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Analytic Conditions for Differentiable Collision Detection
in Trajectory Optimization

Akshay Jaitly1, Devesh K. Jha2, Kei Ota3, and Yuki Shirai2

Abstract— Optimization-based methods are widely used for
computing fast, diverse solutions for complex tasks such as
collision-free movement or planning in the presence of con-
tacts. However, most of these methods require enforcing non-
penetration constraints between objects, resulting in a non-
trivial and computationally expensive problem. This makes the
use of optimization-based methods for planning and control
challenging. In this paper, we present a method to efficiently
enforce non-penetration of sets while performing optimization
over their configuration, which is directly applicable to prob-
lems like collision-aware trajectory optimization. We introduce
novel differentiable conditions with analytic expressions to
achieve this. To enforce non-collision between non-smooth
bodies using these conditions, we introduce a method to ap-
proximate polytopes as smooth semi-algebraic sets. We present
several numerical experiments to demonstrate the performance
of the proposed method and compare the performance with
other baseline methods recently proposed in the literature.

I. INTRODUCTION

Optimization-based approaches present an effective way to
generate rich behavior for robots in the presence of various
kinds of constraints [1], [2], [3]. These methods are widely
used for planning trajectories of multi-body robotic systems
in the presence of obstacles, or in the presence of contact
constraints [4]. They are also used in various physics engines
(e.g., MuJoCo [5], Bullet [6], Drake [7], Dojo [8], PhysX
[9]) where simulation of contact dynamics is performed by
first finding the contacts between objects, then solving a
constrained optimization problem.

Central to these planning or simulation problems is the
ability to compute a signed distance function between bodies
which can later be used for downstream tasks like collision-
free trajectory planning or simulating contact dynamics.
Computation of distance functions tends to be computa-
tionally challenging. Oftentimes, evaluating constraints on
collision or distance values is non-differentiable, leading to
challenges when solving problems in various applications
like computer graphics, robotics, video games, etc.

In this paper, we present a formulation that allows us
to compute an approximate signed distance function be-
tween sets, which we denote as ‘Minimum-Offset-To-Touch’
(MOTT) (see Fig. 1). This can be used to enforce non-
penetration constraints during trajectory optimization. Our
method embeds computation of the signed distance function
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min  cost(decision variables)
𝑠. 𝑡. Constraints on decision variables are met

𝝓∗  ≥ 𝟎

Explicitly calculates ϕ∗ at each iteration

Bi-level formulation

𝜙∗ 

configurations𝜙∗

min  cost(decision variables)
𝑠. 𝑡. Constraints on decision variables are met

෩𝝓 ≥ 𝟎 
෩𝝓 meets smooth, analytic MOTT conditions

Converges to an approximately accurate  ϕ∗ over time

Single level formulation
(Using Minimum-Offset-To-Touch)

෨𝜙 → ~𝜙∗ 

Fig. 1: Optimization-based methods for collision-aware trajectory optimiza-
tion are traditionally bi-level (shown above in red), where a high level
optimization problem calls a lower-level problem to calculate constrained
values, like the signed distance between objects. In contrast, we propose
Minimum-Offset-To-Touch (MOTT) conditions, which allow us to embed
collision avoidance as smooth constraints with analytic form in the higher
level problem, resulting in a single level optimization.

alongside the trajectory optimization problem. This is in
contrast to the popular bi-level formulations, which require
explicit calculation of distance at each solver iteration, as
shown in Fig. 1. Other existing single-level optimization
methods use a complementarity formulation (see [10], for
example) to impose distance function constraints during
optimization which are, in general, difficult to solve leading
to longer solve times. In contrast, MOTT conditions have
continuous, smooth gradients, which allow us to enforce
constraints on distances between smooth sets with faster
compute efficiency. Through several numerical experiments,
we present the computational benefits offered by the pro-
posed method.

Contributions.
• We introduce a ‘Minimum-Offset-To-Touch’ (MOTT)

metric for the signed distance between collision bodies.
• MOTT conditions allow us to derive computationally



efficient, differentiable nonlinear equality conditions
(compared to non-smooth complementarity conditions
used in other approaches). These conditions can be
embedded in a single-level optimization problem to
enforce non-penetration and perform signed distance
computation while performing trajectory optimization.

• Additionally, we propose a method for finding smooth
semi-algebraic approximations of (non-smooth) poly-
topic sets, used in conjunction with our MOTT con-
ditions to simplify optimization problems considering
non-penetration of polytopic bodies.

II. RELATED WORK

Collision detection and avoidance has been thoroughly
studied in robotics literature. There are various methods
to compute collisions between bodies [11], [12], [13]. For
example, the classic Gilbert–Johnson–Keerthi (GJK) algo-
rithm [11]. It computes the Minkowski difference of the
two convex sets and estimates if the origin is inside this
difference using iteratively computed simplices. The GJK
algorithm and its variants [14] have shown impressively
fast collision computation. Some of them are used in the
popular Flexible Collision Library (FCL) [15] which is
widely used in most physics engines. Another example is the
Lin-Canny algorithm [16] which tracks the closest features
(e.g., vertices, edges) between two convex polyhedra to check
if collision is made. One of the issues for the aforementioned
methods is that these solutions are not differentiable, which
makes it difficult for gradient-based solvers (e.g., [17]) to
effectively use them for planning. Recently, Tracy et al.
proposed DCOL [18], which enables differentiable collision
computation for convex primitives. For iterative trajectory
optimization solvers, all of the above methods require ex-
plicit computation of the collision values at each iteration.

Our work is also related to the vast literature on collsion-
free motion planning in robotics. Sampling-based methods
such as RRT [19] can efficiently plan collision-free trajecto-
ries. However, these methods do not consider kino-dynamic
feasibility of generated motion plans. Model-free methods
such as [20] can also design collision-free kinodynamically
feasible trajectories, though training can be computationally
demanding. Graphs of Convex Sets [21] and Polytopic Ac-
tion Set And Motion Planning [22] form feasible motion
planning as akin to a graph search problem. In these methods,
polytopic sets of feasible collision free motions are strung
together to form sets of feasible longer-horizon motions.
These methods require significant pre-computation to build
the polytopic sets, and may require solving Mixed-Integer
programs to find motion.

More recently, in [23] (SILICO) the authors introduced
a method to solve for the collision values alongside the
optimal solution to an optimization problem in a single
level. However, this is achieved by introducing a number of
non-smooth complementarity constraints, which can present
gradient-based solvers with difficulties in converging. In con-
trast, in this work, we present MOTT conditions, which are
differentiable conditions with analytic expressions enforcing

collision detection which do not require enforcing com-
plementarity constraints to design collision-free trajectories,
making it much easier for the solvers to converge.

III. BACKGROUND

In this section, we present some relevant notation and
background information which is useful in explaining the
main results presented in this paper.

A. Optimization-Based Collision Detection

1) Notation: We first define some useful notation which
is used throughout the paper:

• a ≤ b (resp. a
b ) denotes an elementwise inequality

(resp. elementwise division) between vectors a and b.
• RN

− denotes the non-positive cone, or x ∈ RN such that
x ≤ 0. RN

+ denotes the nonnegative cone.
• Ai = {x ∈ RNx |gi(x) ≤ 0} is a convex set where

gi(x) : RNx −→ RNgi is a pre-defined function.
• The subscript ·i,j indicates that a value is associated

with collision pair {Ai,Aj}.
• ϕ ∈ R is a value associated with distance. ϕi,j ≤ 0

indicates that Ai and Aj are intersecting.
2) Gilbert-Johnson-Keerthi Algorithm: GJK [11] is a

classic algorithm to compute collision between objects. The
GJK algorithm effectively solves a ‘closest points problem’,
similar to the following,

min
xi
i,j ,x

j
i,j

1

2
∥xj

i,j − xi
i,j∥2 s.t. xi

i,j ∈ Ai, xj
i,j ∈ Aj (1)

If the distance between the closest points is 0, then ∃x ∈
Ai∩Aj and the intersection is non-empty, reflecting that they
are in penetration. Alternatively, if the minima is positive, the
intersection is empty and the objects are not in penetration.

3) DCOL: In work considering Differentiable Collision
Detection (DCOL [18]), penetration is evaluated by con-
sidering the ‘minimum scaling’ amount that bodies must
experience in order to be in contact. If they can be shrunk
while preserving an intersection, the bodies are considered
to be in collision. With α as the scaling factor, where
α > 1 relates to enlarging the set, α = 0 shrinks the set
to a point, and α∗

i,j is the minimum scaling to touch, the
value associated with distance, ϕi,j , can be evaluated as
ϕi,j = α∗

i,j − 1.
4) KKT Conditions: In this work, we are concerned with

conditions that test the validity of a Minimum-Offset-To-
Touch solution (introduced later). For this, we will require
an understanding of the KKT conditions for optimality.

The KKT conditions are sufficient and necessary condi-
tions for a possible solution to a program like (1) to be
optimal. The following are the KKT conditions of the closest
points problem. Satisfying these conditions is equivalent to
solving GJK.

find xi
i,j ,x

j
i,j , λ (2a)

s.t. (xj
i,j − xi

i,j) +∇xgi(x
i
i,j)λi = 0 (2b)

−(xj
i,j − xi

i,j) +∇xgj(x
j
i,j)λj = 0 (2c)



(a) ρ = 1 (b) ρ = 4

Fig. 2: Superquadratic approximation of a unit-hypercube in R3. As ρ
increases, the approximation increases in accuracy.

gi(x
i
i,j) ≤ 0, gj(x

j
i,j) ≤ 0 (2d)

λi ≥ 0, λj ≥ 0 (2e)

λT
i gi(x

i
i,j) = 0, λT

j gj(x
j
i,j) = 0 (2f)

Here (2b) and (2c) are conditions of stationarity, (2d) are
conditions of primal feasibility, (2e) are conditions of dual
feasibility, and (2f) are conditions of complimentary slack-
ness. λ are the dual variables in the KKT conditions.

B. Superquadratics

Our method utilizes smooth approximations of general
polytopic sets. In order to do so, we employ ’superquadrat-
ics’ (often refered to as superquadrics), seen in Fig. 2.
Superquadratics have been used to generate surfaces, largely
for use in graphics applications [24][25]. We will define
superquadratic sets in Ny dimensions to be R̃Ny = {y ∈
RNy | ||y||2ρ2ρ ≤ 1}. ||y||2ρ is the 2ρ norm of y,
(
∑Ny

k=0(y
2ρ
k ))

1
2ρ .

Superquadratics with positive integer values of ρ can be
visualized approximately as smooth, rounded hypercubes in
RNy . ρ = 1 results in a hyper-sphere of radius 1. As ρ −→ inf ,
the superquadratic exactly matches {−1 ≤ y ≤ 1}.

C. Trajectory Optimization

Trajectory optimization problems considered in this work
are solved by iteratively updating a guess for an optimal,
feasible, solution. In this strategy, constraints are evaluated
at each iteration. These constraints can span considerations
of dynamics, kinematics, collision avoidance, etc.

In bi-level strategies, the signed distance (ϕ) is algorith-
mically evaluated at each iteration. For a collision detection
method like DCOL, this may require solving multiple convex
programs at each iteration to evaluate the constraints. Single
level strategies, on the other hand, may impose analytic
constraints (often non-linear) on the decision variables that
are only satisfied when ϕ is accurate. These strategies allow
a mathematical program solver to converge towards ϕ values
alongside the optimal values of other decision variables over
the process of solving the optimization problem.

Prior works such as [18],[23] have proposed single-level
methods where the KKT conditions of the minimum scaling
to touch problem are embedded as constraints in another
optimization problem. These require enforcing complimen-
tary slackness, which results in optimization with Ngi +Ngj

complementarity constraints for contact pair {Ai,Aj}. In
situations like trajectory optimization, where the configu-
ration (q) of the collision objects is variable, gi(x, q) may

(a) Penetrating bodies.
(b) Bodies that have intersection of car-
dinality 1. These objects are ‘touching’.

Fig. 3: The ‘Minimum-Offset-To-Touch’ distance is positive in the case of
non-penetration, negative in the case of penetration, and 0 in the case that
bodies are touching. Additionally shown are the points (xi, xj ) that would
be touching when the bodies are offset to touch.

be non-convex, resulting in harder to enforce non-convex
complementarity constraints for existing single level collision
detection methods.

IV. PROBLEM STATEMENT

In this section, we present our problem formulation. Our
objective is to find a way to enforce constraints on the signed
distance between objects easily.

We assume that the collision objects are closed, bounded,
convex shapes Ai and Aj in Nx dimensions (similar to
previous work such as DCOL [18]).

We define our signed distance metric to be a ‘Minimum-
Offset-To-Touch’ (MOTT), a signed distance equivalent to
the minimum amount that a body must be translated (without
rotation) in any direction such that shapes are touching, but
not overlapping. To touch, the intersection between translated
objects must contain only points on the boundary of each set.
We will consider non-flat surfaces, where this intersection is
necessarily a single point. Examples of touching sets can be
seen in Fig. 3b. Offsets required to touch can be seen in
Fig. 3a and Fig. 4.

Formally, at an ‘Offset-To-Touch’,
• a is a unit vector indicating a ‘direction of offset’.
• ϕ is the scalar valued signed offset distance.
• (Ai+{ϕa})∩Aj contains only points on the boundaries

of each set.
• xj

i,j ∈ Aj is in the intersection of Aj and Ai + {ϕa}.
This is a point at which the objects would be touching
when Ai is offset by ϕa.

• xi
i,j ∈ Ai is in the intersection of Ai and Aj − {ϕa}.

This is a point at which the objects would be touching
when Aj is offset by −ϕa.

• ϕa = xj
i,j − xi

i,j

At the MOTT solution, (ϕ,a,xj
i,j ,x

i
i,j), sets are touching,

and ϕ2 is minimized.

V. METHOD

In this section, we derive sufficient conditions for
(ϕ,a,xi

i,j ,x
j
i,j) to be a valid solution to the MOTT problem

for shapes Ai and Aj . We show that, for bodies with smooth
surfaces, these are the smooth and algebraic conditions
shown in Fig. 4. We additionally introduce a method for
approximating polytopic objects as smooth semi-algebraic
sets.



Fig. 4: The ‘Minimum-Offset-To-Touch’ conditions enforce that the surface
normals (∇xgi(xi), ∇xgj(xj)) between two convex bodies are in op-
posite directions, and that the direction of offset (a) is along this surface
normal.

A. Collision Detection Between Smooth Bodies

For collision detection, we specifically consider the case
where Ai and Aj have smooth surfaces. For Ak, we assume
that gk(x) is a smooth, convex, scalar valued (Ngk = 1)
function.

1) Conditions for touching: Recall the definition for
touching from Sec. IV. Not every pair {xi

i,j ∈ Ai,x
j
i,j ∈

Aj} results in a valid offset value ϕa = xj
i,j − xi

i,j for
touching. From our definition xj

i,j is on the boundary of Aj

and xi
i,j = xj

i,j − aϕ is on the boundary of Ai. For scalar
function valued constraints, this is defined as gj(x

j
i,j) = 0

and gi(x
j
i,j − aϕ) = gi(x

i
i,j) = 0.

Lemma 1. (ϕa = xj
i,j − xi

i,j) defines a valid offset to touch
if and only if

gi(x
i
i,j) = gj(x

j
i,j) = 0 (3a)

∇xgi(x
i
i,j)

||∇xgi(x
i
i,j)||

= −
∇xgj(x

j
i,j)

||∇xgj(x
j
i,j)||

(3b)

As stated prior, under the assumptions we have made the
intersection (Ai+{ϕa})∩Aj contains a single point on the
boundaries of both shapes, reflected in condition (3a). Note
that, in cases where sets are non-smooth (like polytopes) this
intersection may be set valued, instead of a single point. Our
assumption of smoothness omits this case.

By the separating hyperplane theorem [26], there neces-
sarily exists at least one hyperplane tangent to both offset
bodies at the contact point, which separates the interiors
of the convex bodies. For smooth surfaces, this separating
hyperplane is uniquely defined by the surface normal at
the contacting point. This indicates that ∇xgi(x

i
i,j) and

∇xgj(x
j
i,j), the surface normals of each shape at the contact

point, are in opposing directions if and only if the shapes
(offset by ϕa, where (3a) is met) are touching, but the
interiors are not overlapping. This gives (3b). Thus, we can
prove that our conditions are met if ϕa is an offset to touch.

If the conditions hold, we can state that xj
i,j = xi

i,j + ϕa
is in the intersection, and on the boundaries, of Ai + {ϕa}
and Aj (from (3a)) and that the interiors of the offset shapes
are necessarily separated by the tangent hyperplane at xj

i,j .

Thus, any intersection is on the boundary of the shapes, and
ϕa is an offset to touch.

We use ∇xĝk(x) to indicate the directionality of the
gradient of gk, which is the surface normal. In the following
lemma, we present the main result of this paper.
Lemma 2. At the MOTT solution, (ϕ,a,xj

i,j ,x
i
i,j), the fol-

lowing conditions hold

gi(x
j
i,j) = 0, gi(x

i
i,j) = 0 (4a)

∇xgi(x
i
i,j) = −∇xgj(x

j
i,j) (4b)

(xj
i,j − xi

i,j) = ϕa = ϕ∇xĝi(x
i
i,j) = −ϕ∇xĝj(x

j
i,j) (4c)

Proof. Given the conditions for a valid ‘offset-to-touch’
(xi

i,j ,x
j
i,j) the minimum offset to touch problem is the

following:

min
ϕ,a,xi

i,j ,x
j
i,j

1

2
||xj

i,j − xi
i,j ||2 (5a)

s.t. ϕa = (xj
i,j − xi

i,j) is a valid offset to touch (5b)

Or, using conditions (3a), (3b),

min
xi
i,j ,x

j
i,j

1

2
||xj

i,j − xi
i,j ||2 (6a)

s.t. gi(x
i
i,j) = 0, gj(x

j
i,j) = 0 (6b)

∇xĝi(x
i
i,j) = −∇xĝj(x

j
i,j) (6c)

We wish to show that, if (4a) – (4c) hold for some solution,
(ϕ,a,xi

i,j ,x
j
i,j), then (ϕ,a,xi

i,j ,x
j
i,j) is an optimal solution

to (6a) – (6c).
Consider the KKT conditions of (6a) – (6c),

find xi
i,j ,x

j
i,j s.t.

(7a)

−(xj
i,j − xi

i,j) + λ1∇xgi(x
i
i,j) +∇2

xg
T

i (x
i
i,j)λ3 = 0

(7b)

(xj
i,j − xi

i,j) + λ2∇xgj(x
j
i,j) +∇2

xg
T

j (x
j
i,j)λ3 = 0

(7c)

gi(x
i
i,j) = 0, gj(x

j
i,j) = 0

(7d)

∇xĝi(x
i
i,j) = −∇xĝj(x

j
i,j)

(7e)

where ∇2gk ∈ RNx×Nx indicates the Hessian of
gk. λ1, λ2 are arbitrary scalar free variables, and thus
λ1∇xgi(x

i
i,j) is functionally equivalent to λ1∇xĝi(x

i
i,j).

Note that we are not required to enforce complimentarity.
For λ3 = 0, λ2 = λ1 = ϕ, ϕ∇xĝi(x

i
i,j) = xj

i,j − xi
i,j , we

can see that (7b) and (7c) are equivalent to our condition,
(4c). (7d) and (7e) enforce primal feasibility, and directly
reflect (4a), (4b). Thus, (4a) – (4c) are sufficient for enforcing
the local optimality of a Minimum-Offset-To-Touch solution.

As indicated in Fig. 4, (4c) indicates that (xj
i,j−xi

i,j) is ‘in
the direction of’ the surface normal, ∇xgj(x

j
i,j). Note that,

for objects that are not in penetration, the MOTT problem is
equivalent to the closest-points problem.



2) Minimum Offset To Touch for Polytopes: In the case
that we do wish to continue considering polytopic objects,
our intuition would still hold. In this case, however, the
‘surface normal’ would not be a unique vector value (as with
our smooth body), but rather the normal cone at a point, x.
With abuse of notation, we state that (4c), (4b), the surface
normal constraints in the MOTT conditions, would be the
following

a ∈ ∇xAj(x
i
i,j), −a ∈ ∇xAj(x

j
i,j) (8)

Where ∇xA(x) indicates the normal cone of A at x, or a
weighted sum of the surface normals of all facets of A that
x is a member of.

Intuitively, stationarity and complimentary slackness con-
straints in the KKT conditions effectively enforce these
conditions. Stationarity ((2b), (2c)) enforces that −∇xf =
a = ATλ where ATλ denotes the weighted sum of the
vectors normal to the facets of the polytope. Complimentary
slackness, λT (Ax− b) = 0 as seen in (2f), enforces that
only the relevant subset of normal vectors are considered.
Together, the conditions make ∇xA(x) = {a | a =
ATλ, λT (Ax− b) = 0}, the normal cone to the point at x.
In considering scalar valued constraints, g(x), we were able
to make the assumption that g(x) = 0 at the optimal solution
and forgo the considerations of complimentary slackness that
would traditionally be present in the KKT conditions of a
similar problem. As there is only one ‘face’ of the set (the
boundary), we can state that the surface normal is always in
a singular direction.

3) Non-uniqueness: The Minimum-Scaling-To-Touch
problem, however, has non-unique locally optimal solutions,
including the Maximum-Offset-To-Touch.

Fig. 5: This is a sub-optimal solution for Minimum-Offset-To-Touch, even
though it satisfies the conditions for local optimality.

The example in Fig. 5 highlights an example of a
‘Maximum-Offset-To-Touch’ solution, which finds the fur-
thest points in the collision bodies. This solution is locally
optimal to the Minimum-Offset-To-Touch program, and thus
satisfies our nonlinear equality MOTT conditions. At such a
solution, ϕ is negative, even though the objects are not in
penetration. As can be seen in Fig. 5, the surface normals
are pointing in opposing directions, away from the interior
of each set. For this solution to be a ‘Minimum-Offset-To-
Touch’, the surface normals must point towards the interior
of the opposing set.

So, we may consider an additional constraint of form

(cj − ci) · ∇xgi(x
i
i,j) ≥ 0 (9)

where cj is in the interior of Ai and ci is in the interior
of Aj . This enforces that ∇xgi(x

i
i,j) is in the appropriate

direction.
This condition may not be strictly necessary in practi-

cal applications, however. For instance, if the ‘Minimum-
Offset-To-Touch’ conditions are embedded in a trajectory
optimization program enforcing non-penetration (ϕ ≥ 0),
the ‘Maximum-Offset-To-Touch’ solution – where ϕ < 0
– is inherently excluded from the set of feasible solutions
without the inclusion of (9).

B. Smooth Approximations of Polyhedra

When deriving the conditions for ‘Minimum-Offset-To-
Touch’, we made the assumption that each set considered
was smooth, and that the constraint g(x) was scalar valued.
Non-smooth surfaces, and discontinuous gradients ∇xĝ(x),
result in non-smooth (and complementarity) constraints when
enforcing validity of an offset value, ϕ. This is not unique to
our approach. As stated in V-A.2, approaches like SILICO
[23] additionally require the enforcement of non-smooth
complementarity constraints for non-smooth collision bodies.
This is a restrictive assumption, however, as sets in question
are not necessarily smooth. Instead, works have tended to
approximate collision bodies with polytopes [27]. In this
subsection, we introduce the use of superquadratics to ap-
proximate generic polytopic sets as semi-algebraic sets with
smooth surfaces and continuous gradients.

1) Smooth approximations by approximating the non-
positive cone: A linearly constrained set generally takes
the form A = {x ∈ RNx |y = Ax− b,y ∈ RNy

− }. We
can understand a polyhedron to be the intersection between
an affine subspace of RNy and the non-positive cone. Our
approximation, Ã, will depend on creating a smooth approx-
imation of the non-positive cone,

R̃Ny

− = {y|g(y) ≤ 0} ⊆ RNy

−

where g(y) ∈ R1. The intersection between the same affine
subspace and this smooth approximation (as seen in Fig. 6),
will yield a new set in RNx with a smooth boundary.

Ã = {x ∈ RNx | y = Ax− b, y ∈ R̃Ny

− } gives our
smooth approximation of the original polytope.

We will create an approximation of the non-positive cone
using superquadratics. As mentioned in III-B, we will con-
sider superquadratics of the form ||y||2ρ2ρ ≤ 1. As ρ → ∞,
||y||2ρ2ρ ≤ 1 becomes equivalent to −1 ≤ y ≤ 1.

Thus, ||y||2ρ2ρ ≤ 1 approximates a hypercube in the space
RNy , centered at the origin. To approximate the non-positive
cone, we will use

R̃Ny

− = {y ∈ RNy |
∥∥∥∥2yȳ + 1

∥∥∥∥2ρ
2ρ

≤ 1} (10)

where ȳ ∈ RNy and y
ȳ represents an element-wise division.



(a) Approximation the surface of the non-
positive cone , noted in blue.

(b) y = Ax − b gives a hyperplane, noted
in red.

(c) The approximated semi-algebraic set, in blue,
overlayed on the original polytope, outlined in black.

Fig. 6: Superquadratic in the space R3. {y = Ax− b} ∩RNy
− represents

the original polytope and {y = Ax− b} ∩ R̃Ny
− represents the approxi-

mated semi-algebraic set Ã (in blue).

2) Choosing bounds for the superquadratic: The resulting
set approximates a hyper-rectangle within RNy

− . The faces of
the hyper-rectangle are congruent to the faces of the non-
positive cone within the bounds −ȳ ≤ y ≤ 0. Thus,

Ã = {y = Ax− b,

∥∥∥∥2yȳ + 1

∥∥∥∥2ρ
2ρ

≤ 1} (11)

is a valid approximation for the original polytope when
−ȳ ≤ Ax − b. ȳ must be chosen to be sufficiently large,
such that −ȳ ≤ Ax− b ∀x ∈ {x|Ax− b ≤ 0}.

C. Trajectory Optimization

In this subsection, we present the use of MOTT conditions
in a collision avoidance problem. Due to the existence of
kinematic considerations when performing trajectory opti-
mization, we consider {xk|gk(xk,q) ≤ 0} as the approx-
imated collision body in the world frame, where q is the
configuration of the system.

The program is as follows.

min f(q0,q1, ...,qT−1) (12)

s.t. ati,j = ∇xĝi(x
t,i
i,j ,q

t) (13)

ati,j = −∇xĝj(x
t,j
i,j ,q

t) (14)

xt,j
i,j − xt,i

i,j = ϕt
i,ja

t
i,j (15)

gi(x
t,i
i,j ,q

t) = gj(x
t,j
i,j ,q

t) = 0 (16)

ϕt
i,j ≥ 0 (17)

qt indicates the configuration at time step t, and xt,i
i,j indi-

cates the hypothetical contact point on Ai for pair {Ai,Aj}

in the world frame at time t. We enforce the constraints for
each time step, for each contact pair.

(13) – (16) are our Minimum-Offset-To-Touch conditions,
while (17) enforces non-penetration of bodies Ai and Aj . As
stated in section V-A.2, enforcing non-penetration between
polytopic objects requires enforcing that a is in the normal
cone, which requires enforcing complementarity conditions.
As such, we instead condsider approximated polytopes,
Ã, as the relevant collision geometry. We calculate the
superquadratic based semi-algebraic approximations of the
collision bodies a-priori, and utilize them to evaluate g(x)
and ∇xq(x). Our approximation (Ãk) is fully defined by ȳk,
Ak and bk where Ak, bk are inherent to the original polytope,
Ak. We solve Ny +1 linear programs to find the bounds for
ȳ (as detailed in V-B.2).

VI. RESULTS

In this section, we perform experiments to answer the
following questions.

• Can enforcing MOTT conditions efficiently find the
correct Minimum Offset To Touch?

• Can our trajectory optimizer find collision-free trajec-
tories in cluttered environments efficiently?

A. Experiment Settings

We implement our framework in C++ using SNOPT
[17] for solving (12). We implement our custom collision
detection constraints within the Drake framework [7]. The
computation is tested on a computer with Intel i7-1185G7.

We test the performance of our method in both, a trajectory
optimization scenario and for distance computation in a
scenario with static objects. We use a Coin-OR Linear
Program (CLP) solver to find ȳk a-priori.

For trajectory optimization, we consider four distinct tasks
with varying levels of complication in which we wish to
facilitate collision free motion. We test our method, enforc-
ing the Minimum-Offset-To-Touch conditions, and DCOL,
recording the time it takes to solve. For our method, we
also collect data on the average error in the solution ‘offset
distance’.

The authors in [23] (SILICO) primarily utilize the tech-
nique within a scenario where the configuration is fixed,
yielding a problem with Linear Complimentarity constraints
(an LCP). In trajectory optimization, this becomes a Nonlin-
ear Complimentarity problem, and is significantly harder to
solve. Thus, we do not consider the single level trajectory
optimization problem using SILICO to find distance values.

For each of the following, we set the initial guess by
linearly interpolating between the initial and desired config-
urations. We attempt to minimize the distance from the goal
at each of T determined knot points, and impose a constraint,
limiting the maximum velocity per knot point.

B. Static Scene

First, we implement an experiment solving for the
Minimum-Offset-To-Touch with a static scene, where the
configuration is pre-determined. This experiment will allow



us to understand the time that a trajectory-optimizer may
take to converge to an accurate solution for the Minimum-
Offset-To-Touch, the approximation error, and how the two
are related to ρ. We measure these values for 120 pairs of
bodies randomly placed in space.

For pairs not in penetration, the % error is calculated as
ϕsolution−ϕaccurate

ϕaccurate
where ϕaccurate is the distance for the

polytopes to touch (the GJK solution), and ϕsolution is the
offset for the smoothed approximated sets to touch.

The Minimum-Offset-To-Touch solution was used as an
initial guess for the values of the offset-to-touch values.

TABLE I: The average solving time and accuracy for a program where we
expect to find the Minimum-Offset-To-Touch, but not perform trajectory
optimization.

ρ Solve Time (ms) average % error

1 24.30 18.34
2 98.37 10.39
3 58.48 6.81
4 76.24 4.93
5 29.30 3.81
6 65.31 3.08
7 32.25 2.80
8 53.45 2.21
9 54.85 1.93

We additionally tested DCOL on the same scene. The
average time to solve for the minimum-scaling-to-touch
problem was 1.41 ms.

For the static scene, enforcing the Minimum-Offset-To-
Touch conditions is not the ideal solution. This requires
solving a program with nonlinear equality conditions, while
solving for the Minimum Scaling To Touch constitutes a
single quadratic program. The advantage of using the MOTT
conditions, rather, is when an optimization has to be per-
formed with multiple iterations, where the distance values
change in each iteration.

We can also see in Table I, as expected, that as ρ increases
the approximation error decreases. This error comes from
the fact that our smooth semi-algebraic approximation is an
inexact inner approximation of the original smooth collision
bodies. As ρ increases, the gap between the approximated
body and the original polytope decreases, and thus, as does
the gap between the Minimum-Offset-To-Touch solutions.
Additionally, the program solves for all considered values
of ρ.

C. Trajectory Optimization

1) Freebody test: The first trajectory optimization task
considers two freely articulated cuboids that fly past each
other. This enforces non-penetration for 1 collision pair.

2) Bookshelf Scene: The second task is a book placing
task. We consider a book to be a freely articulated body,
and wish to place it on a shelf with bookends on either side
(Fig. 7a). Linearly interpolating between the initial state and
the desired final state results in a collision. We do not take
into account dynamics considerations. This enforces non-
collision for 3 collision pairs, with ρ = 3.

(a) a collision-free trajectory for placing a
book (red) between two static objects (shown
in green).

(b) a collision-free trajectory for a drone
(red) traversing through a messy scene. The
drone maneuvers around the static obstacles
(shown in green).

Fig. 7: We consider scenarios of varying difficulty. Above are examples of
the ‘drone scene’ and the ‘bookshelf scene’.

Fig. 8: Snapshots of arm movement obtained using the proposed model
in collision-free trajectory optimization. We attempt to find a collision-free
trajectory between pre-determined poses.

3) Drone Scene: The third task considers a drone (approx-
imated as a cuboid) traversing through a messy scene with
polytopic obstacles (Fig. 7b). We consider the drone to be a
freely moving body with 6 Degrees Of Freedom. We set the
scene such that linearly interpolating between the initial and
final states results in collision. This enforces non-penetration
for 5 collision pairs, with ρ = 3.

4) Dual manipulator Scene: In the final task, we consider
a scene with two manipulators (Fig. 8), where the initial and
final configurations are fixed. This enforces non-penetration
for 15 collision pairs, with ρ = 5.

TABLE II: Solving times for trajectory optimization problems of varying
difficulties. Enforcing the MOTT conditions is more efficient in problems
that require more iterations, like the drone and dual manipulator scenes, as
a solver converges to accurate distance values early.

MOTT DCOL

Freebody Scene 370.55 (ms) 107.52 (ms)
Bookshelf Scene 419.04 (ms) 111.94 (ms)

Drone Scene 2889.44 (ms) 12128.40 (ms)
Dual Manipulator Scene 30.415(s) 355.254(s)

5) Trajectory Optimization Results: We see from Table II
that, for simpler problems which require less iterations to
solve, the solver takes longer to converge to an accurate
solution. It struggles to enforce the MOTT conditions while
simultaneously taking large steps toward an optimal solution.

For larger problems, on the other hand, enforcing non-
penetration using a bi-level formulation takes significantly
longer. Using minimum scaling to touch requires the explicit
computation of the scaling at each iteration, which can tend
to be expensive when all collision pairs, and all iterations,
are taken into account. Enforcing the MOTT conditions in



a single level requires that each iteration step of the SQP
solver approximately preserve a valid value for ϕ.

VII. CONCLUSION

In this paper, we proposed Minimum-Offset-To-Touch
(MOTT) conditions for distance computation between con-
vex bodies. These conditions are differentiable and compu-
tationally inexpensive conditions with analytic expressions
that can be used to find an accurate metric for signed
distance between convex bodies. Assuming that collision
bodies are convex and smooth, we derive and verify that the
minimum offset for two bodies to touch occurs along the
surface normal of each body, and derive MOTT conditions
to enforce this property. Using these conditions, a single-
level trajectory optimization is able to efficiently and robustly
find locally optimal trajectories for rigid bodies. It is noted
that our approach does not require enforcing complimentarity
constraints allowing faster and robust computation. Further-
more, we introduce a method to approximate non-smooth,
polytopic, objects using semi-algebraic sets to approximately
find distance between non-smooth objects. Our method is
extensively evaluated over various planning scenarios and
outperforms the baseline method for trajectory optimization
problems.

We would like to extend this work to handle contact-rich
manipulation tasks such as whole-body manipulation [28],
[29] by incorporating contact dynamics as part of constraints.
We would like to extend the use of the proposed method to
model contact dynamics.

While we utilized this method to enforce non-penetration
between physical objects in a trajectory optimization sce-
nario, it can be used to enforce non-intersection of polytopes
in higher dimensions as well. This can enable optimization
methods to find polytopic inner approximations of non-
convex sets, useful for methods like GCS [21] and Polytopic
Action-Set And Motion Planning [22]. However, this is also
left as a future exercise.
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