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Abstract
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robustness measure, and evaluate our approach against model-free Reinforcement Learning
(RL) and motion imitation using biological dog motion priors as the reference. Overall, within
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Energy-Efficient Motion Planner for Legged Robots

Alexander Schperberg†∗, Marcel Menner‡, and Stefano Di Cairano†

Abstract— We propose an online motion planner for legged
robot locomotion with the primary objective of achieving energy
efficiency. The conceptual idea is to leverage a placement set
of footstep positions based on the robot’s body position to
determine when and how to execute steps. In particular, the
proposed planner uses virtual placement sets beneath the hip
joints of the legs and executes a step when the foot is outside
of such placement set. Furthermore, we propose a parameter
design framework that considers both energy-efficiency and
robustness measures to optimize the gait by changing the shape
of the placement set along with other parameters, such as step
height and swing time, as a function of walking speed. We show
that the planner produces trajectories that have a low Cost of
Transport (CoT) and high robustness measure, and evaluate
our approach against model-free Reinforcement Learning (RL)
and motion imitation using biological dog motion priors as the
reference. Overall, within low to medium velocity range, we
show a 50.4% improvement in CoT and improved robustness
over model-free RL, our best performing baseline. Finally, we
show ability to handle slippery surfaces, gait transitions, and
disturbances in simulation and hardware with the Unitree A1
robot.

I. INTRODUCTION

Legged robots excel on uneven terrain and in human-
centric environments, but their efficiency is hindered by
energy losses from foot-ground impacts, which accelerate
battery depletion and increase motor heat, reducing operation
time. Thus, formulating new energy conservation strate-
gies are worthwhile endeavors. Hardware solutions such as
Ranger [1] and ANYmal [2], reduce energy consumption
using passive dynamics and mechanical springs. Software-
based solutions, the focus of this work, can include various
motion planning strategies, including optimization [3], Rein-
forcement Learning (RL) [4], and vision-based methods [5].
Although energy-efficient rewards or cost terms can be
incorporated into the optimization or learning process, it
is often challenging to assign significant weight to these
terms without encountering local optima issues, where the
robot fails to follow the desired velocity commands or avoids
movements entirely.

Our approach achieves energy-efficient locomotion using
a simple, geometry-based footstep planner that constrains
motion based on fundamental physical principles. Elliptical
placement sets beneath each hip dictate when and where
steps occur. The planner’s parameters—ellipse shape, swing
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Fig. 1. We compare and evaluate our energy-efficient motion planner (A)
(Sec. II), with motion imitation (B) (motion dataset from [6]) and model-
free reinforcement learning (C) baselines.

time, and step height—are optimized to minimize the Cost of
Transport (CoT) and maximize robustness to avoid singular-
ity and favor non-slipping configurations. These parameters
can be derived offline or adjusted through RL for improved
disturbance handling. The proposed planner produces a more
natural gait, where the robot moves its feet only when
necessary, as defined by the placement set.

Although natural gaits can also be achieved by imitating
animal motion [6], to the best of our knowledge, there has not
been a clear analysis to evaluate whether imitating motion
derived from biological animals is actually more energy-
efficient for lower degree of freedom robots. Thus, in this
work, we use CoT and robustness measures to compare our
method against not only typical model-free RL approaches
[7], but also against motion imitation, where the reference
motions are derived from real animal movements (see Fig.
1).

Overall, we present the following contributions:
1) An online motion planning framework that naturally

determines the gait by minimizing energy consumption
using ellipses beneath the hip joints. Simulation and
hardware experiments are presented.

2) The ellipses, along with step height and swing time of
each leg are designed based on a parameter study that
considers CoT and robustness measures. This study is
achieved analytically and also through exploration of
parameters using RL. Both are compared against each
other for efficacy.

3) Our approach is compared against baselines, including
model-free RL, and motion imitation using real biolog-
ical dog motion priors as the reference.



A. Related Works
Motion planning is a fundamental requirement for legged

robot locomotion. Several approaches for stable motion
have been proposed such as model-based (Sec. I-A.1) and
learning-based methods including RL and motion imitation
(Sec.I-A.2). Efficacy of these methods are typically evaluated
primarily for velocity tracking, and only a few for energy-
efficient locomotion (Sec. I-A.3).

1) Model-based: The Raibert controller [8] provides sta-
ble trajectories for legged robots that is computationally
efficient, but not suitable for rough terrain nor considers
energy-efficiency. For rough terrain, optimization-based tech-
niques can be used, optimizing for the Zero-Moment Point
(ZMP) through the Linear Inverted Pendulum approach [9].
Trajectory Optimization (TO) is employed if footsteps are not
specified a priori, which helps expand the robot’s feasible
workspace, and optimizes over contact forces using more
complex centroidal dynamics [10]. However, TO methods are
computationally expensive and difficult to apply for online-
replanning.

2) Reinforcement Learning and Motion Imitation: To
optimize over a high-precision model while being computa-
tionally efficient, model-free RL methods have become pop-
ular [7], [11], such as using a student/teacher policy in [7].
However, these methods require extensive hyperparameter
tuning, heavy reward engineering, and safety consideration
is less relevant as the underlying network output is difficult
to understand. Another approach is through motion imitation,
such as Imitation Learning (IL) [6], [12]. For example, repli-
cating motion patterns observed in biological locomotion
data collected from a real dog was proposed in [6]. By
following such motion priors, the need to enforce walking
behaviors such as achieving a certain step height, forward
progress, or motion smoothness and so on, is greatly reduced,
simplifying the number of reward terms necessary for legged
locomotion. Although prior works using RL or IL can, and
often do, include energy-efficient terms, the resulting policies
tend to perform poorly if weights on these terms are too
large. Also, these methods evaluate success based primarily
on overall velocity tracking performance, not on energy-
efficiency, as we do in this work.

3) Optimizing for Energy-Efficiency: Only few works
primarily focus on energy-efficient locomotion to help reduce
power consumption of the robot’s actuators. One such exam-
ple can be found in [13]. Unlike our work, in [13], the step-
height needs to be pre-determined, and the gait timings are a
function of a pre-defined distance instead of being modifiable
during operation. Although our work does not employ vision
data as shown in [14], by considering energy-efficiency for
various step heights implicitly provides information on which
postures are optimal (energy wise) on uneven terrain. Similar
to [14], we also consider slipping using force ellipsoids.

Other works aim at energy-efficiency by either optimiz-
ing locomotion parameters [15], employing policy gradient
RL [4], or with adaptive control methods [16]. However,
these works do not consider the effects of minimizing energy-
consumption while accounting for gait transitions which is

computationally costly if using a programming solver [17],
[18]. In contrast, here we address the decision at which for-
ward velocity it becomes more energy-efficient to transition
from a gait to another, e.g., walking to trot. The proposed
method is also general enough not to need the exact order of
legs that transition from stance to swing as required in [19].

B. Preliminaries

Here we describe the low-level controllers to track the
reference trajectories from the proposed energy-efficient
planner.

1) Swing Controller: The swing controller is similar
to [20], which computes the torque for foot i for all three
joints of the robot as1:

τ i = J⊤
i [Kp (pi,ref − pi,cur ) +Kd (vi,ref − vi,cur )] (1a)

+ J⊤
i Λiai,ref +Vi(q̇i,cur) +Gi(qi,cur) (1b)

where τ i ∈ R3 is the joint torque, qi,cur ∈ R3 and
q̇i,cur ∈ R3 are the current joint position and velocity of
foot i, Ji ∈ R3×3 is the foot Jacobian, Kp and Kd are the
proportional and derivative (PD) gain matrices, pi,ref ∈ R3

and pi,cur ∈ R3 are the reference and current footstep
positions (calculated using forward kinematics on current
joint encoders) in the body frame, vi,ref ∈ R3 and vi,cur ∈ R3

are the reference and current footstep velocities in the body
frame, ai,ref ∈ R3 is the reference footstep acceleration in
the body frame, Vi ∈ R3 is the torque due to the Coriolis
and centrifugal forces, Gi ∈ R3 is the torque due to gravity,
and Λi ∈ R3×3 is the operational mass matrix.

2) Stance Controller: For the legs in stance, i.e., making
contact with the ground, we use a Model Predictive Con-
troller (MPC) to calculate the ground reaction forces to track
the reference trajectory of the body, or Xref ∈ R12, where
Xref = [Θ⊤, r⊤,ω⊤,v⊤]⊤, Θ is the robot’s orientation, r
is the CoM base position, ω is the angular velocity, and v is
the linear velocity, each vector with x, y, and z components.
While details of such controller are in [20], here, the ground
reaction forces are used to calculate the joint torques that
serve as input to the motor’s torque controller:

τ i,t = J⊤
i,tR

w,⊤
b,i,tfi,t (2)

where fi,t ∈ R3 is the force vector associated with leg i as
subset of ft, and Rw

b,i,t is the rotation matrix from world to
body frame of leg i at time step t.

3) Reinforcement Learning through PPO: We employ
Proximal Policy Optimization (PPO) [21] for both our opti-
mal parameter study (Sec. II), and for our model-free and
motion imitation baselines. Only the reward formulation
differs for each use case. In short, PPO enhances the policy
πθ(a | O) by maximizing the clipped objective function:

L(θ) = Et

[
min

(
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)]
,

(3)
Here, rt(θ) denotes the ratio of the new policy to the old one,
Ât represents the estimated advantage, and ϵ is a threshold

1We omit time step t for simplicity.



t=0 s: Push Forward t=0-2 s: Push Forward t=2 s: Activate Footstep t=2-2.2 s: Stepping t=2.4 s: Activate Footstept=2.2-2.4 s: Push Forward

Fig. 2. We show the process of our energy-efficient motion planner. With a desired forward velocity, from t = 0− 2 s, the robot’s body pushes forward
using the MPC stance controller from Sec. I-B.2, until one or more legs are outside of the ellipse (red circle), which activates the footstep as shown at
t = 2 s. The robot then takes a step, t = 2− 2.2 s, and the process repeats. Note, the center position of the ellipse is beneath the hip joint at all times.

that constrains policy updates to maintain stability. At each
time step t, the PPO-derived policy outputs an action at,
which is then executed on the system: at = πθ(Ot), where
Ot refers to the current observation.

The observation space at time step t for our model-free
baseline is denoted by OM

t while for our motion imitation
baseline as well as for optimizing our planner parameter
selection (see Sec. II) is denoted by OI

t (joints from all legs
i are considered in the observation space):

OM
t = [qcur, q̇cur, τ ,Xcur,at−1]t,

OI
t = [qcur, q̇cur, τ ,Xcur,at−1,qref,Xref]t,

(4)

where the new variables include current body state de-
scribed by Xcur, the previous actions by at−1, and reference
joint trajectory by qref. Note, although not shown explicitly
in equation (4), we do include the observational history
up to Nprev as part of our overall observation space, or
Ot = [Ot:t−Nprev ]. During model-free and motion imitation
training, at represents desired joint positions, whereas in
energy-efficient motion planning it serves as parameters of
our planner such as swing time or ellipse shape (Sec. II).

Different combination of rewards were used depending
on the RL training, although hyper-parameters were kept
constant and w, σtrack represent weights on reward terms
(see Table I). For the motion imitation baseline, we used all
the terms listed in (1), and (2) in Table I. We used data from
[6] as motion priors, which involve re-targeting mocap data
from a real dog. For the model-free RL baseline we used
all the terms listed in (2), and (3) in Table I. Finally, for
the parameter selection study described in detail in Sec. II,
we used only the terms listed in (4) in Table I. Note, we
do not include all details of our hyper-parameter selection
and domain randomization, as they follow similar structure
as found in many other RL locomotion works such as [7].

II. ENERGY-EFFICIENT MOTION PLANNER

Our planner is based on the relative position of the center
of mass of the robot and the robot’s feet. In particular, it
uses the geometric shape of an ellipse as the placement set
for the feet. For each leg of the robot, the center point of the
ellipse is always located directly beneath the hip joint, which
imposes a stable position. Other shapes for the placement sets
can be used, but ellipses are an intuitive geometric shape for
this purpose. We define this ellipse through their major/minor
axis, rxell and ryell, with center point position, i.e., the robot’s
hip position, pxhip and pyhip. As the robot’s center of mass
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Fig. 3. We show a 2D representation of the footstep ellipses and their
variable representation as described in Sec. II on the left-hand side. A full
3D sequence is given in Fig. 2.

moves using a desired longitudinal and lateral commanded
velocity, Vdes, through the ground reaction forces calculated
by the MPC [20] in Section I-B.2, at each time step, we
calculate the difference between the current footstep position,
pxcur and pycur, and the hip position:

pdxell = pxcur − pxhip (5a)

pdyell = pycur − pyhip. (5b)

Given by a contact matrix Cref to indicate which feet are
in stance or swing phase, using pdyell and pdyell , we can check
whether the current foot is outside this ellipse for each leg.
For each foot in contact, the check can be represented by:

(pdxell)
2

(rxell)
2
+

(pdyell)
2

(ryell)
2
> 1. (6)

If the check in (6) is true for any of the legs, we plan
for the next footstep swing trajectory and corresponding
body trajectory. The planner outputs the reference footstep
position, velocity, and acceleration given by pref , ṗref , p̈ref

respectively, and the body trajectory, calculated using Euler
discretization on the commanded velocity, Vdes, and current
state, Xcur, to yield the reference Xref .

When all feet are inside their corresponding ellipse, the
reference trajectory stays in place. In other words, if the user
commands a forward velocity, the MPC controller pushes the
robot’s body in that direction with all feet in stance. Once
one of the foot locations is outside the ellipse, the planner
produce a swing trajectory. The reference trajectory for the
footstep in swing is calculated by moving the current footstep



Algorithm 1: Energy-Efficient Motion Planner

1 while Robot in Operation do
2 Xcur,pcur ← StateEstimation(See [22])

// Get user commands (10 Hz)

3 Vdes ← Joystick
// Get planner parameters

4 [∆T, hstep, X
z, rxell, r

y
ell]←

Analytical or RL (Sec. II)

// For each leg

5 pdxell = pxcur − pxhip
6 pdyell = pycur − pyhip

// Check if foot in contact is outside

ellipse

7 Outside Ellipse?←
checkEllipse(pdxell , pdyell, rxell, ryell)

// If outside the ellipse, calculate a new

reference trajectory

8 if Outside Ellipse = True :

9 pdxprog = V B
x,des∆T +

√
Xz/g(V B

x,cur − V B
x,des)

10 pdyprog = V B
y,des∆T +

√
Xz/g(V B

y,cur − V B
y,des)

11 pref , ṗref , p̈ref ,Cref ←
Sinusoidal(dt,∆T, gait,pdx,dy

prog ,pdx,dy
ell , hstep)

12 Xref ← interp(Xcur,Vdes)
// If no legs are outside the ellipse nor

currently in swing phase, we put all

legs in stance, and include the

reference commanded body velocity to

push body forwards

13 if Swing Phase Complete = True :
14 Xnext,pnext, ṗnext, p̈next,Cnext ←

Xcur,pcur,0
12,012,14

// Otherwise, iterate through the

reference trajectory

15 else:
16 Xnext,pnext, ṗnext, p̈next,Cnext ←

Xref [it],pref [it], ṗref [it], p̈ref [it],Cref [it]
17 Send references to swing (1) and stance (2)

controllers.
18 end

position first to the center of the ellipse, and then adding an
additional term, pdxprog and pdyprog (see Fig. 3), to account for
the desired commanded velocity:

pdxprog = V B
x,des∆T/2 +

√
Xz/g(V B

x,cur − V B
x,des) (7a)

pdyprog = V B
y,des∆T/2 +

√
Xz/g(V B

y,cur − V B
y,des) (7b)

where Xz is the height of the robot, g is the gravity term,
∆T is the footstep timing for the swing phase, and B is
to symbolize that we expect the desired velocity, V B

x,des and
V B
y,des, to be in the body frame. Note, this is derived from

the Raibert Heuristic [8], where the the feedback gain k is
chosen to be equal to

√
Xz/g.

TABLE I
REWARD FUNCTIONS. SEE SEC. I-B.3 FOR DETAILS ON USAGE.

(1) Term (Imitation) Equation

Joint Position Reward

(
e
−

∑
∥qcur−qref∥

2

σtrack

)
w1

Foot Position Reward

(
e
−

∑
∥pcur−pref∥

2

σtrack

)
w2

(2) Term (Tracking) Equation

Linear Velocity in XY Plane

(
e
−

∥vcur,xy−vref,xy∥
2

σtrack

)
w3

Angular Velocity in Z Axis

(
e
−

∥ωcur,z−ωref,z∥2

σtrack

)
w4

Linear Velocity in Z Axis −
(
∥vcur,z − vref,z∥2

)
w5

(3) Term (Regularization) Equation

Joint Accelerations −
(∑

∥q̇∥2
)
w6

Action Rate −
(∑

∥at − at−1∥2
)
w7

Foot Airtime (
∑

tair1new contact)w8 [7]

Self-collision (1collision)w9 [7]

(4) Term (Parameter Selection) Equation

Cost of Transport − (CoT)w10 eq.(9)

Robustness (Manipulability)w11

eq.(10)

Number of Time Steps (t/tmax)w12

The reference trajectory from the current footstep pcur

to the next footstep or pnext is created using a sinusoidal
implementation:

āz = hstep
1

2

(
2π

∆T

)2

(8a)

az,t = āz cos

(
2π

∆T
t

)
(8b)

vz,t = āz
∆T

2π
sin

(
2π

∆T
t

)
(8c)

pz,t = āz

(
∆T

2π

)2 (
1− cos

(
2π

∆T
t

))
(8d)

with step height hstep, maximum vertical acceleration āz ,
and:

āx =
(
pdxell + pdxprog

) 1
2

( π

∆T

)2

(8e)

āy =
(
pdyell + pdyprog

) 1

2

( π

∆T

)2

(8f)

ax/y,t = āx/y cos
( π

∆T
t
)

(8g)

vx/y,t = āx/y
∆T

π
sin

( π

∆T
t
)

(8h)

px/y,t = āx/y

(
∆T

π

)2 (
1− cos

( π

∆T
t
))

(8i)

with maximum lateral acceleration āx/y . Note that the pro-
posed footstep motion planner does not rely on the choice
of trajectory. Different implementations can be used as well.
In particular, for climbing stairs or traversing rubble and
obstacles, (8) may be modified to alter the touchdown point.



The contact matrix Cref ∈ R4 specifying which leg is
in stance or swing phase can be pre-determined if a certain
gait is desired, e.g., trot or walk, or can be determined by
the algorithm. E.g., in the pre-determined case for a trot gait,
if one of the footsteps is outside the defined ellipse, the foot
along with the diagonally opposing footstep are constrained
to move at the same time from stance into swing. In this
case, we only move the leg and its diagonally opposing leg
in alternating order, e.g., if legs 1 and 3 were in swing
previously, we must move legs 2 and 4 next. In the non-
predetermined case, we remove such constraints (except that
we cannot move the same leg twice). Instead, we only move
the leg that passes (6), allowing Cref to freely vary. In both
cases, since foot movement follows (6), stance phase duration
varies with current body position relative to the feet. Thus,
unique gaits and footstep timings for each step are generated.

We now detail how to enforce energy-efficiency for our
motion planner. A common metric for energy-efficient plan-
ning is the Cost of Transport (CoT), which can be computed
using the joint velocity q̇t, torque τ t, and distance ∆D
traveled:

CoT =

∑k
t=k−N max{q̇⊤

t τ t, 0}dt
∆D

(9)

where k is the current time step discretized with sampling
time dt, and N is the number of time steps within total time
of locomotion considered.

For each desired velocity commanded by the user (Vdes),
we determine ideal parameters for the proposed planner that
achieve not only the lowest CoT but also favors robot config-
urations for which the legs in stance can most easily produce
ground reaction forces. To quantify the favorable configura-
tions, we leverage force manipulability ellipsoids [23]. These
ellipsoids provide a concise and intuitive representation of
the force and moment capabilities of a robot at a particular
point in its workspace. Mathematically, the motor torque vec-
tor is mapped into a unit sphere τ⊤

i τ i ≤ 1 in joint space and
into the ellipsoids f⊤i JiJ

⊤
i fi ≤ 1 in task space, where Ji and

fi are the Jacobian and end-effector ground reaction forces,
respectively. We can estimate a representation of the volume
of these force ellipsoids through the force manipulability
measure [23]. A high force manipulability measure indicates
a better ability to apply forces in various directions, while a
lower manipulability measure indicates a more limited ability
to do so. To calculate this force manipulablity measure, we
first take the eigenvalues, λ, of the matrix U = (JiJ

⊤
i )

−1,
and:

manipulability measure =
√
max(λ)/min(λ). (10)

Thus, our goal is to find the parameters for each com-
manded body velocity that minimize the CoT and maximize
the manipulability measure of the force ellipsoids for in-
creased robustness. To do so, we compute both CoT and the
force manipulability measure as a function of the planner
parameters using Mujoco [24] simulation as our physics
model for propagating from the current to the next time step.
In particular, we study the impact of the swing time ∆T ,

TABLE II
PARAMETERS USED FOR PARAMETER STUDY

Name Description min max units

V B
x,des Desired Body Velocity 0.05 1.00 m

s
∆T Swing Time 0.10 0.25 s
hstep Step height 0.05 0.15 m
Xz Robot Height 0.28 0.311 m

rxell, r
y
ell Ellipse axis in x/y direction 0.01 0.15 m

body velocity in the x-direction V B
x,des, step height hstep,

robot height Xz , and the ellipse size of the planner rxell
and ryell. For each combination of parameters, we calculate
the average CoT and force manipulability measure during
about 20 seconds of locomotion. The range of parameters
tested is described in Table II. To calculate the CoT and
the force manipulablity measure, the joint torques for the
feet in swing and stance are needed. These torques can
be received directly from Mujoco. We call this method of
parameter selection as Energy-Efficient Motion Planner using
the analytical approach (or EEMP-Analytical), because we
can find these parameters without any learning methods—
we simply iterate through a range of velocities to find
which parameter combination produced the ideal CoT and
manipulability measure for each commanded velocity and
employ a look-up table during evaluation.

In addition to this analytical approach, we also employ
a simple RL formulation using PPO (Sec. I-B.3) to find
these parameters through exploration and compare against
the analytical approach. We term this as EEMP-RL. In
this approach, the actions are the parameters of our planner
from Table II, or at = [∆T, hstep, X

z, rxell, r
y
ell]t, and the

observations are described by OI
t in equation (4), using IK

on pref to get qref. Our reward function consist of only the
three terms listed in (4) of Table I, which is to penalize
the agent for high CoT, reward high manipulability, and to
reward the agent for not falling to the ground—where t is
the current time step during an episode, and tmax is the
maximum allotted time step per episode or 20 seconds of
locomotion.

The overall footstep planner is described in Algorithm 1,
and visually shown in 3D and 2D in Figs. 2 and 3 re-
spectively. Summarizing, we first get the state of the robot
[22], and then receive the desired velocity command from
the user. Planner parameters are then selected through either
EEMP-Analytical or EEMP-RL. We then check (6) to see
if any of the footsteps in contact with the ground are
currently outside the defined ellipse. If one of the footsteps
is outside the ellipse, we calculate the footstep trajectory (7),
(8) and the body trajectory through Euler discretization for
the commanded velocity. Additionally, we check if we fully
iterated through the swing trajectory based on the swing
time ∆T . If so, we produce four stance phase reference
trajectories for all legs, i.e., the robot feet are commanded
to stay in position, while the body reference, Xnext ∈ R12,
is such that it moves in the direction of the desired velocity.
If the swing phase is not completed, we proceed to the next



TABLE III
BEST PARAMETERS FOR WALK / TROT GAIT ACROSS VELOCITY RANGE

Name Description Value units

∆T Swing Time 0.25 s
hstep Step height 0.10 m
Xz Robot Height 0.31 m

rxell, r
y
ell Ellipse axis in x/y directions [0.07, 0.05] m

time step of the swing reference trajectory. References are
then sent to our downstream stance and swing controllers.

III. PARAMETER STUDY RESULTS

We first applied the EEMP-Analytical approach (Sec. II)
to examine how optimal parameter selection affects CoT and
manipulability across various lateral velocities (x-direction)
during 20 seconds of locomotion and setting the gait to
be either in walk or trot to compare both. Our analysis
showed that the parameters in Table III consistently yielded
the lowest CoT and highest manipulability on average, i.e.,
across the velocity range in walk/trot. However, optimizing
parameters for each velocity improved CoT by 35.5% in the
trot gait and 13.3% in the walk gait over using the constant
set of parameters from Table III.

Fig. 4 shows contour plots of the parameter selection,
where for each commanded velocity we show the ellipse’s
major x axis, rxell (toward the locomotion direction), swing
time, and color coding represented by CoT. The results of
the trot gait are shown on the left and of the walk gait on the
right half. For the trot gait, we show that high swing times
are critical at low velocities, whereas the selection for rxell
appears less important. As velocity increases to 0.50 m/s, the
combination of rxell and swing time becomes critical, where
a swing time of about 0.18 seconds and rxell of about 0.06 to
0.08 meters, or high swing time and high rxell leads to optimal
CoT. However, at velocities going towards 1.0 m/s, lower
swing times of 0.14-0.16 seconds become more favorable,
while rxell has minimal impact in this range. This is intuitive
since, at higher velocities, the footstep often falls outside the
ellipse, triggering constant step initiation regardless of rxell.

For the walk gait, we see the same trend as for the trot
gait in low velocities. However, different from the trot gait,
a high swing time is more favorable at nearly all choice of
velocities. Although the rxell parameter seems more important
if the user selects lower swing times, at higher velocities rxell
loses effect, particularly at 1.0 m/s due to a similar reason
as for the trot gait. We make a comparison for the CoT and
manipulability measure between the trot and walk gait in
Fig. 5. In the velocity range up to 0.4 m/s, the walk gait
has both a more favorable CoT and manipulability measure
relative to trot. This is expected as energy consumption is
estimated by summing joint accelerations and torques across
all legs, with the swing phase being most significant. Since
walk gait has one leg in swing phase at a time, it results in
lower energy consumption across all velocities, as confirmed
by our results. As the manipulability measure is based on
how well the robot can produce ground reaction forces at

Fig. 4. Contour plots for different commanded velocities (namely, 0.01,
0.10, 0.50, and 1.00 m/s), and for varying major axis of the planning ellipse
rxell (y-axis) and swing time (x-axis). The color varies with the values of
CoT, from yellow to blue. The graphs on the left half show the trot gait
results, while the graphs on the right half show the walk gait results.

any given time, the walk gait is expected to show higher
performance as well since it has three legs in stance phase,
instead of two legs for the trot gait. Overall, the walk gait
used 59% of energy of the trot gait in this velocity range.
At velocities exceeding 0.4 m/s (marked by the red line in
Fig. 5), the walk gait becomes unstable, evidenced by a sharp
increase in CoT and a decline in the manipulability measure.
This instability is consistently observed in both simulation
and hardware experiments at velocities above 0.4 m/s.

Finally, we also compare EEMP-Analytical with param-
eter selection using RL (EEMP-RL, Sec. II). As shown
in Fig. 6, EEMP-RL (red) slightly outperforms EEMP-
Analytical (blue) in both CoT and manipulability. This
indicates two key points: first, our method achieves efficient
locomotion without requiring RL, as both methods show



Fig. 5. CoT (left) and the manipulability measure (right) for the trot
(yellow) and walk (purple) gaits at various velocities. The red line indicates
the velocity at which walk gait becomes unstable.

good performance; second, RL improves performance by
better handling disturbances from estimation errors, con-
tacts, or velocity transitions. For instance, RL can optimize
parameters in continuous space for smoother gait changes,
instead of relying on a discretized look-up table (i.e., EEMP-
Analytical), thereby enhancing overall energy efficiency.

IV. EXPERIMENTAL VALIDATION

1) Controller Architecture and Baseline Comparisons: In
simulation and hardware, the velocity commands are pro-
vided by the operator, via a joystick. For state estimation we
use a similar approach as [22]. (A) in Fig. 1 summarizes the
control architecture and control frequency used in this paper
for both Mujoco simulation and hardware experiments. We
also show two other baselines methods for achieving legged
locomotion, namely through motion imitation and model-free
RL (Sec. I-B.3). The results of training these baselines, along
with our optimal parameter selection (EEMP-RL) is shown
in Fig. 7. We note that we trained our RL baselines on flat
terrain for 100 million time steps, and on rough terrain for 50
million time steps (thus, the drop in rewards occur due to the
switch of terrains, which is expected), and we required only
10 million time steps directly on rough terrain for EEMP-RL.

2) Mujoco Simulation Results: For 20 seconds of locomo-
tion per desired velocity, we compare our method, EEMP-
Analytical (blue) and EEMP-RL (red), without predefining
walk/trot for parity, with motion imitation (orange) and
model-free RL (green) baselines using CoT, manipulability,
and velocity tracking as evaluation metrics. Overall, our
method performs best at ≤ 0.6 m/s across all metrics
(i.e., CoT, manipulability, and velocity tracking). At higher
velocities, model-free RL and motion imitation slightly out-
perform EEMP methods in CoT, but perform similarly in
velocity tracking and manipulability using EEMP-RL. This
is expected, as higher velocities shrink the ellipses to a
point, requiring constant stepping, thus reducing the energy-
efficiency benefits of our planner. Additionally, nonlinear
dynamics at high speeds challenge the linear MPC stance
controller assumption underlying the EEMP framework, a
limitation of this work. Addressing this may require nonlin-
ear models, at the cost of higher computation, or learning
such models offline with neural nets. Notably, model-free
RL benefits from tightly coupling the planner and controller
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Fig. 6. CoT, manipulability measure, and velocity tracking (y-axis)
for various desired velocities (x-axis) are shown, comparing our Energy-
Efficient Motion Planner (EEMP) using the analytical approach and RL
approach for parameter selection in blue and red respectively, motion
imitation in orange, and model-free RL in green.

(unlike our EEMP methods), which proves advantageous at
higher speeds. Interestingly, motion imitation under performs
compared to model-free RL at nearly all velocities, sug-
gesting that biological imitation may be less effective for
lower-DoF robots, such as a 3-DoF per leg quadruped. Based
on these findings, the most optimal energy-efficient motion
would be one that uses EEMP-RL for velocities ≤ 0.6 m/s,
and then transition to model-free RL.

3) Hardware Validation: We teleoperated the robot shown
in Fig. 8 using a desired commanded walking speed to test
how the proposed footstep planner and control framework
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Fig. 7. Rewards for model-free RL and motion imitation baselines, and
our Energy-Efficient Motion Planner using RL (EEMP-RL).
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Fig. 8. Results of teleoperation with our architecture to demonstrate robust-
ness against disturbances on hardware. Using a joystick, we commanded
the robot with velocities shown in blue arbitrarily selected, while orange
indicates the actual velocity received from state estimation (left graph). The
corresponding vertical leg positions are shown in the right graph.

handles disturbance rejection. Fig. 8 shows an example of a
trot gait, where the left plot shows the commanded forward
velocity and the robot’s velocity from the state estimator. The
vertical leg trajectories are shown on the right figure. From
about 6.5 to 8.5 s, the vertical positions of the legs are zero
indicating that all four legs are in stance. The left plot shows
a forward walking speed in this period. This is a feature of
the planner, the robot only executes a step when necessary,
specifically, when the foot location is outside the specified
ellipse. Thus, the body tracks the commanded velocity while
conserving energy for some seconds by pushing the stance
legs to move the body forward without taking a step.

V. CONCLUSIONS

A motion planner for legged robots was developed that is
energy efficient. We show a 34.5% improvement in CoT over
a baseline with fixed parameters for trot gait, and a 13.3%
improvement in walk gait by employing a parameter design
framework that uses a motion model based on Newtonian
mechanics. Overall, we found that the walk gait used 59%
of energy of the trot gait. For low to medium velocity, our
method outperforms model-free RL, in CoT, manipulability,
and velocity tracking. We show a 50.4% improvement in
CoT over this baseline. We further validated our framework
in hardware experiments, and could successfully demonstrate
robustness against disturbances, such as slipping. Signif-
icantly, we presented a motion planner that is easy to
implement, computationally efficient, and saves energy by
having the robot only make a step when necessary. Coupling
of leg dynamics, other geometric shape representations, and
providing further energy-efficient comparisons in hardware
are left as future work.
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