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Abstract
SF6 gas has traditionally been used in Gas- Insulated Switchgear, but due to its extremely
high Global Warming Potential, there is growing interest in alternative insulating media,
such as Green Gas for Grid and dry air. As a result, there is an increasing need to develop
new partial discharge (PD) diagnostic methods tailored to these alternative media, while also
addressing the challenge of limited fault data. In this paper, using high-pressure dry air as an
example, we propose a methodology for adapting existing PD diagnostic models—originally
developed for atmospheric conditions—to high-pressure dry air, leveraging transfer learning
techniques. The proposed method first transforms the raw data of measured applied voltages
and partial discharge voltages into six relevant features for each time window through feature
engineering. These features are then fed into the PD pattern diagnosis model, which consists
of a feature extractor, a PD fault type classifier, and a domain discriminator. Feature dis-
crepancy loss, including maximum mean discrepancy, batch-based instance separation, and
batch-based feature decorrelation, is added to the loss function to optimize the model’s pa-
rameters. We evaluate the prediction performance under varying levels of data scarcity for
high-pressure dry air switchgear. Additionally, we compare the estimation performances of
transfer learning versus deep learning and discuss the transition point between these two
approaches as the dataset evolves.
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Abstract—SF6 gas has traditionally been used in Gas-

Insulated Switchgear, but due to its extremely high Global 

Warming Potential, there is growing interest in alternative 

insulating media, such as Green Gas for Grid and dry air. As a 

result, there is an increasing need to develop new partial 

discharge (PD) diagnostic methods tailored to these alternative 

media, while also addressing the challenge of limited fault data. 

In this paper, using high-pressure dry air as an example, we 

propose a methodology for adapting existing PD diagnostic 

models—originally developed for atmospheric conditions—to 

high-pressure dry air, leveraging transfer learning techniques. 

The proposed method first transforms the raw data of measured 

applied voltages and partial discharge voltages into six relevant 

features for each time window through feature engineering. 

These features are then fed into the PD pattern diagnosis model, 

which consists of a feature extractor, a PD fault type classifier, 

and a domain discriminator. Feature discrepancy loss, including 

maximum mean discrepancy, batch-based instance separation, 

and batch-based feature decorrelation, is added to the loss 

function to optimize the model’s parameters. We evaluate the 

prediction performance under varying levels of data scarcity for 

high-pressure dry air switchgear. Additionally, we compare the 

estimation performances of transfer learning versus deep 

learning and discuss the transition point between these two 

approaches as the dataset evolves. 

Keywords— deep learning, partial discharge, scare fault data, 

switchgear, transfer learning 

I. INTRODUCTION 

The stability and safety of electrical power systems 
heavily depend on the health of electrical power equipment. 
Electrical insulation plays a critical role in the health of high-
voltage equipment, as insulation failure accounts for over 60% 
of high-voltage equipment failures [1]. When insulation fails, 
partial discharge (PD) occurs. Therefore, monitoring PD in 
power equipment is essential to prevent significant failures 
and power outages.  

According to IEC 60270 [2], a partial discharge (PD) is 
defined as "a localized electrical discharge that partially 
bridges the insulation between conductors, which may or may 
not occur adjacent to a conductor." When a PD occurs, it 
generates a rapid transient pulse. This signal is closely 
associated with the PD source, and different types of PD 
defects produce distinct signal patterns. Identifying the PD 
source helps determine the condition of the equipment. 

Switchgear, a critical component of electrical power 
systems, plays a vital role in ensuring system integrity and 
reliability. Utilizing partial discharge  monitoring to assess the 
health of switchgear is essential for effective maintenance and 
operational oversight. However, building a reliable PD 
diagnostic model requires a large volume of fault data to 
achieve acceptable accuracy. In practice, obtaining sufficient 
data for newly developed switchgear types can be challenging. 
For example, SF6 gas has traditionally been used in Gas-
Insulated Switchgear, but due to its extremely high Global 
Warming Potential, there is increasing interest in alternative 
insulating gases such as Green Gas for Grid or dry air. As a 
result, there is a need to develop new PD diagnostic methods 
specifically designed for these alternative insulation materials, 
while also addressing the challenge of limited fault data 
availability. 

Various approaches [3]~[5] have been proposed to 
monitor, detect, and diagnose partial discharge (PD) in 
switchgears. These approaches can generally be classified into 
two categories: model-based approaches [7],[14]~[16] and 
data-driven or model-free approaches. Model-based 
approaches aim to develop mathematical models to predict 
and track the degradation progression of switchgears. 
However, constructing models with an appropriate level of 
complexity is challenging, as the mechanical principles and 
degradation mechanisms of switchgears are often complex 
and not fully understood.. On the other hand, data-driven 
approaches [6]~[13] provide a straightforward solution by 
utilizing large volumes of historical data to infer PD fault 
modes without requiring prior theoretical knowledge. 
However, these methods demand high-quality, abundant 
training data, which presents a significant challenge in 
practical applications. 

In recent years, model-free machine learning (ML) 
techniques such as deep learning [10]~[11], transfer learning 
[12]~[13], which do not rely on a predefined parametric 
model, have shown promising improvements across a wide 
range of applications. Particularly, machine learning's ability 
to uncover complex, hidden patterns in data has proven highly 
successful, often outperforming state-of-the-art human-
designed algorithms. These advancements have provided 
valuable tools for classifying PD fault patterns in switchgears. 
However, machine learning-based approaches still face 
several challenges, including: (1) insufficient training data, (2) 
unclear data representation, and (3) the need to adapt neural 
network architectures for different types of switchgears. 



 

 

Therefore, there is a need to develop more advanced methods 
for diagnosing partial discharge in switchgears that offer 
improved generalization capabilities. 

This paper proposes a transfer learning-based method for 
diagnosing partial discharge faults in switchgear. The 
measured fault signals from the switchgear, including applied 
voltages and partial discharge voltages, are first denoised 
using discrete Fourier transform and discrete wavelet 
transform techniques. Next, feature engineering is employed 
to generate multiple characteristic features based on the 
statistical distribution of the switchgear measurements using a 
sliding window algorithm. Six different statistic-based 
features are generated, including the average value of applied 
voltage to represent the applied voltage magnitude and event 
timing, and the mean, standard deviation, Kurtosis, Skewness, 
and total number of spikes of partial discharge voltages to 
represent the variation of partial discharge within the time 
block. This approach represents the features of partial 
discharges with a reduced data volume, without losing the 
original time characteristics of partial discharge faults in the 
switchgear. The partial discharge pattern classification model 
consists of a feature extractor, a PD fault type classifier, and a 
domain discriminator. The parameters of the pattern 
classification model are optimized by combining classifier 
loss, domain discrepancy loss, and feature discrepancy loss. 
The feature loss includes maximum mean discrepancy loss, 
batch-based instance separation loss, and batch-based feature 
decorrelation loss. 

The remainder of this paper is organized as follows: 
Section II presents the PD defect models and experiments. 
Section III describes the proposed transfer learning-based PD 
defect type detection method. Sections IV and V provide the 
results obtained using the transfer learning based method, the 
deep learning based method, and the benchmark Support 
Vector Machine method. The conclusion is drawn in Section 
VI. 

II. PD DEFECT MODELS AND EXPERIMENTS 

Fig. 1 illustrates the PD defect types simulated in a 
laboratory switchgear insulated with atmospheric or high-
pressure air. These defect types include floating electrodes, 
metal protrusions, metal protrusions into the insulator, and 
surface discharge. The atmospheric conditions for the PD test 
are maintained at a temperature of 20–23°C, humidity of 50–
60%, and pressure ranging from 1009 hPa to 1020 hPa. 
Additionally, high-pressure dry air is maintained at 0.9 MPa 
(absolute). 

 

Fig 1. PD Defect Models with Different Insulation Mediums 

Fig. 2 illustrates the experimental setup for PD testing and 
data collection using IEC 60270 PD detection method [2]. 
Electrical measurements are captured on an oscilloscope from 
the laboratory switchgear during PD fault simulation. The 

measurement data are obtained from the laboratory model 
under two different insulation conditions: atmospheric air and 
high-pressure dry air. These measurements are collected from 
two oscilloscope channels: the first channel captures the AC 
voltage waveform, while the second channel records the PD 
signal. Both the applied voltage signal from the first channel 
and the PD signal from the second channel are used for 
diagnostic purposes.  

 
Fig 2. Experiment setup for using IEC 60270 PD detection method 

Table I summarizes the collected datasets for different 
defect types used in this paper. In total, 6,194 and 7,427 fault 
events were recorded for atmosphere-based and high-pressure 
air-based switchgear systems, respectively. For all events—
except for the floating electrode defect in the atmosphere-
based switchgear—2,000 data points were collected over 0.02 
seconds (sampling frequency: 100 kHz; time resolution: 10 
μs). In the exceptional case of the floating electrode defect, 
4,000 data points were collected over the same duration 
(sampling frequency: 200 kHz; time resolution: 5 μs), 
corresponding to a single event (i.e., one sample). 

TABLE I.  PD DATA SUMMARIES 

Defect 

Type 

Total number of Samples  

Atmosphere 

based switchgear 

Air based 

Switchgear 

(a). Floating electrode 1769 1626 

(b). Metal protrusion 1313 1335 

(c). Metal protrusion into 

insulator 

1788 2683 

(d).Surface discharge 1324 1783 

Totals 6194 7427 

Figs 3 and 4 illustrate examples of different defect types 
observed in the applied voltage and partial discharge 
measurements collected from the laboratory switchgear under 
both atmospheric air and high-pressure dry air conditions.  

 
(a). Floating electrode.                     (b) Metal protrusion 

 
(c). Metal protrusion into insulator             (d) Surface discharge 

Fig 3. Exemplar  samples for PD faults in an atmosphere based switchgear 



 

 

 
(a). Floating electrode.                     (b) Metal protrusion 

 
(c). Metal protrusion into Insulator.         (d) Surface discharge 

Fig 4. Exemplar  samples for PD faults in a high-pressure dry air based 
switchgear 

In the figures, the gray curves represent the ideal applied 
voltages, while the red curves represent the denoised partial 
discharge voltages. It is evident that the PD waveforms differ 
significantly both between different defect types under the 
same insulation medium and between the same defect type 
under different insulation mediums. Directly differentiating 
defect types using waveforms is challenging. Instead, the 
statistics of the PD waveforms, such as their moments and the 
number of spikes (both positive and negative spikes included), 
are used to represent these events. 

III. TRANSFER LEARNING BASED PD DEFECT TYPE 

DETECTION 

Fig. 5 illustrates the data preprocessing procedure applied 
before feeding the processed labeled datasets for partial 
discharge (PD) defect type detection.  

The raw data is first denoised using the Discrete Fourier 
Transform (DFT) technique to filter the applied voltage 
signals, and the Discrete Wavelet Transform (DWT) 
technique to filter the PD signals. After normalization, the 
labeled dataset undergoes feature engineering, where one 
feature is derived from the applied voltages, and five features 
are extracted from the partial discharge voltages for each time 
block. The sliding window method is used to divide the entire 
measurement period into overlapping time blocks of equal 
width. In this paper, each original sample event is transformed 
into WWW block data samples (e.g., W=99W = 99W=99). 
The block width of each window is denoted as SWSWSW 
(e.g., 0.0004 s), and the gap between two consecutive 
windows is denoted as GWGWGW (e.g., 0.0002 s). 

 
Fig 5. Sliding window based data preprocessing 

For each block data sample, 6 different statistic-based 
features are calculated, including the average value of applied 
voltage (Avg) to represent the applied voltage magnitude and 
event timing, and the mean (Mean), standard deviation (Std), 
Kurtosis (Kur), Skewness (Skew), and total number of spikes 
(Spike) of partial discharge voltages to represent the variation 
of partial discharge within the time block. Thus, a series of 
time-windowed features are generated. After that, reshaping is 

applied to generate input tensor !",#for the source domain i.e. 
atmosphere switchgear, whose size of $ × 6 ×%, where $ 
denotes the batch size. Similarly, input tensor !& for the target 
domain i.e. air switchgear#can be generated, whose size of $ × 6 ×%.  The batch can be generated by randomly 
selecting samples from available collected sample events from 
the switchgear with given number of times, i.e. the size of 
batch. 

Fig. 6 shows the process for transfer learning based partial 
discharge pattern classification. The process uses a feature 
extractor to extract representative features to represent fault 
events, a PD pattern classifier to classify the fault type based 
on the extracted representative features, a domain 
discriminator being used for domain adaptation (DA). The 
pattern classification process first forms a concatenated 
tensor, ! = [!": !&],  and then input to the feature extractor ' , ' = ['": '&]  , an adversarial net based domain 
discriminator being used for domain adaptation, and PD fault 
classifier, and relative feature loss computation. '" and '& are 
the corresponding extracted representative features from the 
input features !" and !& for the source and target switchgear, 
respectively. 

 

Fig 6. Transfer learning based PD diagnosis framework  

The model's parameters are optimized using a loss 
function that is defined as the sum of the classifier loss ()  
(using cross-entropy loss), the domain adaptation loss (* 
(also using cross-entropy loss), and the feature loss (+: -/0/-/12#(344 = () 5 (* 5 (+ .                      (1)  

Feature loss is used to balance between feature selectivity 
among different features, and feature invariance among source 
and target domains. It is defined as a weighed sum of 
maximum mean discrepancy loss MMD7'", '&8, batch-based 
instance separation loss [17] BIS7'", '&8 , and batch-based 
feature decorrelation loss [17] BFD7'"9 , '&98: (+ = ;<<*MMD7'", '&8 5 ;>?@BIS7'", '&8 5 ;>+*BFD7'"9 , '&98, 

(2) 
where ;<<*, ;>?@ and ;>+* denote the weighting coefficients 
for the discrepancy cost, the instance separation cost, and the 
feature decorrelation loss, respectively.  

The batch-based instance separation loss, BIS7'", '&8  is to 
encourage the network to learn different features for each 
training example, and defined as: 

BIS7'", '&8 = A CE × $ × GHlogJ exp7'"K7'"K898L exp N'"KO'"PQ9R>PT" U>
KT"  

A CE × $ × GHlogJ exp7'&K7'&K898L exp N'&KO'PQ9R>PT" U>
KT"  

(3) 



 

 

where G  is the feature size of feature exactor bottleneck 
layer. B denotes the batch size. W is the number of sliding 
windows. '"K  and '&K  denote the i-th row vector of '"and '&. 
The batch-based feature decorrelation loss is encourages the 
network to learn distinct features, and .defined as: 

BFD7'", '&8 = A CE × $ × GHlogJ exp7V"K7V"K898L exp NV"KOV"PQ9R*PT" U*
KT"

 

A CE × $ × GHlogJ exp7V&K7V&K898L exp NV&KOV&PQ9R*PT" U*
KT"

 

 (4) 
where V" = 7'"89 ,V& = 7'&89 . V"K  and V&K denote the i-th 
row vector of V"and V&.   

The AdamW algorithm [18] is used as the optimizer for 
learning. It is a stochastic gradient descent method that is 
based on adaptive estimation of first-order and second-order 
moments with an added method to decay weights. The 
learning rate is usually set as 0.01. 

Fig. 7 illustrates the detailed configuration of the different 
layers in the feature extractor, the domain discriminator, and 
the pattern classifier. Conv1D, ReLU, Pool, Dropout, and 
Linear transformer represent a 1D convolutional layer, a 
rectified linear unit, a max pooling layer, a dropout layer, and 
a fully connected layer, respectively. The kernel size and 
padding of the Conv1D is set as 3 and 1. The kernel size, 
stride, and padding of the Pool are set as 2,2 and 0. The drop-
out is set as 0.5. 

 
(a). Feature extractor model 

 
(b). Domain Discriminator model.              (c). Pattern Classifier model 

Fig 7. Components of PD diagnosis framework 

IV. PD DEFECT TYPE DETECTION WITH SCARE TARGET 

DATASETS 

To evaluate the effectiveness of domain adaptation (i.e. 
transfer learning), we have created a set of test scenarios with 
varying levels of data scarcity as shown in Table II. In our 
experiments, we intentionally reduce the amount of training 
data from the target domain to simulate varying levels of data 
scarcity for the target type of switchgears, while keeping the 
amount of training data from the source domain unchanged. 

TABLE II.   TARGET DATA SCARITY SCENARIOS 

Scenario 

# 

Training samples 

Atmosphere based 

switchgear 

Air based  

Switchgear 

Percentage 

Total 

number 

of 

samples 

Total 

defect 

types 

Percentag

e 

Total 

number 

of 

samples 

1 80% 4955 4 80% 5941 

2 80% 4955 4 10% 743 

3 80% 4955 4 1% 74 

4 80% 4955 4 0.5% 37 

5 80% 4955 4 0.1% 7 

6 80% 4955 1 0.014% 1 

Table III presents the estimation performance metrics, 
including accuracy, precision, recall, and F1-score, under 
varying levels of target data scarcity. To mitigate the effect 
of class imbalance among defect types, the macro-averages 
of precision, recall, and F1-score are reported. For 
performance evaluation, the training dataset is randomly 
sampled from the total target domain data, while the 
remaining data are reserved for testing. The training process 
is performed for 1000 epochs. As shown in Table III, the 
estimation performance improves as the number of target 
training samples increases, achieving an accuracy of 94.96% 
when the training set comprises 743 samples. 

TABLE III.  ESTIMATION PERFORMANCE METRICS FOR TRANSFER 

LEARNING 

Total 

Number of 

Samples 

Accuracy  

Macro-

averaged 

Precision 

Macro-

averaged 

Recall 

Macro-

averaged 

F1-score 

5941 0.9596 0.9587 0.9524 0.9535 

743 0.9496 0.9580 0.9548 0.9554 

74 0.8728 0.8867 0.8913 0.8847 

37 0.8429 0.8725 0.8613 0.8548 

7 0.7586 0.8056 0.7799 0.7525 

1 0.5990 0.6919 0.6120 0.5493 

V. PD DEFECT TYPE IDENTIFICATION USING DEEP 

LEARNING VS. TRANSFER LEARNING 

Fig. 8 illustrates the deep learning-based PD diagnosis 
framework, which is configured with a feature extractor and a 
pattern classifier, both using the same layer configurations 
defined in Fig. 7. The model's parameters are optimized using 
the classifier loss ()  (using cross-entropy loss): -/0/-/12#(344 = () .                                  (5) 

 
Fig 8. Deep learning based PD diagnosis framework 

Similarly, we simulate different levels of target data 
scarcity for air-based switchgear by intentionally reducing 
the amount of target domain training data, without using the 
source domain datasets.  

Table IV lists the estimation performance metrics 
achieved using deep learning, based solely on the target data. 
Comparing the results obtained using deep learning, as shown 
in Table IV, with those obtained through transfer learning, as 
shown in Table III, we verified that transfer learning can 
improve prediction performance by learning from source 
domain datasets when the target domain data is significantly 
scarce (i.e., the total number of target samples is less than 37). 
However, once the target domain accumulates enough data 
(i.e., the total number of target samples exceeds 37), its 
prediction performance decreases when domain adaptation is 
used to mix its characteristics with those of the source 
domain.  

For performance comparison, we employ a linear Support 
Vector Machine (SVM) as a benchmark. The inputs to the 
SVM are aligned with those of the feature extractor in Fig. 8, 
while the outputs correspond to those of the pattern classifier 
in Fig. 8. Table V presents the estimation performance 
metrics achieved by the SVM, evaluated solely on the target 
data. 



 

 

TABLE IV.  ESTIMATION PERFORMANCE METRICS FOR DEEP 

LEARNING 
Total 

Number of 
Samples 

Accuracy  
Macro-

averaged 
Precision 

Macro-
averaged 

Recall 

Macro-
averaged 
f1-score 

5941 0.9966 0.9964 0.9959 0.9961 
743 0.9864 0.9870 0.9822 0.9843 
74 0.9202 0.9470 0.9420 0.9408 
37 0.8429 0.8930 0.8259 0.8383 
7 0.6171 0.5644 0.6008 0.5477 
1 0.2400 0.0596 0.2500 0.0962 

TABLE V.  ESTIMATION PERFORAMCE METRICS FOR SVM 
Total 

Number of 
Samples 

Accuracy  
Macro-

averaged 
Precision 

Macro-
averaged 

Recall 

Macro-
averaged 
f1-score 

5941 0.9879 0.9873 0.9888 0.9880 
743 0.9708 0.9787 0.9716 0.9747 
74 0.8650 0.8958 0.8617 0.8712 
37 0.8166 0.8483 0.8034 0.8127 
7 0.6377 0.5386 0.6064 0.5437 
1 0.2607 0.3115 0.2765 0.1467 

Comparing the results in the above tables, the best 
estimation performance can be achieved by dynamically 
switching between transfer learning and deep learning (or 
SVM) as the target data volume evolves. Taking transfer 
learning and deep learning as examples, Table VI shows that 
transfer learning is preferable when the target dataset is small, 
whereas deep learning becomes more effective once the 
dataset size surpasses a critical point. This critical point can 
be identified when the dataset includes all defect types and 
the number of samples for each defect type exceeds an 
empirical threshold—typically around 20 samples. This 
threshold can be established by analyzing model performance 
across varying sample sizes using a well-labeled dataset 
collected from similar types of switchgear. The minimum 
sample count at which the model achieves acceptable 
performance can then be adopted as the practical threshold. 

TABLE VI.  SWITCHING BETWEEN TRANSFER LEARNING AND DEEP 

LEARNING 

Total 
Number of 

Samples  

Estimation 
accuracy using 

transfer 
learning 

Estimation 
accuracy using 
deep learning  

Technique to be 
used 

5941  0.9966 deep learning 
743  0.9864 deep learning 
74  0.9202 deep learning 

38 0.8429 0.8429 
Transfer/deep 

learning 
7 0.6605  transfer learning 
1 0.5593  transfer learning 

VI. CONCLUSION 

This paper has proposed a methodology that adapts 
existing partial discharge (PD) diagnostic models, originally 
developed for atmospheric conditions, to high-pressure dry-
air environments by leveraging transfer learning techniques. 
We evaluate the predictive performance under varying 
degrees of data scarcity in high-pressure dry-air switchgears 
and analyze the transition point at which deep learning 
methods become less effective compared to transfer learning 
as the dataset expands. 

Future work will focus on addressing classification 
challenges under severe class imbalance in defect-type 
samples. Additionally, we aim to develop more rigorous 
approaches for determining transition points between deep 
learning and transfer learning methods, incorporating factors 
such as sample similarity, data distribution, and the accuracy 
requirements of specific applications. 
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