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Abstract
This heat pump study introduces a Resonance-Based Sensitivity Analysis (RBSA) framework,
which was inspired by the resonant characteristics of LSTM networks to visualize and interpret
correlations between output features. First, we developed an LSTM network that predicts
the time-series distribution of refrigerant within the system, focusing on refrigerant migration
and its nonlinear dependency on the initial distribution in startup operation. A total of nine
different datasets were employed, structured as a 3x3 matrix combining three levels of charged
refrigerant, incrementing approximately 10wt% of system refrigerant, and three levels of initial
refrigerant in evaporator from 30wt% to 70wt%. The prediction by the network achieved a
coefficient of determination exceeding 95% in refrigerant distribution against validation data.
Subsequently, targeted noise was applied to specific outputs of the trained network to analyze
the intensity of inter-feature dependencies, demonstrating the utility of the RBSA approach in
capturing causal relationships within the system. We investigated using both spike noise and
persistent Gaussian noise in a comparative analysis to evaluate their distinct effects. During
sensitivity evaluation with spike noise, we examined noise propagation between features using
cross-correlation functions. The analysis revealed that the relationships between parameters
maintained physical plausibility, even without an explicit physical model. We then introduced
continuous white noise into the refrigerant distribution to examine its propagation effects
and map how distribution fluctuations affected system operating parameters. The findings
revealed that variations in refrigerant distribution substantially affect operating parameters
such as mass flow rate, compressor input and condenser and evaporator capacity.
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Abstract 
 
This heat pump study introduces a Resonance-Based Sensitivity Analysis (RBSA) framework, which 

was inspired by the resonant characteristics of LSTM networks to visualize and interpret correlations 

between output features. First, we developed an LSTM network that predicts the time-series 

distribution of refrigerant within the system, focusing on refrigerant migration and its nonlinear 

dependency on the initial distribution in startup operation. A total of nine different datasets were 

employed, structured as a 3x3 matrix combining three levels of charged refrigerant, incrementing 

approximately 10wt% of system refrigerant, and three levels of initial refrigerant in evaporator from 

30wt% to 70wt%. The prediction by the network achieved a coefficient of determination exceeding 

95% in refrigerant distribution against validation data. Subsequently, targeted noise was applied to 

specific outputs of the trained network to analyze the intensity of inter-feature dependencies, 

demonstrating the utility of the RBSA approach in capturing causal relationships within the system. 

We investigated using both spike noise and persistent Gaussian noise in a comparative analysis to 

evaluate their distinct effects. During sensitivity evaluation with spike noise, we examined noise 

propagation between features using cross-correlation functions. The analysis revealed that the 

relationships between parameters maintained physical plausibility, even without an explicit physical 

model. We then introduced continuous white noise into the refrigerant distribution to examine its 

propagation effects and map how distribution fluctuations affected system operating parameters. The 

findings revealed that variations in refrigerant distribution substantially affect operating parameters 

such as mass flow rate, compressor input and condenser and evaporator capacity.  

 

Nomenclature 
 

! Bias, - 

" Cell state, - 

##$ Cross correlation function, - 

% deviation 

&'() Dynamic time warping distance 

&*+,- Normalized dynamic time warping distance 

./ the standard basis vector selecting k-th dimension, - 

0 Forget gate, -  

1 Update gate, -  

2 Hidden state, - 

3 Enthalpy, kJ/kg 

i Input gate, - 

j Time step, - 

k Output dimension, - 

L Length of the warping path, - 

4 Normal distribution, - 

o Output gate, - 
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q Quality, - 

R2 Coefficient of determination, - 

T, t Time, sec 

5 the perturbation direction, - 

W Weight matrix, - 

6 Input vector, - 

7 Output vector, - 

789  Time averaged output at i, - 

7: Noise added output vector, - 

 

Greek symbol 
 

; Spike perturbation, - 

< perturbation 

= Gaussian noise, - 

> Variance, - 

? Lag, sec 

 

Subscripts 
 

0" Fully connected 

@ A B Saturated liquid 

@ A C Saturated vapor 

raw Raw data 
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1.  Introduction 

 

Air conditioning constitutes a major portion of energy consumption, with thermal and fluid 

management technology serving as a key pathway to energy conservation [1-3]. Heat pump systems 

represent one of the most efficient heating and cooling solutions, with rapid market growth worldwide. 

However, their complex system design requires extensive knowledge of thermal and fluid sciences, 

which limits widespread adoption [4, 5]. The systems demand sustained development efforts to 

improve performance metrics like coefficient of performance while maintaining reliability, which 

often increases system costs. The primary challenge in heat pump system design arises from the 

complex phenomena in multiphase refrigerant. Although many studies have contributed to revealing 

their specific phenomena [6-11], at least thus far, many aspects of multiphase refrigerant flow remain 

unresolved, and conventional prediction methods which most rely on integrated physical models, face 

challenges in comprehensively capturing these complex dynamics. For instance, gas-liquid phase flow 

involves various complex phenomena which necessitate cautious design to prevent system 

malfunction, in particular, refrigerant migration during startup [12-15]. Nevertheless, few studies have 

comprehensively analyzed the influence of the initial refrigerant distribution on system performance. 

One contributing factor is the difficulty in transiently and accurately measuring the refrigerant 

distribution. A conventional technique for quantifying refrigerant distribution is the quick-closing 

valve (QCV) method [16], in which a valve in the flow path is rapidly closed to sample the fluid. 

Although this method yields reliable direct measurements, its application during transient operation 

interferes with the flow, rendering it unsuitable for in-situ monitoring under actual operating 

conditions. Analytically, the migration of the refrigerant has been investigated through the 

development of physical models for components, which are validated by comparing model predictions 

with instantaneous experimental data [13]. While the analytical approach obviates the requirement for 

sampling procedure, it is hampered by a substantial computational cost [17]. In recent years, data-

driven predictive approaches have evolved as a method for understanding complex phenomena [18-

21]. This technology enables a reduction in testing workload by extrapolating untested data from 

multiple test datasets, facilitates the visualization of phenomena that are difficult to observe visually 

and promotes understanding of these phenomena through integration with measurement techniques. 

Furthermore, it accelerates prediction by omitting calculations through learning from analytical data 

and improves prediction accuracy by reproducing unformulated phenomena, thereby advancing the 

foundation technologies of both testing and analysis aspects.  

To predict transient phenomena, it is necessary to learn certain historical information. However, 

since a system may trace countless operating histories, there is concern that learning with specific 

historical data will reduce prediction accuracy for other conditions. Therefore, in this study, we 

selected a long-short term memory (LSTM) network [22], which is one of the recurrent neural 

networks (RNN). LSTM is an attractive method for learning and predicting time sequence 

dependencies. Table 1 summarizes previous LSTM-based studies in energy fields. Palagi et al. [23] 

compared the accuracy of deep learning models by predicting the non-stationary operation of an 

organic Rankine cycle and reported that LSTM provides outstanding accuracy. Laib et al. [24] and 

Bouziane and Khadir [25] used a modified LSTM to predict energy consumption or generation and 

reported improvement in accuracy compared to potential candidates. The networks excel not only in 

identifying superficial input-output relationships, but also comprehensively understanding intricate 

the dynamic characteristics of the system by their ability to retain past information and capture 

dynamic changes. Lyu et al. [26] adopted LSTM to predict particle migration in fuel cell 

microstructure to design performance and lifespan. In the HVAC field, in addition to the studies of 
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LSTM to predict system performance [27-29], frosting phenomena in outdoor unit heat exchanger 

were predicted by Eom et al. [30], and flooding phenomena of lubricant in gas pipe was studied by 

Jeong et al. [31]. Their contributions revealed that LSTM method can successfully demonstrate the 

operation derived from their subject phenomena. However, a key limitation remains: the black-box 

nature of neural network models poses challenges for practical system design and optimization. As 

pointed out in various fields, a major drawback of data driven models is that their derivation process 

becomes a black box [32, 33]. This makes it difficult to establish guidelines on how to design and 

apply specific design parameters compared with model-driven approaches in white or grey box [34, 

35] models. To overcome this barrier, we devised a method in which the architecture of a network is 

reconfigured to inject controlled noise into a specific feature, thereby enabling us to observe and 

analyze the corresponding output response. Similar to stochastic resonance in physical systems, where 

noise can enhance weak signal detection [36, 37], LSTM networks demonstrate enhanced pattern 

recognition capabilities when processing noisy temporal data through their specialized gating 

mechanisms. This parallel is particularly evident in applications where minimal background noise 

improves the neural representation of temporal patterns, as observed in both natural and artificial 

systems [38–40]. In this study, refrigerant migration in transient operation in a heat pump system is 

examined. We employed an LSTM neural network and trained the network using simulated results 

under various initial distribution of the refrigerant and charge levels. Following the verification of the 

network, we introduced perturbations to the trained network and developed a method that analyzes the 

sensitivity. By confirming that these results align with established knowledge, we evaluated the 

practicality of LSTM for extracting design guidelines rather than merely discussing network accuracy. 

 

Table 1 Previous studies on LSTM based analysis in power generation and consumption. 

 

Authors Network Type System type Objectives Phenomena 

Palagi et al.  

[23] 

Feed Forward 

Simple RNN 

LSTM 

Organic Rankine  

cycle 
Thermodynamics Load fluctuation 

Laib et al. 

[24] 
LSTM x MLP 

Nation wide  

gas demand 

Gas  

consumption 

Weather,  

cultural events 

Bouziane and 

Khadir [25] 
LSTM 

Power generation  

(Multiple sources) 

Power efficiency,  

CO2 emission 

Seasonal demand, 

generation 

Lyu et al. 

[26] 
LSTM x DEIS Fuel cell Voltage 

Degradation 

(Particle migration) 

Zou et al. 

[27] 
LSTM×DRL Heat pump Sensor data Daytime operation 

Lahariya et al. 

[28] 
phyLSTM 

Evaporative 

cooling system 
Basin temperature 

Fan power 

dependence 

Kong et al. 

[29] 

ANN 

K-nearest neighbors 

LSTM 

Smart grid city 

(Hot water system) 

Energy 

consumption 

Residence 

 behaviour  

Eom et al. 

[30] 

FCDNN 

CNN 

LSTM 

Heat pump 
Capacity, 

 power 
Frosting 

Jeong et al. 

[31] 
LSTM×BN Heat pump Oil film thickness Flooding 

This study LSTM Heat pump Thermodynamics Refrigerant 
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migration 

2.  Neural Network Models 
 

2.1. LSTM unit 

The LSTM unit shown in Fig. 1 consists of a storage cell and three gates (input gate, forget gate, 

and output gate) that control the cell state. At time D, 6E, 2EFG and "EFG are the inputs, and 2E and 

"E are the outputs. The input gates are selected to propagate only the necessary information from the 

current input information. The forget gate determines the information to be inherited from the past. 

The output gate selects the signal to propagate. The cell and each gate are represented by the following 

equation. 

HE A >IJKLM6E NJOLM2EFG N !MP (2-1) 

0E A >IJKLQ6E NJOLQ2EFG N !QP (2-2) 

1E A tanhIJKLR6E NJOLR2EFG N !RP (2-3) 

SE A >IJKLT6E NJOLT2EFG N !TP (2-4) 

"E A 0E U "EFG N HE U 1E (2-5) 

2E A SE U tanhI"EP (2-6) 

where σ is the sigmoid function,  is the Hadamard product (element-wise multiplication), and W 

and b are the weight matrix and bias, respectively. The stationary character D denotes time, and 

0 1 H S denote each gate in the network, forget, update, input, and output gate, respectively. 

These weights and biases are determined by learning so that the output and input data are minimized. 

The final output of the network at time t is computed as: 

7E A JVW2E N !VW (2-7) 

where JQX  represents the weight matrix connecting the final hidden state to the output, and !QX 
represents the output bias in fully connected layer, respectively. 

 

2.2. Network construction 

The network illustrated in Fig. 1 comprises two LSTM layers serving as intermediate layers. 

The first LSTM layer, which receives the input, consists of 400 hidden units and outputs an equivalent 

number of features. To improve generalization performance, a dropout layer is inserted immediately 

after the first LSTM layer, where units are randomly dropped with a probability of 0.2 during training. 

The second LSTM layer is also composed of 400 hidden units, and its outputs are passed to a 

subsequent fully connected layer to produce the final output. Table 2 provides detailed information 

about the network architecture. 

  
2.3. Network optimization 

LSTM's distinctive feature lies in its ability to selectively retain or discard input information at 

each time step, thereby facilitating the retention of past history. In constructing the network, 

standardization procedures were performed to the chosen input and output features. The raw 

simulation data are normalized via z-score normalization prior to being used for network training and 

analysis. The means and standard deviations for both the inputs and outputs are computed using the 

aggregated data. Then, each time step data is normalized accordingly. 

YKIZP A G
[\ 6,]^IMP IDP[_`G L  (2-8) 
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>bKIZP A c G
[FG\ d6,]^IMP IDP e YKIZPf

g[E`G L (2-9)

Fig. 1. Schematic picture of LSTM memory cell. 

Table 2 Hyperparameter settings for the network.

Layer Parameter Value

Input Number of input features 3

First LSTM Number of hidden units 400

Dropout Dropout rate 0.2
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Second LSTM Number of hidden units 400 

Fully connected Number of output features 15 

6IMPIDP A KijkIZP IEPFlmIZP
o9mIZP

p (2-10) 

After standardization, the data are partitioned into training and testing sets. This implementation 

ensures that features have a mean of zero and unit variance, which helps to improve overall predictive 

performance in various range of parameters. The Adam optimization algorithm [41] was employed for 

network training, with an initial learning rate of 0.005 that was reduced by a multiplicative factor of 

0.2 every 125 epochs, over a total of 1600 epochs. Since the learning rate schedule is not the primary 

focus of this discussion, readers are referred to [41, 42] for further details; for additional insights, see 

the seminal work by Smith [43]. Training was conducted using the MATLAB Deep Learning package 

[44]. 

  

2.4. Analysis in trained network 

Sensitivity analysis using perturbation methods are applied to perform investigation in 

amplitude and duration of the impact in output features. Perturbations to the input can be analyzed by 

instantaneously or continuously modifying the network’s input. However, analyzing the sensitivity of 

other features to perturbations in a specific output requires a nuanced approach. In this study, we 

introduced instantaneous or continuous noise into the hidden layers, which convey short-term memory 

within the network, to investigate the temporal propagation of these perturbations. 

 

2.4.1  Spike noise analysis  

To evaluate how perturbations in the network's output affect its temporal behavior, a small 

perturbation δ is introduced at time step j for a specific output dimension k: 

7:IDP A q7IDP N ;I/P rsuuD A v
7IDP wthxyzr{x. (2-11) 

This perturbed output is propagated backward into the network by solving the inverse transformation: 

2|} A 2} NJQXFG~7:IDP e 7IDP�p (2-12) 

To ensure the perturbation is reflected proportionally in the latent space, a linear inverse 

transformation is used. The perturbed hidden state 2|} is then used to compute future hidden states: 

2|}�G A S}�GI2|}P U tanhI0}�GI2|}P U "} N H}�GI2|}P U 1}�GI2|}PPp (2-13) 

The deviation in the final output is computed as: 

%IDP A 7:IDP e 7IDPp (2-14) 

All LSTM gates and memory updates involve bounded nonlinearities, which inherently limit the 

propagation of unbounded growth in perturbation influence, thus contributing to overall numerical 

stability.  By iterating over all t, we observe propagation level and duration of perturbation in output 

feature. The operation sensitivity of a sudden, short-duration perturbation would suggest optimal 

controls of system actuators.  

 

2.4.2  Gaussian noise analysis  

To examine the influence of perturbations, additive white gaussian noise =  is applied as 

continuous Gaussian noise =IDP to a specific output component to the entire time sequence. 

7:IDP A 7IDP N =IDP, (2-15) 
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=IDP�4IBL >g././�PL (2-16) 

where > is the perturbation amplitude, ./ is the standard basis vector. The perturbation induced in 

the hidden state is then expressed as: 

<2} A 2|} e 2} A JQXFG~=IDP�, (2-17) 

<2}�4~BL>gJQXFG././�IJQXFGP��. (2-18) 

If we the perturbation direction 5/as:  

5/ A JQXFG./, (2-19) 

then the hidden state perturbation <2} can be described as follows: 

<2}�4IBL>g5/5/�P. (2-20) 

This indicates that <2}  also follows a Gaussian distribution. This formulation enables modeling 

interdependencies between outputs, offering richer insight into how coupled outputs jointly affect 

internal dynamics. 
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2.5 Data regression 

2.5.1 Root Mean Squared Error (RMSE) 

RMSE is a widely used metric for evaluating predictive accuracy. 

����u A cG
[ � �7/IDP e 7/�IDP�g%DE�

E� L (2-21) 

where 7M  represents the true values, 78�  denotes the predicted values, T is time duration of error 

evaluation where,  

�u A u DG e D�p (2-22) 

While RMSE provides a simple and interpretable measure of overall prediction error, it is highly 

sensitive to outliers, as the squared error term disproportionately amplifies the impact of large 

deviations. In the context of time series data, where transient anomalies or phase shifts may occur, 

RMSE may not accurately reflect the temporal or structural similarity between sequences. 

 

2.5.2 Coefficient of determination (R2) 

To quantitatively compare the prediction errors across multiple network outputs Coefficient of 

determination (R2) is applied to enable a scale-independent evaluation of prediction accuracy across 

different output variables. The coefficient of determination for specific output �/g is computed as: 

�/g uA C eucG
[ � �7/IDP e 7/�IDP�g%DE�

E� >b/g� L (2-23) 

>b/ is the time averaged variance of the testing data, defined as: 

>b/g uA u G[ � �7/IDP e 7/bbb�g%DE�
E� L (2-24) 

with the time average mean of the true data: 

7/bbb uA u G[� 7/IDP%DE�
E� pu (2-25) 

Using R2 instead of Root Mean Square Error (RMSE) is intended to compare the prediction accuracy 

in various parameters. Each parameter has a different magnitude, and it is profitable to preserve scale 

invariance. Therefore, normalization by the variance of corresponding output is applied to 

correlatively evaluate prediction accuracy of each parameter.  

 

2.5.3 Dynamic Time Warping (DTW) 

DTW is a non-linear alignment-based measure that accounts for temporal shifts and local 

distortions in sequence alignment [45]  The DTW distance is computed by minimizing the cumulative 

cost over all valid warping paths.  

&'()I7/ L 7/�PuA �H�\ �I7/L� e 7/L�� PgI�L�P�� L (2-26) 

where J A �I7/L� e 7/L�� P��`G
�

 is the warping path, which is a sequence of index pairs that defines the 

alignment between the two sequences, subject to boundary, monotonicity, and step size constraints. 

To normalize this distance and allow comparison across sequences of varying length or sampling rates, 

we define the normalized DTW distance as: 

&*+,-I7/ L 7/�PuA ����I ¡L ¡�P
� uL (2-27) 

where ¢ is the length of the warping path. 
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2.5.4 Cross-correlation function (CCF) 

To assesses the similarity and possible lag relationship between two time series signals enabling 

detection of time-shifted dependencies, the cross-correlation function (CCF) is applied between the 

prediction and testing data for evaluating time lags and shapes in time-series. In addition, it is applied 

between the additive noise in specific feature and its response in other features for evaluating the 

causality and response time delays. 

 

To assess potential phase lag between two different signals, the normalized CCF is employed: 

##$/I?P uA u � � ¡IEPF ¡bbbb�� £¡IE�¤PF ¡�bbbb�¥E¦�¦�
� � ¡IEPF ¡bbbb�§¥E¦�¦� � � ¡�IEPF ¡�bbbb�§¥E¦�¦�

L (2-28) 

The normalization constrains the CCF values in the range [-1, 1] to render the scale invariant and thus 

improve the comparability and the interpretability.  

A value near 1 indicates a strong positive correlation, while a value near −1 indicates a strong 

negative correlation. In the context of transient prediction, the lag ?�¨K that maximizes ##$/I?P is 

used to quantify the phase alignment between the evaluating features. 
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3.  Validation case  
3.1 Refrigerant circuit specifications 

Figure 2 shows a schematic diagram of the refrigerant circuit used to generate the training data 

and the circuit specifications used is shown in Table 3. It is a simplified analysis circuit connected 

with sample elements. In this study, training and verification data was prepared with the simulation 

model according to Qiao et al. [46, 47] These models are augmented by a set of empirical relations 

describing the heat transfer and frictional pressure drops, as listed in Table 4. For the heat exchanger 

analysis, the performance of each tube was analyzed separately, and each tube was associated with 

different refrigerant and air parameters. In the evaporator and the condenser, the flow direction of air 

and refrigerant are co-current and counter current, respectively. Frost formation was not considered in 

the analysis. These models were implemented in the Modelica language using Dymola 2023x 

environment [54]. 

 

3.2 Feature selection  
The input data for LSTM network consisted of compressor frequency and charge amount of 

refrigerant as well as the initial refrigerant concentration in the evaporator In other words, within a 

single dataset, the compressor frequency was a variable, while the refrigerant charge amount and the 

initial refrigerant distribution were constants, with the latter constants taking different values between 

datasets, as explained in the next section. The output data included refrigerant flow rate, compressor 

input power, evaporation and condensation capacity, saturated discharge and suction temperature, 

discharge and suction temperature, discharge enthalpy of compressor, evaporator and condenser, and 

refrigerant distribution (evaporator, condenser, gas extension pipe, and liquid extension pipe). The 

selection of the output features is based on its representation in the Moller diagram of refrigerant cycle. 

The inclusion of refrigerant temperature, saturation temperature, and enthalpy simultaneously in the 

training data aims to enable the network to implicitly account for differences in phase states during 

training, as the network does not inherently learn the thermophysical properties of the refrigerant. By 

incorporating these variables as features, we aim to enable the network to implicitly account for 

differences in phase states during training.  

 

3.3 Data preparation 
In this study, simulation data with compressor control as shown in Fig. 2 and various initial 

distributions of refrigerant with charged refrigerant conditions as shown in Table 5 were prepared for 

testing and training. The operational data used for training the model involved a compressor frequency 

ramp-up from startup to 1000 seconds at a uniform increasing rate of 6×10-2 Hz/s until reaching 60 

Hz, maintained for 500 seconds, followed by a ramp-down at the same rate until shutdown. For the 

refrigerant conditions in the dataset, the refrigerant amount was prepared in increments of 0.2 kg, 

ranging from 1.9 kg to 2.5 kg, which is approximately 10wt% of the system refrigerant amount. The 

initial refrigerant distribution in the evaporator was prepared in increments of 20 wt%, ranging from 

30 wt% to 70 wt%. For the validation data, the system refrigerant amount was set to 2.3 kg, and the 

initial refrigerant amount ratio in the evaporator was set to 60 wt%. The validation of the model’s 

performance was conducted using a separate dataset not included in the training phase, thereby 

ensuring the robustness and reliability of the neural network's learning performance. Each output data 

point was organized at one-second interval for subsequent analysis. 
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Fig. 2. Schematic picture of refrigerant cycle and compressor frequency control.

Table 3 Refrigerant cycle models.

Element Parameters Unit Value

System Working fluid - R32

Compressor Stroke volume cc. 20

Condenser

Tube volume m3 1.4 x 10-3

Inlet air DBT ºC 20

Air flow rate m3 /min 55

Evaporator

Tube volume m3 3.2 x 10-3

Inlet air DBT ºC 7.0

Inlet air WBT ºC 6.0

Air flow rate m3 /min 122

Expansion valve Cv. - 0.06

Connecting tube

(To condenser)

Inner diameter mm 8

Length m 5

Connecting tube

(To evaporator)

Inner diameter mm 6

Length m 5

Table 4 Correlations used in the heat exchanger models.

Modeled phenomena Applied model

Single-phase heat transfer Dittus & Bolter [48]

Condensation heat transfer Dobson & Chato [49]

Evaporation heat transfer Gungor & Winterton [50]

Single-phase pressure drop Blasius (Incropera & DeWitt [51])

Condensation pressure drop Lockhart & Martinelli [52]

Evaporation pressure drop Jung & Radermacher [53]
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Table 5 Refrigerant condition for training and testing data set. 

 

 
Refrigerant charge in system  

1.9 kg 2.1 kg 2.3 kg 2.5 kg 

Initial 

evaporator 

refrigerant in  

system 

30 wt% Train Train - Train 

50 wt% Train Train - Train 

60 wt% - - Test - 

70 wt% Train Train - Train 
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4.  Results and discussion 
4.1 Training data evaluation 

Fig. 3 shows the refrigerant distribution dataset prepared for training data. From the results in 

Fig. 3(a), the total amount of refrigerant dominates the refrigerant mass in a component throughout 

the operation from startup to shutdown. Moreover, the refrigerant distribution is not monotonically 

offset but exhibits transient behavior, wherein the proportion of refrigerant residing in the evaporator 

relative to the total refrigerant dynamically changes. Although the datasets in this study are prepared 

with the simulation model and they possibly have deviations from the real phenomena, the fluctuation 

of the refrigerant distribution in the figure is also seen in some previous experimental investigations 

[13, 14], which support the validity of using the dataset to evaluate the neural network analysis in 

subsequent sections. Additionally, Fig. 3(b) presents the results based on different initial refrigerant 

distributions. It can be observed that the evaporator refrigerant mass remains dependent on the initial 

distribution for approximately the first 500 seconds after system startup. This phenomenon is 

physically reasonable, corresponding to the system behavior where flows starting from different initial 

conditions converge to a steady state after sufficient development. Nevertheless, it is noted that the 

time required for flow development is expected to vary depending on factors such as system size and 

ambient temperature, which influence the circulation time of the refrigerant through the system. 

Furthermore, the dataset confirms that the refrigerant distribution exhibits nonlinear time dependency 

concerning the refrigerant charge and initial refrigerant distribution. This suggests that applying data-

driven estimation techniques through a neural network is more efficient in terms of both accuracy and 

time than attempting a new formulation to estimate refrigerant distribution. Based on these findings, 

using datasets with refrigerant charges and initial refrigerant distributions for the training the LSTM 

network allows us to discuss the feasibility of predicting the transient operation of the system. 

 

(a) (b) 

     
 

Fig. 3. Sensitivity of evaporator refrigerant transition in the training data toward conditions of 

(a) charged refrigerant amount under initial refrigerant distribution in the evaporator 50wt%, 

(b) initial refrigerant distribution in the evaporator at charged refrigerant of 2.1kg. 
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4.2 Verification of the network 

Figure 4 displays plots comparing the predicted and validation data for the basic operational 

parameters of the heat pump in a scenario with a refrigerant charge of 2.3 kg and initially 60 wt% 

concentration of refrigerant in the evaporator-a condition that was not included in the training. The  

 

(a) (b) 

  
(c) (d) 

  
(e) (f) 
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(g) (h) 

  
(i)  

 

 

Fig. 4. Validation in the testing condition (refrigerant charge: 2.3 kg, initial refrigerant 

concentration: 60 wt% in the evaporator) for (a) discharge mass flow rate, (b) compressor power 

input, (c) evaporator capacity, (d) condenser capacity, (e) saturated discharge temperature, (f) 

saturated suction temperature, (g) compressor discharge quality, (h) evaporator discharge quality and 

(i) condenser discharge quality. 

 

phase state of each device, compressor, evaporator and condenser, is represented using a pseudo-

quality factor @IDP, which is defined by the following equation. 

@IDP uA u �3IDP e 3©`�IDP� �3©`GIDP e 3©`�IDP�ª pu (4-1) 

Here, 3IDP 3©`�IDP 3©`GIDP  represent the enthalpy, the saturated liquid enthalpy and the 

saturated gas enthalpy calculated from the pressure at the subject point, respectively. Although there 

are occasional absolute deviations, the quantitative agreement between the predictions and the 

validation data is evident throughout the operation from startup to shutdown. The validation results 

for refrigerant distribution are shown in Fig. 5. The accuracy for refrigerant distribution was also 

confirmed to be satisfactory, including the significant oscillations immediately after startup, which 
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depend on the initial refrigerant distribution. These findings indicate that, given adequate operational  

 
Fig. 5. Validation results in the testing condition (refrigerant charge: 2.3 kg, initial refrigerant 

concentration: 60 wt% in the evaporator) for refrigerant distribution in the evaporator. 

 

data for various refrigerant charge levels, the model can successfully interpolate to predict conditions 

for other refrigerant levels and initial refrigerant distributions. This result aligns with the findings of 

Palagi et al. [23], who demonstrated the effectiveness of LSTM networks over memoryless 

architectures in capturing long-term dependencies. The computation time required for network 

training and prediction was 1491 seconds and 0.9553 seconds, respectively, using an Nvidia GeForce 

RTX 3090 GPU, which is within a practical range for design implementation. Although LSTM 

networks are known for their comparably higher computational cost [55], we achieved both improved 

predictive performance and reduced computational load by selecting governing parameters as features 

based on thermo-fluid dynamics principles and by preparing datasets tailored to the phenomena under 

investigation [56, 57]. Table 6 lists scale dependent error evaluated by RMSE and DTW. As 

mentioned in section 2.5, RMSE is highly sensitive to outliers in datasets, which results in a relatively 

lower prediction accuracy for time-series data. In this point of view, the results obtained from DTW 

confirm that, due to its characteristic of verifying waveform congruence, the impact of outliers is 

minimized, resulting in relatively higher accuracy. The non-dimensional accuracy shown in Table 7 

summarizes the zero-lag cross-correlation coefficient, the maximum cross-correlation coefficient and 

its corresponding lag, as well as the coefficient of determination (R ). All parameters exhibit high 

correlations, with correlation coefficients exceeding 96% and optimal lag values within 3 sec. In 

general, a Pearson correlation coefficient exceeding 90% is indicative of a very strong positive 

relationship, [58]. These results confirm that the temporal profiles of the predicted data align very 

closely with those of the test data. Although R  values for prediction in refrigerant distribution is over 

95%, one potential factor contributing to the relatively lower value compared to the cross-correlation 

coefficients is that, by its very formulation, the R  metric is sensitive to even a few large errors: thus, 

the presence of outliers may depress its value. In time-series analysis, achieving a close match in 

overall trends is generally preferable to precisely predicting a few isolated outliers. Although the above 

analysis showed good accuracy, the predictive model was constructed solely based on simulation data, 

and therefore, additional considerations are required to apply the same analysis to experimental data. 

First, in experimental measurements, it is generally difficult to obtain information within the two-

phase region. Furthermore, as mentioned in the Introduction, capturing the transient behavior of 

refrigerant distribution is inherently challenging. To overcome these limitations, it is necessary to 

consider techniques such as data assimilation, which supplements sparse measurement data with 

simulation models, or the incorporation of additional visualization technologies to enhance the 

accuracy of validation. For instance of visualization technology, the authors are progressing in 
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elucidating fluid phenomena of zeotropic mixture using optical measuring devices [10]. These 

approaches enable to reinforce the training data with refrigerant properties, such as two phase enthalpy 

and composition ratio. 

Consequently, a prediction method that is more sensitive to the overall transient behavior is deemed 

more desirable than one that is overly sensitive to outlier errors. As an alternative evaluation metric, 

in addition to the cross-correlation function discussed herein, error assessment using the mean squared 

logarithmic error [59] or other relative measures [60] could also be considered. Moreover, since the 

training and test data employed in this study were generated from simulation analyses, the high 

prediction accuracy achieved may be partially attributed to the fact that the simulation data were 

constructed from combinations of linear models. In contrast, it is well known that actual operational 

data for two-phase refrigerants in heat pumps frequently exhibit nonlinear phenomena [6-11, 61, 62]; 

hence, additional ingenuity will be required to achieve similarly high prediction accuracy for such 

systems.  

Table 6 Scale dependent error for the test data. 
 

Output features Unit RMSE DTW 

Mass flow rate [kg/h] 2.73 2.51 10-1 

Compressor power input [kW] 1.42 10-2 6.25 10-4 

Evaporator capacity [kW] 1.26 10-2 8.56 10-3 

Condenser capacity [kW] 8.12 10-1 3.53 10-2 

Saturated discharge temperature [oC] 1.17 5.49 10-2 

Saturated suction temperature [oC] 5.63 10-1 3.45 10-2 

Compressor discharge quality [-] 4.47 10-2 4.20 10-3 

Evaporator discharge quality [-] 3.26 10-2 3.05 10-3 

Condenser discharge quality [-] 3.26 10-2 7.14 10-3 

Evaporator refrigerant [kg] 6.26 10-2 8.64 10-3 

Condenser refrigerant [kg] 7.11 10-2 1.51 10-2 

Gas pipe refrigerant [kg] 4.82 10-3 6.59 10-4 

Liquid pipe refrigerant [kg] 3.46 10-3 4.89 10-4 

 

Table 7 Dimensionless accuracy for the test data. 

 

Output features R2 ##$/IBP ##$/L�¨K ?««¬¡L­jm 

Unit [%] [%] [%] [sec] 

Mass flow rate 97.51 99.10 99.10 0 

Compressor  

power input 
99.93 99.96 99.96 0 

Evaporator capacity 99.60 99.80 99.80 0 

Condenser capacity 90.36 96.00 96.51 2 

Saturated discharge temperature 94.09 97.76 97.84 1 

Saturated suction temperature 97.41 98.71 98.71 0 

Compressor discharge quality 98.63 99.34 99.34 0 

Evaporator discharge quality 98.32 99.21 99.21 0 

Condenser discharge quality 92.83 96.55 96.55 0 

Evaporator refrigerant 96.49 98.54 98.54 0 

Condenser refrigerant 95.85 98.79 98.79 0 
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Gas pipe refrigerant 96.17 98.11 98.12 1 

Liquid pipe refrigerant 96.00 98.00 98.00 0 

4.3 Spike noise propagation 

4.3.1 Evaporator refrigerant sensitivity at specific time during startup 

In addition to evaluating accuracy with respect to a specific feature, it is valuable to assess 

whether the relationships with surrounding features are reasonable from a thermo-fluid perspective. 

To this end, we injected a spike noise into the evaporator refrigerant quantity at a given time and 

analyzed the subsequent response. The target data set followed the network's test data, with a 

refrigerant charge of 2.3 kg and an initial evaporator refrigerant constituting 60wt% of the total system. 

Figure 6 illustrates the changes and propagation in the evaporator and condenser refrigerant quantities 

when a noise is applied to the evaporator refrigerant distribution at 500 sec. First, the temporal 

evolution of the evaporator refrigerant quantity reveals that, after 500 sec, an oscillatory propagation 

is observed for approximately 50 sec. This behavior is interpreted as follows: a modification in the 

refrigerant distribution at a specific time alters the condenser refrigerant, in turn changes the refrigerant 

supply to the evaporator over the subsequent period. Supporting this interpretation, an analysis of the 

condenser refrigerant shows that, despite some instantaneous outliers, its variation is inversely related 

to that of the evaporator refrigerant quantity. These observations are consistent with the fundamental 

mass conservation relationships governing the refrigerant within the system. 

 

 
Fig. 6. Sensitivity and Propagation of spike noise at 500 sec on evaporator refrigerant at test data in 

refrigerant mass of evaporator and condenser. 
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4.3.2 Discharge quality dependency on evaporator refrigerant in time sequence 

Figure 7 compares the cross-correlation coefficients, computed between the compressor 

discharge quality and the evaporator refrigerant distribution under noise injection, at various time 

instances. The time points correspond to (a) 50 sec after startup when the compressor frequency is 

gradually increasing, (b) 500 sec after startup, (c) 1250 sec after startup approximately 4 min after the 

compressor frequency has reached steady state, and (d) 2000 sec after startup when the compressor 

frequency is gradually decreasing. In particular at a lag time of 0, the quality of the discharge 

refrigerant at the compressor exhibits a negative correlation with the evaporator refrigerant quantity

a relationship that is widely recognized among industry practitioners. The sudden increase in 

evaporator refrigerant reduces the gas ratio of evaporator and suppress suction quality. At the same 

time, reduction in the suction quality leads to lower suction enthalpy, which subsequently reduces 

discharge quality of compressor. At each time point, the correlation coefficients exhibit characteristic 

trends. In (a), an oscillation with a period of about 25 sec is observed in a nearly origin-symmetric 

pattern. This indicates that the discharge quality also oscillates and interacts mutually with the 

evaporator refrigerant. The negative correlation between the evaporator refrigerant and the discharge 

quality can be attributed to the phenomena mentioned above. 

 

(a) (b) 

   
(c) (d) 

   
Fig. 7. Correlation analysis of discharge quality dependency on refrigerant amount in evaporator at 

time (a) 50sec, (b) 500sec, (c) 1250sec and (d) 2000sec.  
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Moreover, a physical explanation for the rise in the evaporator refrigerant quantity as the discharge 

quantity increases is that the corresponding increase in refrigerant density supplied to the condenser 

leads to a higher condenser refrigerant, which, due to mass conservation, results in a reduction in the 

evaporator refrigerant. The physical implications of the origin-symmetric cross-correlation coefficient 

have been discussed in previous studies [37]. In the case of (b), the increase in the evaporator 

refrigerant quantity due to a reduction in the discharge refrigerant is not observed; rather, a strong 

negative correlation is exhibited. The difference with (a) can be attributed to the absolute value of the 

discharge quality: while (a) is characterized by a low discharge quality immediately after startup, in 

(b) the discharge quality is around one, indicating a higher gas content, and hence the reduction in 

refrigerant density is smaller. For (c), the cross-correlation function shows a rapid oscillatory pattern, 

with a sharp negative peak followed by a positive peak within a lag of 25 sec at positive lags, rendering 

the pattern non-symmetric with respect to the origin. This non-symmetry suggests that, as in (b), the 

sensitivity of the evaporator refrigerant quantity to changes in the discharge quality is small, and the 

observed oscillation is primarily due to a time delay in the response of the evaporator to variations in 

discharge dryness. In other words, the phase shift between the oscillations of the evaporator refrigerant 

quantity and the discharge quality creates a transient period during which a positive correlation might 

appear. Such a phenomenon has also been reported in [55]. In (d), a sharp negative correlation peak is 

observed. The presence of this sharp peak indicates that the relatively small, i.e., strong, negative 

correlation and the short propagation of noise. In summary, RBSA framework enables the sensitivity 

analysis of operating parameters under small noise loads using cross-correlation functions. This 

method has demonstrated practical utility in elucidating different phenomena under varying operating 

conditions and offers promising insights for further investigation. 

 

4.4 Gaussian noise propagation 

4.4.1 Evaporator refrigerant sensitivity on variance 

As a contrasting approach to the spike noise analysis discussed earlier, this section examines 

the impact of introducing continuous white noise into the system. In particular, prior studies have 

revealed that two-phase flow behaviors inherently exhibit variability [63, 64], which constitutes a key 

discrepancy between experimental observations and conventional numerical analyses. Several factors 

contribute to the variability observed in two-phase flow, including the oscillatory nature of the flow 

itself [65] and the highly complex and dissipative mechanisms associated with liquid droplets within 

the flow [66]. Instead of explicitly modeling these complex phenomena, this study focuses on the 

dominant influence of refrigerant distribution across various operating parameters, as observed in 

previous analysis. Specifically, we investigate the propagation of operational data fluctuations arising 

from variations in refrigerant distribution. Figure 8 presents the results of an analysis in which white 

 

 
Fig. 8. Variability estimation of refrigerant distribution in evaporator under additive white Gaussian 

noise (AWGN) variance >g of, 0.1, 1, 10. 



 

DADN252326_ IJR_177_2025_351_ 

LSTM-Based Modeling and Cross-Correlation Sensitivity Analysis for Heat Pump Refrigerant Distribution 

 

noise characterized by a specified variance was added to the predicted evaporator refrigerant quantity 

at each time step, and the resulting propagation effects were assessed. Notably, the applied noise was 

not isolated to individual time steps but rather incorporated the cumulative influence of propagated 

noise from preceding time steps. As illustrated in Fig. 8, the amplitude of variability changes as a 

function of variance in evaporator refrigerant. When the variance is set to 0.1, the fluctuations remain 

minimal, whereas at a variance of 10, the noise becomes significant, leading to a noticeable deviation 

of the mean refrigerant quantity from the original dataset. This behavior aligns with response trends 

governed by the signal-to-noise (S/N) ratio in stochastic resonance. While it might be pointed out that 

the noise-applied datasets exhibit generally higher values than the test data, particularly for the case 

with a variance of 10, this behavior can be attributed to the inherent pressure differences between the 

evaporator and condenser. Although Gaussian noise was probabilistically added to the refrigerant 

mass, the resulting flow dynamics are influenced by the pressure gradient between the components. 

Additional refrigerant introduced into the evaporator is more likely to remain within the device, given 

its position at a lower pressure state within the refrigerant cycle. Conversely, a reduction in the 

refrigerant mass within the evaporator, accompanied by an increase in refrigerant mass within the  

condenser where the system pressure is comparatively higher tends to promote refrigerant flow from 

the condenser back to the evaporator, following the natural pressure gradient. The predicted variability 

at a variance of 1 is 8.9%, which closely aligns with the approximately 10% variability reported in 

previous study [64]. Based on this observation, the subsequent section evaluates the propagation 

effects of noise variance 1 on other operating parameters.

 

4.4.2 Operational sensitivity on evaporator refrigerant variance 

Figure 9 illustrates the variability of system operating parameters as influenced by fluctuations 

in evaporator refrigerant quantity. A key point to emphasize is that the Gaussian noise in this analysis 

was not independently added to each parameter; rather, it was introduced solely into the refrigerant 

distribution within the evaporator, and the resulting impact on operating parameters was subsequently 

visualized. Representative variation ranges during operation of fixed compressor frequency in 1000sec 

to 1500sec are as follows: 5.5% in mass flowrate, 6.1% in compressor input 5.5% in evaporator 

capacity and 9.9% in condenser capacity. These results indicate that fluctuations in refrigerant 

distribution propagate sufficiently to operating parameters, making them measurable within a practical 

range. This suggests that operating parameter measurements may support to infer refrigerant 

distribution, thereby offering a potential methodology for indirect estimation. This finding is 

particularly significant for the future application of the proposed analytical technique in experimental 

evaluations. One aspect that warrants further investigation is the transient variation in distribution 

variance. In this work, a uniform variance was applied as a preliminary validation step. However, 

transient states may exhibit different fluctuation characteristics compared to steady-state operation. 

By further examining such scenarios, a more comprehensive understanding of refrigerant distribution 

can be achieved. Moreover, the dynamic influence of actuator-induced perturbations would occur in 

the real system. These undesigned cause of refrigerant fluctuation should be kept in mind to improve 

durability of the system. Future investigation will take this real-world noise into perspective. 
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(a) (b) 

  
(c) (d) 

  

Fig. 9. Propagation of additive white Gaussian noise (AWGN) in evaporator refrigerant for  

(a) discharge mass flow rate, (b) compressor power input, (c) evaporator capacity, (d) condenser 

capacity. 
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5.  Conclusions  
In this study, we examined the applicability of an LSTM-based analytical technique in a heat 

pump system. The main conclusions in this study are as follows: 

(1) The network using operational data incorporating refrigerant distribution enables accurate 

prediction. The training dataset included initial refrigerant distributions in the evaporator at 30 

wt%, 50 wt%, and 70 wt%, along with three levels of total refrigerant charge. The results 

confirmed that the network successfully predicts transient refrigerant distribution for untrained 

initial evaporator refrigerant distribution and charge level with an accuracy over 95%. 

(2) Resonance-Based Sensitivity Analysis (RBSA) attracted by the stochastic resonance-like 

behavior of LSTM evaluates the influence intensity and propagation time of feature perturbations 

introduced through noise injection into the network. By analyzing feature interactions via cross-

correlation functions, we demonstrated that the proposed approach aligns with established heat 

pump system knowledge, providing a reliable framework for sensitivity assessment. 

(3) Transient variations in refrigerant distribution variance are examined, revealing that fluctuations 

in the distributions have a notable impact on operational parameters. From the experimental 

literature, we selected the value of 1 as a practical variance and its impact on condenser capacity 

went up to variation of 10% under fixed control. These findings contribute to understanding 

refrigerant dynamics and provide a foundation for robust and resilient designs. 

 

The applicability of an LSTM-based analytical technique was examined in this study based on 

simulation data. Future research will focus on addressing the prediction accuracy degradation caused 

by various types of noise, including meaningful noise based on the fluid transportation phenomena 

and meaningless noise resulting from measurement errors, as well as on elucidating non-modeled 

phenomena that become evident in real experimental scenarios. Methods to suppress the reduction in 

prediction accuracy due to these noises and to clarify the unexplained phenomena present in the model 

are of particular interest. Moreover, this methodology is not limited to heat pump applications; it has 

the potential to be extended to the design of various energy systems utilizing transient working fluids, 

as well as the analysis of cyclic systems, including biological circulatory processes. Future 

advancements in this analytical approach hold promise for broader applications in both engineering 

and scientific research. 
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