchange and thermal load profiles, room height
has a more indirect effect, primarily through its contri-
bution to overall room volume and stratification effects,
which may not be strongly expressed in the measured out-
puts (e.g., temperature, CO, levels) under the simulation
conditions. Additionally, identifiability may be confounded
when both area and height jointly influence volume, mak-
ing it difficult for the model to disentangle their individual
contributions. This leads to a higher spread in predicted
values for room height and hence a lower R? score. Overall,
these results validate the model’s high-fidelity parameter
inference capability across diverse building configurations.

Room Temperature

24 — True
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T°C]
~
N
o
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J
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Figure 3. Predicted (orange) vs. true (blue) simulated outputs
with a 7-day context set of measurements, and 14-day predictions.

Figure 5 presents boxplots of relative accuracy (3) for
each parameter, evaluated over context windows of 1, 2, 4,
7, 15, and 30 days. Each box illustrates the interquartile
range of relative accuracy across all test samples, with the
median indicated by a horizontal line. As context length
increases, inference accuracy improves consistently across
all parameters, with median values approaching 1.0 and
reduced variability. This trend is especially pronounced
between 1 and 7 days, after which gains begin to saturate.
Parameters such as exhaust mass flow rate (mout . f1ow)
and CO, generation rate (gaiC02) exhibit high identi-
fiability even with short contexts, reflecting their strong
observability through direct influence on air quality dynam-
ics. In contrast, geometric and envelope-related parame-
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Figure 5. Boxplots of relative accuracy (3) versus context length.

ters (e.g., wall resistance mat ExWal . R, window U-factor
glsys.Ufrc) benefit more from longer observation peri-
ods due to their slower thermal dynamics, indirect influence
on measurable outputs, and entanglement with other physi-
cal properties. These factors lead to broader variance and

reduced accuracy under short contexts. A 7-day context
window offers a practical trade-off: it is short enough for
deployment during commissioning while long enough to
recover key physical parameters with high fidelity. This
balance maximizes data efficiency and supports robust ini-



tialization of physics-based optimization routines in real
buildings.

Table 3. Per-parameter R? on the test set for different transformer
patch sizes for N, = 100 parameter estimates.

Parameter Patch4 Patch12 Patch24
gaiCo02.k 0.9977  0.9947 0.9888
roo.AFlo 0.9989  0.9985 0.9975
roo.hRoo 0.9802  0.9979 0.9698
roo.V 0.9966  0.9982 0.9942
matExtWal.R 0.9850  0.9991 0.9913
glaSys.UFra 0.9950 0.9976 0.9931
glaSys.absSolFra 0.9976  0.9983 0.9949
mout_flow 0.9997  0.9997 0.9997

In Table 3, we perform an ablation on the patch size of
the proposed patch transformer; 1000 inputs are tested and
the corresponding R? score is calculated. Overall, the net-
work seems to be quite robust to patch-size selection. All
three patch sizes deliver excellent predictive accuracy, with
every parameter achieving R? > 0.9. The best performance
in terms of average R? score across the paramaters is found
with a patch size of 12, indicating it best balances capturing
both fine-scale fluctuations and longer-range dependencies.
Make the patch size smaller seems to improve estimates
on more sensitive parameters such as mOut_flow and
gaiCoO2 .k but shows poorer performance on the slower
thermal dynamics (e.g. matExtWal.R). This trade-off
suggests that very small patches lack sufficient context for
slowly changing parameters, while very large patches di-
lute high-frequency signals. Note that a patch size of 12/24
corresponds to a 12h/24h window, which neatly aligns with
the dominant diurnal cycles in building thermal and oc-
cupancy patterns. Smaller patches (4h) capture only very
local fluctuations, leading to weaker performance. Conse-
quently, a 12/24 patch size is recommended for uniformly
high fidelity across all eight physical parameters.

4.3 Performance Comparison

We compare our patch transformer approach to two well-
established time-series models: LSTM (Long Short-Term
Memory) and TCN (Temporal Convolutional Network).

LSTM is a recurrent neural network variant designed to
capture long-term dependencies in sequential data (Hochre-
iter and Schmidhuber 1997). It remains a common baseline
for temporal modeling tasks due to its ability to handle
variable-length inputs and learn from sequences with tem-
poral correlations. We include LSTM as a representative
of RNN-based architectures, which are widely adopted in
forecasting and control settings.

In comparison, TCN is a convolutional alternative to
RNNSs that uses dilated causal convolutions to model tem-
poral dependencies over long horizons (Lea et al. 2017).
TCNs are attractive for their parallelizability, stable gra-
dients, and competitive performance across time-series
benchmarks. Their ability to capture hierarchical tem-

poral structure without recurrence makes them suitable
non-transformer baselines.

Table 4 summarizes the R? scores (mean and standard
deviation) across models for varying context lengths. Over-
all, the Patch Transformer consistently outperforms both
LSTM and TCN at short and medium horizons, validating
its architectural design and inductive biases for learning
from fine-grained temporal patterns.

Table 4. Performance comparison with TCN and LSTM.

Context Model Mean R? | Stdev R?
1 day Our Transformer 0.8694 0.0818
LSTM -0.0284 0.4489
TCN 0.0327 0.9633
3 days | Our Transformer 0.9679 0.0263
LSTM 0.4266 0.2208
TCN 0.4784 0.2382
7 days | Our Transformer 0.9669 0.0222
LSTM 0.9664 0.0221
TCN 0.6244 0.1410

At a short context length of 1 day, the transformer yields
a mean R? of 0.8694, significantly outperforming LSTM
and TCN, both of which under-perform with lower or even
negative R? values. This highlights the transformer’s supe-
rior capacity for modeling local dependencies via learned
attention over patched segment: often, neither RNNs nor
standard convolutions excel at this without larger receptive
fields. At a medium context length (3 days), the perfor-
mance gap improves, with our patch transformer achieving
0.9679, which is over double that of LSTM and TCN. This
suggests that as the context window increases modestly, the
transformer is uniquely capable of integrating more history
without degradation, due to its global receptive field and
ability to capture complex inter-dependencies. For a long
context (7 days), both the transformer and LSTM perform
similarly well, but the transformer’s slightly higher mean
and lower standard deviation suggest more stable gener-
alization across samples. Notably, TCN remains behind,
despite its design for long-range patterns, likely due to the
difficulty of effectively tuning dilation rates and convolu-
tional depths for diverse input dynamics.

Overall, our patch transformer-based regressor consis-
tently outperforms or ties the strongest recurrent baseline
across all tested window sizes. Its patch embeddings and
self-attention mechanism enable more efficient contextual
aggregation, particularly in low-data regimes (short win-
dows), justifying its adoption for parameter regression
tasks where context length may vary.

5 Conclusions

In general, the process of calibrating the parameters of
physics-based models to experimental data often requires a
large number of simulations to iteratively refine the param-
eters so that the model response matches the observations.
Moreover, the number of simulations needed typically in-
creases very quickly with the number of parameters being



estimated, making this process quite time consuming. In
comparison, this transformer-based approach enables the
generation of parameter estimates directly from a set of
experimental data in a zero-shot manner without the need
for expensive iteration. This method uses offline simula-
tion effectively in a massively parallel context during the
training period to shift the burden of simulation from the
time after data is collected to the time after the model is
constructed. As engineers often desire information as soon
as possible once experimental data is in hand, this is an
attractive shift.

Furthermore, the proposed method shows strong
promise as a warm-start initialization method for gradient-
based parameter calibration algorithms when there is a
significant simulation-to-real gap or further refinement of
the values generated by the transformer-based method is
desired. In many physical modeling settings, accurate
initial guesses are critical for successful convergence of
non-convex optimization routines. However, deriving such
guesses analytically or heuristically is often infeasible. The
transformer network helps fill this gap by rapidly providing
good initial estimates that improve robustness and reduce
computational overhead in subsequent calibration tasks.

We also demonstrate that this transformer-based architec-
tures generalizes more effectively than conventional LSTM
and TCN models when estimating system parameters from
time-series data, particularly under conditions with limited
temporal context. By leveraging the self-attention mech-
anism, the transformer can infer model parameters using
significantly shorter time windows, thereby overcoming
a longstanding limitation in traditional calibration tasks
which typically require extensive input data for accurate
estimation. This is especially beneficial for applications
where measurement data is sparse or costly to collect.

As a promising direction for future work, we propose
extending this approach to probabilistic transformers. This
would allow the model to not only predict point estimates
but also provide uncertainty quantification in the form of
distributions over possible parameter values. Such capa-
bility could be instrumental in probabilistic calibration
frameworks, for which prior distributions over parameters
are required; e.g. Bayesian calibration.
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