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Abstract

Privacy-preserving and cost-effective indoor sensing is vi-
tal for embodied agents to collaborate safely with people in
dynamic scenes. Multi-view millimeter-wave radar shows
great potential for this purpose. However, prevailing meth-
ods rely on implicit cross-view association, which this re-
liance often results in ambiguous feature matches and de-
graded performance in cluttered environments. To address
these limitations, we propose REXO (multi-view Radar ob-
ject dEtection with 3D bounding boX diffusiOn), which lifts
DiffusionDet’s 2D box denoising to the full 3D radar space.
Noisy 3D boxes are projected onto all radar views to enable
explicit association and radar-conditioned denoising. Eval-
uated on two open indoor radar datasets, our approach out-
performs state-of-the-art methods by +11.02 AP on MMVR
and +4.22 AP on HIBER.

1. Introduction

Reliable perception is crucial for embodied agents in in-
door settings (homes, factories, clinics), where scene un-
derstanding, motion capture, and human-robot collabora-
tion are required. Radar is increasingly used for navigation,
manipulation, and safer human-robot interaction because it
provides robust awareness in low light, smoke, dust, and
even through cardboard and plastic [23, 31]. For example,
FuseGrasp [9] fuses radar and camera to grasp transparent
objects, exploiting millimeter-wave (mmWave) radar’s abil-
ity to render transparent materials opaque and robotic-arm
radar imaging to recover shapes invisible to RGB-D. On
the other hand, radar-only perception (see Appendix A) re-
mains challenging. Multi-view radar methods either pair
horizontal proposals with fixed-height vertical ones [37]
(Fig. 1 (a)) or use query-based transformers to regress 3D
bounding boxes (BBoxes) from both views [40] (Fig. 1 (b)).
Image-based object detection has been redefined as a gen-
erative denoising process, where a random noisy 2D BBox
is iteratively refined through a diffusion denoising process

*The work was done at MERL as a visiting scientist.
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Figure 1. (a) RFMask [37] generates horizontal-view proposals
with fixed height; (b) RETR [40] implicitly links queries to cross-
view features; (c) DiffusionDet [7] needs pairing with fixed-height
vertical BBoxes; (d) REXO (ours) performs diffusion directly in
3D radar space for simple, explicit cross-view association.

to yield a final clean BBox [7] and this approach generally
surpasses query-based detectors. When ported to horizontal
radar heatmaps (Fig. 1 (c)), it denoises 2D BBoxes but still
requires the fixed-height vertical pairing used by RFMask.

We therefore lift the diffusion procedure from a 2D plane
(image or horizontal radar view) in DiffusionDet to the full
3D radar space, as illustrated in Fig. 1 (d). This simple
lifting facilitates cross-view radar feature association and
radar-conditioned BBox denoising, while enabling the in-
tegration of geometry-aware loss functions and prior con-
straints on the 3D BBox. Consequently, we introduce the
proposed framework as Radar object dEtection with 3D
bounding boX diffusiOn (REXO) with the following con-
tributions:
1. 2D-to-3D Lifting with Explicit Cross-View Associa-

tion: At each diffusion timestep, a noisy 3D BBox is
projected onto every radar view, and RoI-aligned crops
supply view-specific features. This BBox-guided associ-
ation grows linearly with the number of views, whereas
proposal- or query-based schemes grow quadratically.
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Figure 2. REXO training: 1) A backbone extracts horizontal/vertical radar features; 2) Ground-truth 3D BBox x0 are diffused to noisy
xt; 3) xt is grounded using a ground-level constraint; 4) DenoisingDetθ projects xt onto both views and uses the aligned features to
recover x̂0; 5) A radar-to-camera transform and 3D-to-2D projection yield image BBox b̂image.

2. 3D BBox Denoising: While the cross-view feature as-
sociation is simplified due to the 2D-to-3D lifting, the
denoising process may be more challenging. In turn, the
associated radar features are used as conditioning to al-
leviate the more challenging 3D BBox denoising. To the
best of our knowledge, REXO is the first diffusion model
in the multi-view radar perception field.

We demonstrate the effectiveness of our contributions
through evaluations on two open radar datasets.

2. REXO: BBox Diffusion in 3D Radar Space

DiffusionDet [7] reformulates object detection as a denois-
ing diffusion process [17, 32], treating xt as 2D BBox pa-
rameters instead of image pixels. We extend this to multi-
view radar by lifting xt to 3D BBox in radar coordinates
system. Conditioned on radar heatmaps (see in Fig. 2),
REXO performs 3D BBox diffusion in two phases: 1) a for-
ward process that adds noise to ground-truth (GT) BBox
x0 to produce random xT during training, and 2) a reverse
process that denoises random xT to estimate noise-free x̂0

during inference. The denoised BBox is also projected to
the 2D image plane for supervision in both radar and im-
age domains. We describe REXO in two parts: training and
inference.

2.1. Training

Backbone: As illustrated in Fig. 2, we first generate two
radar heatmaps (horizontal Y hor ∈ RM×W×D and ver-
tical Y ver ∈ RM×H×D where M , W , H and D de-
note the number of consecutive frames, width, height and
depth, respectively. More details are described in Ap-
pendix B) derived from raw data captured by horizontal
and vertical radar arrays. Taking the two radar heatmaps
Y hor ∈ RM×W×D and Y ver ∈ RM×H×D as inputs,
a shared backbone network (e.g., ResNet [14]) gener-
ates horizontal-view and vertical-view radar feature maps:
Zhor = backbone (Y hor) and Zver = backbone (Y ver).

Initialization of x0 and Forward Process to xt with
Ground-Level Constraint: For a given number of
BBoxes Ntrain to be detected, x0 is simply initial-
ized by the 3D BBox GT in the radar space xradar =

{cx, cy, cz, w, h, d}⊤ ∈ R6 and padded with random 3D
BBox xrand ∼ N (0, I6) if Ntrain > NGT. The diffused
3D BBox xt at time t can be generated as

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, (1)

where ϵ ∼ N (0, I6), and ᾱt denotes the noise variance
schedule. Since the BBox is now explicitly defined in the
3D radar coordinate system, it is natural to incorporate prior
knowledge as a constraint into the diffusion process. Unlike
DiffusionDet and RETR, we enforce the reduced five 3D
parameters by grounding with ht/2, allowing 3D and 2D
gradients to flow jointly and guiding the denoising process
under strict geometric constraints. This ensures that objects
are correctly positioned on the floor, reflecting realistic spa-
tial relationships: xt = {ctx, ht/2, ctz, w

t, ht, dt}⊤ (see the
Ground-Level Constraint in Fig. 2).

Cross-View Radar-Conditioned BBox Detector:
DenoisingDetθ includes explicit cross-view feature as-
sociation and radar-conditioned 3D BBox detector. Given
the noisy 3D BBox xt in (1), the xt-guided cross-view
feature association first projects xt onto the two radar
views, resulting in two 2D BBoxes,

xt,hor = {ctx, ctz, wt, dt}⊤,xt,ver = {cty, ctz, ht, dt}⊤, (2)

and then crops out the cross-view 2D radar features:
Zcrop

hor/ver = RoIAlign(Zhor/ver,xt,hor/ver) ∈ RC×r×r

via a standard ROIAlign operation [15], where r denotes
a fixed spatial resolution, e.g., r = 7. At time t, this process
yields Ntrain pairs of associated radar features

Zcrop
radar = {Zcrop

hor ,Zcrop
ver } ∈ RC×r×2r, (3)

each corresponding to a noisy 3D BBox xt. Conditioned
on Zcrop

radar, a DenoisingDetθ with learnable weights θ is



Table 1. Evaluation on 4 data splits of the MMVR dataset and WALK of the HIBER dataset.

Method
MMVR:P1S1 MMVR:P1S2 MMVR:P2S1 MMVR:P2S2 HIBER:WALK

AP AP50 AP75 AP AP50 AP75 AP AP50 AP75 AP AP50 AP75 AP AP50 AP75

RFMask 25.53 67.30 15.86 24.46 66.82 11.22 31.37 61.50 27.48 6.03 22.77 0.88 17.77 52.46 6.78
RFMask3D 34.84 69.57 31.74 30.75 76.48 16.23 39.89 80.38 35.35 12.26 37.01 4.34 16.58 48.10 6.53
DETR 35.64 77.59 28.00 28.51 75.90 13.42 29.53 63.08 25.35 9.29 34.69 2.49 14.45 47.33 4.25
RETR 39.62 80.55 33.84 30.16 78.95 15.17 46.75 83.80 46.06 12.45 41.30 4.96 22.09 59.83 10.99

REXO 39.23 73.46 37.83 36.48 87.02 20.51 48.35 85.89 48.38 23.47 64.41 10.44 25.33 62.55 15.83

trained to estimate the BBox x̂0 and the class scores p̂ as

{x̂0, p̂} = DenoisingDetθ (xt, t,Z
crop
radar) , (4)

where t specifies the timestep embedding. In our indoor
setting, we use a two-class softmax over {person, back-
ground}. The class-head can extend to C classes (including
background) by using a C-way softmax with cross-entropy.

3D-to-2D Projection with Learnable Refinement:
REXO further projects x̂0 in (4) into the 2D image
plane. By setting x̂radar = x̂0, we convert each of the
8 corners of the corresponding 3D BBox x̂radar using
xi
camera = Rx̂i

radar + v, where x̂i
radar is the i-th corner of

x̂radar, R and v are the calibrated 3D rotation matrix and
translation vector: Each 3D corner xi

camera is projected to
the image plane through the calibrated pinhole model:

binit =
{
c̄x, c̄y, w̄, h̄

}⊤
= projinit (xcamera) . (5)

Since binit systematically overshoots the ground-truth ex-
tent (see Appendix C), we attach a refinement module with
learnable parameter ϕ to obtain the offset:

∆b =
{
∆x̄,∆ȳ,∆w̄,∆h̄

}⊤
= Refinementϕ (f) , (6)

where f = Predictor (et,Z
crop
radar) is the time-dependent

feature. et denotes the timestep embedding [17] and
Predictor denotes the time-dependent predictor [7] with
the radar feature and the embedding. Applying these offsets
produces the final image-plane box b̂image, achieving tighter
alignment without sacrificing geometric consistency.

b̂image = {c̄x + w̄∆x̄, c̄y + h̄∆ȳ, e∆w̄w̄, e∆h̄h̄}⊤. (7)

Loss: To ensure consistency between the radar and image
plane representations, we adopt a simplified scheme of the
Tri-plane loss [40] that directly calculates the loss of 3D
BBox. REXO employs the Hungarian match cost [21] with
a loss function computed in both the 3D and 2D spaces:
LGA
box = λ3DL3D

box (xradar, x̂radar)+λ2DL2D
box(bimage, b̂image),

where the 3D/2D BBox loss is defined as L∗
box(x, x̂) =

λGIoULGIoU(x, x̂) + λL1LL1(x, x̂) representing a weighted
combination of the generalized intersection over union
(GIoU) loss LGIoU [27] and the ℓ1 loss LL1 , and the coeffi-
cients λ balance the relative contribution of each loss term.
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Figure 3. AP breakdowns with IoU histograms on MMVR.

2.2. Inference
REXO infers objects by reversing the diffusion process.
Given a target count N , we sample random 3D boxes
xT ∼ N (0, I6) in the radar coordinate system at t = T
and denoise them down to t = 1. With xt and radar fea-
tures {Zhor,Zver}, the trained DenoisingDetθ in (4) pre-
dicts x̂0, giving

pθ (xt−1 | xt,Zhor,Zver) = N (
√
αt−1x0 + γϵ

(t)
θ , σ2

t I6),

xt−1 =
√
αt−1x̂0 +

√
1− αt−1 − σ2

t · ϵ
(t)
θ + σtϵt, (8)

where ϵ
(t)
θ =

(
xt −

√
αtx̂0

)
/
√
1− αt specifies the direc-

tion pointing to the noisy BBox xt at time t, and ϵt ∼
N (0, I6) represents a random BBox. Note that the denois-
ing step is inherently conditioned on the cross-view radar
feature maps via the estimated x̂0 from the DenoisingDetθ
module. After the final step, x0 (= x̂radar) is converted to
image plane boxes b̂image via the radar–to-camera transform
and the 3D-to-2D projection. Boxes whose class scores ex-
ceed a threshold are output as detections.

3. Experiments
We demonstrate the effectiveness of REXO through evalu-
ations on two open high-resolution radar datasets.

Datasets: MMVR [26] includes multi-view radar
heatmaps collected from over 25 human subjects across
6 rooms over a span of 9 days. It consists of 345K data
frames collected in 2 protocols: P1: Open Foreground)
with 107.9K frames in an open-foreground room with a
single subject; and P2: Cluttered Space with 237.9K frames
in 5 cluttered rooms with single and multiple subjects.
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Under each protocol, two data splits are defined to evaluate
radar perception performance: S1: a random data split and
S2: a cross-session, unseen split. HIBER [37], partially
released, includes multi-view radar heatmaps from 10
human subjects in a single room but from different angles
with multiple data splits. In our evaluation, we used the
“WALK” data split, consisting of 73.5K data frames with
one subject walking in the room.

Implementation: We consider RFMask [37], DETR [5]
and RETR [40] as baseline methods. Additionally, we
evaluate a 3D extension of RFMask (RFMask3D; see Ap-
pendix D), that takes the two radar views as inputs for BBox
prediction. Hyperparameter settings are provided in Ap-
pendix E.

Metrics: We evaluate performance using average preci-
sion (AP) at two IoU thresholds of 0.5 (AP50) and 0.75
(AP75), along with the mean AP (AP) computed over thresh-
olds in the range of [0.5 : 0.05 : 0.95]. For detailed metric
definitions, refer to Appendix F.

Result of MMVR: Table 1 presents the results under the
four combinations of two protocols and two data splits of
the MMVR dataset. REXO demonstrates significant per-
formance improvements in P1S2, P2S1, and P2S2. Notably,
in P2S2 where the test radar frames contain an entirely un-
seen environment during training, REXO outperforms the
best baseline RETR by a large margin, boosting AP from
12.45 to 23.47, highlighting its strong generalization capa-
bilities. Surprisingly, under the simplest combination P1S1
where a single subject is recorded in the same room with a
random data split, REXO’s performance is slightly lower
than that of RETR, particularly on the metric AP50. To
understand these differences, we break down the AP into
IoU histograms for (a) P1S1 and (b) P1S2, as illustrated in

Fig. 3, where blue and red histograms represent the IoU dis-
tributions for RETR and REXO, respectively, and the left
and right dotted lines mark the two IoU thresholds at 0.5
and 0.75. It is seen that in Fig. 3a, the excess of RETR
over REXO (blue areas) over the IoU interval [0.5, 0.75] is
greater than that of REXO over RETR (pink areas) over the
interval [0.75, 1.0], explaining RETR’s higher AP50 under
P1S1. Meanwhile, REXO has better AP75 as it provides
more high-quality predictions with IoU above 0.75.

Result of HIBER: Table 1 presents the results evaluated
on the “WALK” data split of the HIBER dataset. As well
as MMVR cases, REXO outperforms RETR across all eval-
uation metrics with an AP of 25.33, surpassing RETR’s AP
at 22.09. REXO attains AP50 of 62.55 and AP75 of 15.83,
demonstrating strong performance in both low- and high-
IoU BBox performance evaluations.

Visualization: Fig. 4 visualizes selected “Unseen”
frames from a room never encountered during training
in P2S2. It is seen that 2D BBox predictions by REXO
align more closely with human segmentation masks
(purple pixels) than those of RETR and RFMask. This
improvement is potentially due to the explicit cross-view
feature association, which strengthens consistency across
radar views even in new environments, yielding better
generalization. More challenging examples are provided in
Appendix G.

4. Conclusion
We proposed REXO, a multi-view radar object detection
method that refines the 3D BBox through a diffusion pro-
cess. By explicitly guiding cross-view radar feature associa-
tion, REXO achieves consistent performance improvements
on two open indoor radar datasets over a list of strong base-
lines.
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A. Related Work
Radar-Only Perception: Learning-based methods have
advanced radar detection over traditional model-based ap-
proaches [20], benefiting from open large-scale radar point
cloud datasets like nuScenes [4], Oxford RobotCar [2], and
RADIATE [29]. Image-based and point/voxel-based back-
bones [14, 30] extract semantic features from radar de-
tection points, generate region proposals, and localize ob-
jects. High-resolution heatmaps (e.g., K-Radar [25], HI-
BER [37], MMVR [26]) and raw ADC data [39] have
also been leveraged by previously mentioned RF-Pose [43],
RFMask [37], and RETR [40]. CubeLearn [44] replaces
Fourier transforms with learnable modules for an end-
to-end radar pipeline, while RAMP-CNN [12] enhances
range-angle feature extraction via Doppler cues. More re-
cently, diffusion models have been explored for radar ap-
plications [8, 11, 24, 36, 42]. Most efforts, e.g., Radar-
Diffusion [24, 42] and DiffRadar [36], focus on reconstruct-
ing LiDAR-like point clouds from low-resolution radar
data, while mmDiff [11] estimates and refines pose key-
points from sparse radar points via diffusion process.

Diffusion-based Object Detection: Diffusion models
[28, 32–34] have shown impressive results in tasks such as
image and video generation [3, 18] and multi-view synthe-
sis [6, 41]. For perception tasks, DiffusionDet [7] first refor-
mulates object detection as a generative denoising process
and proposes to model the 2D BBoxes as random parame-
ters in the diffusion process. Diffusion-SS3D [16] proposes
a diffusion-based detector to enhance the quality of pseudo-
labels in semi-supervised 3D object detection by integrat-
ing it into a teacher-student framework. CLIFF [22] fur-
ther leverages language models to enhance diffusion-based
models for open-vocabulary object detection. Diffusion
models are also considered for 3D object detection in the
context of LiDAR-Camera fusion [38] and other tasks such
as pose estimation [35] and semantic segmentation [1, 13].

B. Multi-View Radar Heatmaps
Multi-view radar heatmaps are generated from raw data
captured by two radar arrays: a vertical linear array and a
horizontal one, as illustrated in Fig. 5. By sampling mul-
tiple reflected pulses across the array elements, a 3D raw
data cube is constructed for each array, organized along
ADC (intra-pulse) samples, pulse (inter-pulse) samples, and
array elements. A 3D fast Fourier transform (FFT) con-
verts the data cube into corresponding 3D radar spectra
across the range, Doppler velocity, and spatial angle (az-
imuth for the horizontal array and elevation for the ver-
tical one). To enhance the signal-to-noise ratio (SNR),
the 3D radar spectra are integrated along the Doppler do-
main, generating two 2D radar heatmaps (range-azimuth
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Figure 5. Generation of multi-view heatmaps from raw radar data.

and range-elevation) in the polar coordinate system. These
heatmaps are then transformed into the radar Cartesian co-
ordinate system, where Y hor(m) ∈ RW×D represents the
horizontal-depth radar heatmap and Y ver(m) ∈ RH×D

the vertical-depth heatmap for the m-th frame. To incor-
porate temporal information, M consecutive radar frames
are grouped together as Y hor ∈ RM×W×D and vertical
Y ver ∈ RM×H×D.

C. Details of 3D-to-2D Projection and Neces-
sity of the Refinement Module

We present the detailed explanations for 3D-to-2D projec-
tion and necessity of the refinement module. Given a 3D
BBox which consists of its eight vertices

{xi
camera ∈ R3 | i = 1, . . . , 8}, (9)

where each xi
camera is expressed in the 3D camera coordi-

nate system, our goal is to compute the corresponding 2D
BBox binit ∈ R4, defined by its center coordinates (xc, yc)
and its width w and height h. To achieve this, we define a
projection function with a pinhole camera model as a con-
crete expression of (5):

projpinhole : R
3 → R2 : (X,Y, Z) 7→ (px, py) . (10)

In this model, the projection of the point x∗
camera =

(X,Y, Z) onto the image plane is given by

px =
fxX

Z
+ cx, py =

fyY

Z
+ cy, (11)

where fx and fy are the focal lengths along the x and y axes
(in pixels), and (cx, cy) represents the coordinates of the
principal point in the image. In homogeneous coordinates,
this mapping can be expressed as

λ

px
py
1

 =

fx 0 cx
0 fy cy
0 0 1

X
Y
Z

 , (12)
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results in oversized 2D BBoxes. A learnable module is used to
refine the projected BBoxes close to the 2D BBox GT.

with the scaling factor λ = Z. Thus, for each vertex, the
projection onto the image plane is given by:

pi = projpinhole(x
i
camera), for i = 1, . . . , 8, (13)

where pi = (pix, p
i
y) represents the 2D coordinates of the

projected point in the image plane. Once the eight vertices
have been projected, the extreme coordinates on the image
plane are determined as:

umin = min
i
{pix}, umax = max

i
{pix}, (14)

vmin = min
i
{piy}, vmax = max

i
{piy}. (15)

Using these extremes, the center coordinates, width, and
height of the 2D BBox are computed by:

xc =
umin + umax

2
, yc =

vmin + vmax

2
, (16)

w = umax − umin, h = vmax − vmin. (17)

Thus, the final 2D BBox can be obtained as:

binit = (xc, yc, w, h) . (18)

The 2D BBoxes obtained by projection, as shown by the
purple box binit in Fig. 6, are often too large. This occurs
because projecting the eight vertices xi

camera captures the
depth information from the camera, which causes both the
near and far parts of the object to be displayed in a 3D man-
ner. As a result, to accurately predict the 2D BBox bimage
on the image plane, we must use a refinement module. This
module reduces the size of the initial BBox, as illustrated
by the blue boxes in Fig. 6.
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Figure 7. IoU histogram when no image plane supervision. Al-
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Figure 8. 3D Proposals with RFMask3D.

To better understand the need for refinement, we calcu-
lated the Intersection over Union (IoU) between the ground-
truth (GT) 3D BBoxes (projected from the 3D space) and
the GT 2D BBoxes (defined on the image plane). The his-
togram of IoU values in Fig. 7 shows a roughly Gaussian
distribution with a peak around 0.15, and nearly all IoU val-
ues are below 0.5. In fact, in Fig. 6, the IoU is 0.17. This in-
dicates that if we do not apply refinement, even when the 3D
BBoxes are correctly predicted in the radar coordinate sys-
tem, the average precision (AP) on the image plane would
be zero. Therefore, our REXO method uses a refinement
module.

D. Baselines

RFMask, DETR, and RETR Since RFMask [37] and
DETR [5] originally compute the BBox loss only in the 2D
horizontal radar plane and the 2D image plane, respectively,
we follow the implementation of RETR and enhance both
methods with a unified bi-plane BBox loss. Furthermore,



we introduce a DETR variant with a top-K feature selec-
tion, allowing it to take features from both horizontal and
vertical heatmaps as input. For RETR [40], we set the num-
ber of object queries to 10. To ensure a fair comparison, we
also set Ntrain = 10 for REXO during training.

RFMask3D As one of the baselines in our evaluation ex-
periments, we constructed RFMask3D by extending RF-
Mask [37] to 3D. RFMask uses a region proposal network
(RPN) to extract regions of interest (RoIs) from a horizontal
heatmap based on 2D anchor boxes and predicts 3D BBoxes
in the 3D radar coordinate system by combining them with
fixed heights. By designing an RPN that uses 3D anchor
boxes, we explicitly extract 3D RoIs from both horizontal
and vertical heatmaps, as shown in Fig. 8, enabling the esti-
mation of 3D BBoxes. Unlike RFMask, this method allows
for the learning of height as well.

E. Hyperparameters for Performance Evalua-
tion

The hyper-parameters used in our experiments of Section 3
are shown in Table 2. The table is divided into three parts,
Data, Model, and Training, each with parameter names, no-
tations, and values for each dataset.

F. Definition of Metrics

Mean Intersection over Union: We adopt average preci-
sion on intersection over union (IoU) [10] as an evaluation
metric. IoU is the ratio of the overlap to the union of a pre-
dicted BBox A and annotated BBox B as:

IoU (A,B) =
|A

⋂
B|

|A
⋃
B|

. (19)

Average Precision: Average Precision (AP) can then be
defined as the area under the interpolated precision-recall
curve, which can be calculated using the following formula:

AP =

n−1∑
i=1

(ri+1 − ri) pinterp (ri+1) , (20)

pinterp (r) = max
r′≥r

p (r′) , (21)

where the interpolated precision pinterp at a certain recall
level r is defined as the highest precision found for any re-
call level r′ ≥ r. We present three variants of average pre-
cision: AP50, AP75, and AP, where the former two represent
the loose and strict constraints of IoU, while AP is the av-
eraged score over 10 different IoU thresholds in [0.5, 0.95]
with a step size of 0.05.

Average Recall: Average recall (AR) [19] between 0.5
and 1 of IoU overlap threshold can be computed by
averaging over the overlaps of each annotation gti with
the closest matched proposal, that is integrating over
the y : recall axis of the plot instead of the x :
IoU overlap threshold axis. Let o be the IoU overlap
and recall (o) the function. Let IoU (gti) denote the IoU

between the annotation gti and the closest detection pro-
posal:

AR = 2

∫ 1

0.5

recall(o)do (22)

=
2

n

n∑
i=1

max (IoU (gti)− 0.5, 0) . (23)

The following are some variations of AR:
• AR1: AR given one detection per frame;
• AR10: AR given 10 detection per frame;
• AR100: AR given 100 detection per frame.

G. Analysis of Failure Cases:
We provide failure cases in Fig. 9. These are all results
of “Unseen,” which means the environment that is not in-
cluded in the training data (d8). As with d8s1 and d8s3,
REXO may sometimes predict inaccurate positions, al-
though less frequently than RETR and RFMask. In addi-
tion, there are cases where false negatives occur, such as
with d8s2, d8s4, d8s5, and d8s6. In particular, it is thought
to be difficult to capture the characteristics of individuals
that are far away from the radar, such as with d8s2, be-
cause the resolution becomes coarse. In addition, REXO
frequently gets false positives such as d8s2 - d8s6, so ad-
justing the threshold is important.



Table 2. Details of hyper-parameters. Fixed height for the HIBER dataset depends on the environment.

Name Notation Value
P1S1 P1S2 P2S1 P2S2

D
at

a

# of training - 86579 70266 190441 118280
# of validation - 10538 24398 23899 33841
# of test - 10785 13238 23458 85677
Input radar heatmap size H ×W 256×128 256×128 256×128 256×128
Segmentation mask size H ×W 240×320 240×320 240×320 240×320
Resolution of range cm 11.5 11.5 11.5 11.5
Resolution of azimuth deg. 1.3 1.3 1.3 1.3
Resolution of elevation deg. 1.3 1.3 1.3 1.3
Scale - log log log log

M
od

el

Backbone - ResNet18 ResNet18 ResNet18 ResNet18
# of input consecutive radar frames M 4 4 4 4
Extracted feature map size H/s×W/s 64×32 64×32 64×32 64×32
The number of BBoxes Ntrain 10 10 10 10
Threshold for detection - 0.5 0.5 0.5 0.5
Loss weight for GIoU on radar coordinate system λGIoU 2.0 2.0 2.0 2.0
Loss weight for GIoU on image plane λGIoU 2.0 2.0 2.0 2.0
Loss weight for L1 on radar coordinate system λL1 5.0 5.0 5.0 5.0
Loss weight for L1 on image plane λL1 5.0 5.0 5.0 5.0
Loss weight for radar λ3D 1.0 1.0 1.0 1.0
Loss weight for image λ2D 1.0 1.0 1.0 1.0

Tr
ai

ni
ng

Batch size - 32 32 32 32
Epoch for detection - 100 100 100 100
Patience for early stopping - 5 5 5 5
Check val every n epoch for early stopping - 2 2 2 2
Optimizer - AdamW AdamW AdamW AdamW
Learning rate - 1e-4 1e-4 1e-4 1e-4
Sheduler - Cosine Cosine Cosine Cosine
Maximum number of epochs for sheduler - 100 100 100 100
Weight decay - 1e-3 1e-3 1e-3 1e-3
# of workers - 8 8 8 8
GPU (NVIDIA) - A40 A40 A40 A40
# of GPUs - 1 1 1 1
Approximate training time day 1 1 2 2



REXO (Dark Blue BBox is GT)

d
8
s1

/0
0
7

d
8
s2

/0
0
4

d
8
s3

/0
0
8

d
8
s4

/0
0
6

d
8
s5

/0
0
5

d
8
s6

/0
0
1

d
8
s6

/0
0
3

2D BBox in Image PlaneOutput 3D BBoxHor Ver

Input RGB (not input and output)

(Dark Blue BBox is GT)

Figure 9. Visualization of failure cases. Each row indicates the segment name used from the P2S2 test dataset.


	Title Page
	page 2

	
	Introduction
	REXO: BBox Diffusion in 3D Radar Space
	Training
	Inference

	Experiments
	Conclusion
	Related Work
	Multi-View Radar Heatmaps
	Details of 3D-to-2D Projection and Necessity of the Refinement Module
	Baselines
	Hyperparameters for Performance Evaluation
	Definition of Metrics
	Analysis of Failure Cases:


