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Abstract

SF6 gas has traditionally been used in Gas- Insulated Switchgear, but due to its extremely
high Global Warming Potential, there is growing interest in alternative insulating media,
such as Green Gas for Grid and dry air. As a result, there is an increasing need to develop
new partial discharge (PD) diagnostic methods tailored to these alternative media, while also
addressing the challenge of limited fault data. In this paper, using high-pressure dry air as an
example, we propose a methodology for adapting existing PD diagnostic models—originally
developed for atmospheric conditions—to high-pressure dry air, leveraging transfer learning
techniques. The proposed method first transforms the raw data of measured applied voltages
and partial discharge voltages into six relevant features for each time window through feature
engineering. These features are then fed into the PD pattern diagnosis model, which consists
of a feature extractor, a PD fault type classifier, and a domain discriminator. Feature dis-
crepancy loss, including maximum mean discrepancy, batch-based instance separation, and
batch-based feature decorrelation, is added to the loss function to optimize the model’s pa-
rameters. We evaluate the prediction performance under varying levels of data scarcity for
high-pressure dry air switchgear. Additionally, we compare the estimation performances of
transfer learning versus deep learning and discuss the transition point between these two
approaches as the dataset evolves.
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Abstract—SFs gas has traditionally been used in Gas-
Insulated Switchgear, but due to its extremely high Global
Warming Potential, there is growing interest in alternative
insulating media, such as Green Gas for Grid and dry air. As a
result, there is an increasing need to develop new partial
discharge (PD) diagnostic methods tailored to these alternative
media, while also addressing the challenge of limited fault data.
In this paper, using high-pressure dry air as an example, we
propose a methodology for adapting existing PD diagnostic
models—originally developed for atmospheric conditions—to
high-pressure dry air, leveraging transfer learning techniques.
The proposed method first transforms the raw data of measured
applied voltages and partial discharge voltages into six relevant
features for each time window through feature engineering.
These features are then fed into the PD pattern diagnosis model,
which consists of a feature extractor, a PD fault type classifier,
and a domain discriminator. Feature discrepancy loss, including
maximum mean discrepancy, batch-based instance separation,
and batch-based feature decorrelation, is added to the loss
function to optimize the model’s parameters. We evaluate the
prediction performance under varying levels of data scarcity for
high-pressure dry air switchgear. Additionally, we compare the
estimation performances of transfer learning versus deep
learning and discuss the transition point between these two
approaches as the dataset evolves.

Keywords— deep learning, partial discharge, scare fault data,
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L INTRODUCTION

The stability and safety of electrical power systems
heavily depend on the health of electrical power equipment.
Electrical insulation plays a critical role in the health of high-
voltage equipment, as insulation failure accounts for over 60%
of high-voltage equipment failures [1]. When insulation fails,
partial discharge (PD) occurs. Therefore, monitoring PD in
power equipment is essential to prevent significant failures
and power outages.

According to IEC 60270 [2], a partial discharge (PD) is
defined as "a localized electrical discharge that partially
bridges the insulation between conductors, which may or may
not occur adjacent to a conductor." When a PD occurs, it
generates a rapid transient pulse. This signal is closely
associated with the PD source, and different types of PD
defects produce distinct signal patterns. Identifying the PD
source helps determine the condition of the equipment.
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Switchgear, a critical component of electrical power
systems, plays a vital role in ensuring system integrity and
reliability. Utilizing partial discharge monitoring to assess the
health of switchgear is essential for effective maintenance and
operational oversight. However, building a reliable PD
diagnostic model requires a large volume of fault data to
achieve acceptable accuracy. In practice, obtaining sufficient
data for newly developed switchgear types can be challenging.
For example, SF¢ gas has traditionally been used in Gas-
Insulated Switchgear, but due to its extremely high Global
Warming Potential, there is increasing interest in alternative
insulating gases such as Green Gas for Grid or dry air. As a
result, there is a need to develop new PD diagnostic methods
specifically designed for these alternative insulation materials,
while also addressing the challenge of limited fault data
availability.

Various approaches [3]~[5] have been proposed to
monitor, detect, and diagnose partial discharge (PD) in
switchgears. These approaches can generally be classified into
two categories: model-based approaches [7],[14]~[16] and
data-driven or model-free approaches. Model-based
approaches aim to develop mathematical models to predict
and track the degradation progression of switchgears.
However, constructing models with an appropriate level of
complexity is challenging, as the mechanical principles and
degradation mechanisms of switchgears are often complex
and not fully understood.. On the other hand, data-driven
approaches [6]~[13] provide a straightforward solution by
utilizing large volumes of historical data to infer PD fault
modes without requiring prior theoretical knowledge.
However, these methods demand high-quality, abundant
training data, which presents a significant challenge in
practical applications.

In recent years, model-free machine learning (ML)
techniques such as deep learning [10]~[11], transfer learning
[12]~[13], which do not rely on a predefined parametric
model, have shown promising improvements across a wide
range of applications. Particularly, machine learning's ability
to uncover complex, hidden patterns in data has proven highly
successful, often outperforming state-of-the-art human-
designed algorithms. These advancements have provided
valuable tools for classifying PD fault patterns in switchgears.
However, machine learning-based approaches still face
several challenges, including: (1) insufficient training data, (2)
unclear data representation, and (3) the need to adapt neural
network architectures for different types of switchgears.



Therefore, there is a need to develop more advanced methods
for diagnosing partial discharge in switchgears that offer
improved generalization capabilities.

This paper proposes a transfer learning-based method for
diagnosing partial discharge faults in switchgear. The
measured fault signals from the switchgear, including applied
voltages and partial discharge voltages, are first denoised
using discrete Fourier transform and discrete wavelet
transform techniques. Next, feature engineering is employed
to generate multiple characteristic features based on the
statistical distribution of the switchgear measurements using a
sliding window algorithm. Six different statistic-based
features are generated, including the average value of applied
voltage to represent the applied voltage magnitude and event
timing, and the mean, standard deviation, Kurtosis, Skewness,
and total number of spikes of partial discharge voltages to
represent the variation of partial discharge within the time
block. This approach represents the features of partial
discharges with a reduced data volume, without losing the
original time characteristics of partial discharge faults in the
switchgear. The partial discharge pattern classification model
consists of a feature extractor, a PD fault type classifier, and a
domain discriminator. The parameters of the pattern
classification model are optimized by combining classifier
loss, domain discrepancy loss, and feature discrepancy loss.
The feature loss includes maximum mean discrepancy loss,
batch-based instance separation loss, and batch-based feature
decorrelation loss.

The remainder of this paper is organized as follows:
Section II presents the PD defect models and experiments.
Section III describes the proposed transfer learning-based PD
defect type detection method. Sections IV and V provide the
results obtained using the transfer learning based method, the
deep learning based method, and the benchmark Support
Vector Machine method. The conclusion is drawn in Section
VL

II.  PD DEFECT MODELS AND EXPERIMENTS

Fig. 1 illustrates the PD defect types simulated in a
laboratory switchgear insulated with atmospheric or high-
pressure air. These defect types include floating electrodes,
metal protrusions, metal protrusions into the insulator, and
surface discharge. The atmospheric conditions for the PD test
are maintained at a temperature of 20-23°C, humidity of 50—
60%, and pressure ranging from 1009 hPa to 1020 hPa.
Additionally, high-pressure dry air is maintained at 0.9 MPa
(absolute).
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Fig 1. PD Defect Models with Different Insulation Mediums

Fig. 2 illustrates the experimental setup for PD testing and
data collection using IEC 60270 PD detection method [2].
Electrical measurements are captured on an oscilloscope from
the laboratory switchgear during PD fault simulation. The

measurement data are obtained from the laboratory model
under two different insulation conditions: atmospheric air and
high-pressure dry air. These measurements are collected from
two oscilloscope channels: the first channel captures the AC
voltage waveform, while the second channel records the PD
signal. Both the applied voltage signal from the first channel
and the PD signal from the second channel are used for
diagnostic purposes.
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Fig 2. Experiment -setup for using IEC 60270 PD detection method

Table I summarizes the collected datasets for different
defect types used in this paper. In total, 6,194 and 7,427 fault
events were recorded for atmosphere-based and high-pressure
air-based switchgear systems, respectively. For all events—
except for the floating electrode defect in the atmosphere-
based switchgear—2,000 data points were collected over 0.02
seconds (sampling frequency: 100 kHz; time resolution: 10
ps). In the exceptional case of the floating electrode defect,
4,000 data points were collected over the same duration
(sampling frequency: 200 kHz; time resolution: 5 ps),
corresponding to a single event (i.c., one sample).

TABLE 1. PD DATA SUMMARIES
Defect Total number of Samples
Type Atmosphere Air based
based switchgear Switchgear

(a). Floating electrode 1769 1626
(b). Metal protrusion 1313 1335
(c). Metal protrusion into 1788 2683
insulator
(d).Surface discharge 1324 1783
Totals 6194 7427

Figs 3 and 4 illustrate examples of different defect types
observed in the applied voltage and partial discharge
measurements collected from the laboratory switchgear under
botzlzatmospheric air and high-prefszure dry air conditions.
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Fig 3. Exemplar samples for PD faults in an atmosphere based switchgear
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(c). Metal protrusion into Insulator. (d) Surface discharge
Fig 4. Exemplar samples for PD faults in a high-pressure dry air based
switchgear

In the figures, the gray curves represent the ideal applied
voltages, while the red curves represent the denoised partial
discharge voltages. It is evident that the PD waveforms differ
significantly both between different defect types under the
same insulation medium and between the same defect type
under different insulation mediums. Directly differentiating
defect types using waveforms is challenging. Instead, the
statistics of the PD waveforms, such as their moments and the
number of spikes (both positive and negative spikes included),
are used to represent these events.

III. TRANSFER LEARNING BASED PD DEFECT TYPE
DETECTION

Fig. 5 illustrates the data preprocessing procedure applied
before feeding the processed labeled datasets for partial
discharge (PD) defect type detection.

The raw data is first denoised using the Discrete Fourier
Transform (DFT) technique to filter the applied voltage
signals, and the Discrete Wavelet Transform (DWT)
technique to filter the PD signals. After normalization, the
labeled dataset undergoes feature engineering, where one
feature is derived from the applied voltages, and five features
are extracted from the partial discharge voltages for each time
block. The sliding window method is used to divide the entire
measurement period into overlapping time blocks of equal
width. In this paper, each original sample event is transformed
into WWW block data samples (e.g., W=99W = 99W=99).
The block width of each window is denoted as SWSWSW
(e.g., 0.0004 s), and the gap between two consecutive
windows is denoted as GWGWGW (e.g., 0.0002 s).
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Fig 5. Sliding window based data preprocessing

For each block data sample, 6 different statistic-based
features are calculated, including the average value of applied
voltage (Avg) to represent the applied voltage magnitude and
event timing, and the mean (Mean), standard deviation (Std),
Kurtosis (Kur), Skewness (Skew), and total number of spikes
(Spike) of partial discharge voltages to represent the variation
of partial discharge within the time block. Thus, a series of
time-windowed features are generated. After that, reshaping is

applied to generate input tensor X, for the source domain i.e.
atmosphere switchgear, whose size of B X 6 X W, where B
denotes the batch size. Similarly, input tensor X, for the target
domain i.e. air switchgear can be generated, whose size of
B x 6xW. The batch can be generated by randomly
selecting samples from available collected sample events from
the switchgear with given number of times, i.e. the size of
batch.

Fig. 6 shows the process for transfer learning based partial
discharge pattern classification. The process uses a feature
extractor to extract representative features to represent fault
events, a PD pattern classifier to classify the fault type based
on the extracted representative features, a domain
discriminator being used for domain adaptation (DA). The
pattern classification process first forms a concatenated
tensor, X = [X;:X,], and then input to the feature extractor
F , F=[F;:F,] , an adversarial net based domain
discriminator being used for domain adaptation, and PD fault
classifier, and relative feature loss computation. F; and F, are
the corresponding extracted representative features from the
input features X; and X, for the source and target switchgear,
respectively.
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Fig 6. Transfer learning based PD diagnosis framework

The model's parameters are optimized using a loss
function that is defined as the sum of the classifier loss L.
(using cross-entropy loss), the domain adaptation loss Lp
(also using cross-entropy loss), and the feature loss L:

minimize Loss = L¢ + Lp + Lg. 1)

Feature loss is used to balance between feature selectivity
among different features, and feature invariance among source
and target domains. It is defined as a weighed sum of
maximum mean discrepancy loss MMD(F;, F,), batch-based
instance separation loss [17] BIS(Fy, F,), and batch-based
feature decorrelation loss [17] BFD (FF, F1):

Lp = Aymp MMD(Fy, Fy) + ApysBIS(Fy, F2) + ApppBFD(F{, F] ),
(2)

where Ayup, Agrs and Aggp denote the weighting coefficients
for the discrepancy cost, the instance separation cost, and the
feature decorrelation loss, respectively.

The batch-based instance separation loss, BIS(Fy, F,) is to
encourage the network to learn different features for each
training example, and defined as:

B
1 exp(Fy; (F;:)T)
BIS(FL ) = =55 ) 08| o 0
= j=1€Xp (Fn-(Fl,-) )
B
exp(Fp; (F>:)™)

IJ?=1 exp (in(F}')T)
3)

1
_ZXBXDZIOg
i=1



where D is the feature size of feature exactor bottleneck
layer. B denotes the batch size. W is the number of sliding
windows. Fy; and F,; denote the i-th row vector of Fyand F,.
The batch-based feature decorrelation loss is encourages the
network to learn distinct features, and .defined as:

D
1 exp(Gy; (G)T
BFD(F,, F,) = ‘mZ‘og p(61:(G1)")
i=1
D

?:1 exp (Gu(Glj)T)
R (= ()
2XB XD L 2 exp (62:(6))")
)

where G; = (F))7,G, = (F,)T. Gy; and G,; denote the i-th
row vector of G;and G,.

The AdamW algorithm [18] is used as the optimizer for
learning. It is a stochastic gradient descent method that is
based on adaptive estimation of first-order and second-order
moments with an added method to decay weights. The
learning rate is usually set as 0.01.

Fig. 7 illustrates the detailed configuration of the different
layers in the feature extractor, the domain discriminator, and
the pattern classifier. ConvlD, ReLU, Pool, Dropout, and
Linear transformer represent a 1D convolutional layer, a
rectified linear unit, a max pooling layer, a dropout layer, and
a fully connected layer, respectively. The kernel size and
padding of the ConvID is set as 3 and 1. The kernel size,
stride, and padding of the Pool are set as 2,2 and 0. The drop-
out is set as 0.5.
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Fig 7. Components of PD diagnosis framework

IV.  PD DEFECT TYPE DETECTION WITH SCARE TARGET
DATASETS

To evaluate the effectiveness of domain adaptation (i.e.
transfer learning), we have created a set of test scenarios with
varying levels of data scarcity as shown in Table II. In our
experiments, we intentionally reduce the amount of training
data from the target domain to simulate varying levels of data
scarcity for the target type of switchgears, while keeping the
amount of training data from the source domain unchanged.

TABLE II. TARGET DATA SCARITY SCENARIOS
Scenario Training samples
# Atmosphere based Air based
switchgear Switchgear
Total Total
Total
P number Percentag number
ercentage defect
of e of
samples bpes samples
1 80% 4955 4 80% 5941
2 80% 4955 4 10% 743
3 80% 4955 4 1% 74
4 80% 4955 4 0.5% 37
5 80% 4955 4 0.1% 7
6 80% 4955 1 0.014% 1

Table III presents the estimation performance metrics,
including accuracy, precision, recall, and Fl-score, under
varying levels of target data scarcity. To mitigate the effect
of class imbalance among defect types, the macro-averages
of precision, recall, and Fl-score are reported. For
performance evaluation, the training dataset is randomly
sampled from the total target domain data, while the
remaining data are reserved for testing. The training process
is performed for 1000 epochs. As shown in Table III, the
estimation performance improves as the number of target
training samples increases, achieving an accuracy of 94.96%
when the training set comprises 743 samples.

TABLE III. ESTIMATION PERFORMANCE METRICS FOR TRANSFER
LEARNING

Total Macro- Macro- Macro-
Number of | Accuracy averaged averaged averaged
Samples Precision Recall F1-score

5941 0.9596 0.9587 0.9524 0.9535

743 0.9496 0.9580 0.9548 0.9554

74 0.8728 0.8867 0.8913 0.8847

37 0.8429 0.8725 0.8613 0.8548

7 0.7586 0.8056 0.7799 0.7525

1 0.5990 0.6919 0.6120 0.5493

V. PD DEFECT TYPE IDENTIFICATION USING DEEP
LEARNING VS. TRANSFER LEARNING

Fig. 8 illustrates the deep learning-based PD diagnosis
framework, which is configured with a feature extractor and a
pattern classifier, both using the same layer configurations
defined in Fig. 7. The model's parameters are optimized using
the classifier loss L. (using cross-entropy loss):

minimize Loss = L.

Extractor:
F

J = Feature F,
B

[AVG,Mean,STD,Skew, Kur,Spike]

Fig 8. Deep learning based PD diagnosis framework

Similarly, we simulate different levels of target data
scarcity for air-based switchgear by intentionally reducing
the amount of target domain training data, without using the
source domain datasets.

Table IV lists the estimation performance metrics
achieved using deep learning, based solely on the target data.
Comparing the results obtained using deep learning, as shown
in Table IV, with those obtained through transfer learning, as
shown in Table III, we verified that transfer learning can
improve prediction performance by learning from source
domain datasets when the target domain data is significantly
scarce (i.e., the total number of target samples is less than 37).
However, once the target domain accumulates enough data
(i.e., the total number of target samples exceeds 37), its
prediction performance decreases when domain adaptation is
used to mix its characteristics with those of the source
domain.

For performance comparison, we employ a linear Support
Vector Machine (SVM) as a benchmark. The inputs to the
SVM are aligned with those of the feature extractor in Fig. 8,
while the outputs correspond to those of the pattern classifier
in Fig. 8. Table V presents the estimation performance
metrics achieved by the SVM, evaluated solely on the target
data.



TABLE IV. ESTIMATION PERFORMANCE METRICS FOR DEEP

LEARNING
Total Macro- Macro- Macro-
Number of | Accuracy averaged averaged averaged
Samples Precision Recall fl-score
5941 0.9966 0.9964 0.9959 0.9961
743 0.9864 0.9870 0.9822 0.9843
74 0.9202 0.9470 0.9420 0.9408
37 0.8429 0.8930 0.8259 0.8383
7 0.6171 0.5644 0.6008 0.5477
1 0.2400 0.0596 0.2500 0.0962
TABLE V. ESTIMATION PERFORAMCE METRICS FOR SVM
Total Macro- Macro- Macro-
Number of | Accuracy averaged averaged averaged
Samples Precision Recall fl-score
5941 0.9879 0.9873 0.9888 0.9880
743 0.9708 0.9787 0.9716 0.9747
74 0.8650 0.8958 0.8617 0.8712
37 0.8166 0.8483 0.8034 0.8127
7 0.6377 0.5386 0.6064 0.5437
1 0.2607 0.3115 0.2765 0.1467

Comparing the results in the above tables, the best
estimation performance can be achieved by dynamically
switching between transfer learning and deep learning (or
SVM) as the target data volume evolves. Taking transfer
learning and deep learning as examples, Table VI shows that
transfer learning is preferable when the target dataset is small,
whereas deep learning becomes more effective once the
dataset size surpasses a critical point. This critical point can
be identified when the dataset includes all defect types and
the number of samples for each defect type exceeds an
empirical threshold—typically around 20 samples. This
threshold can be established by analyzing model performance
across varying sample sizes using a well-labeled dataset
collected from similar types of switchgear. The minimum
sample count at which the model achieves acceptable
performance can then be adopted as the practical threshold.

TABLE VI SWITCHING BETWEEN TRANSFER LEARNING AND DEEP

LEARNING
Total Estimatiop Estimation Technique to be
accuracy using . used
Number of accuracy using
Samples transfer deep learnin
P learning P g
5941 0.9966 deep learning
743 0.9864 deep learning
74 0.9202 deep learning
38 0.8429 0.8429 Transfer/deep
learning
7 0.6605 transfer learning
1 0.5593 transfer learning

VI. CONCLUSION

This paper has proposed a methodology that adapts
existing partial discharge (PD) diagnostic models, originally
developed for atmospheric conditions, to high-pressure dry-
air environments by leveraging transfer learning techniques.
We evaluate the predictive performance under varying
degrees of data scarcity in high-pressure dry-air switchgears
and analyze the transition point at which deep learning
methods become less effective compared to transfer learning
as the dataset expands.

Future work will focus on addressing classification
challenges under severe class imbalance in defect-type
samples. Additionally, we aim to develop more rigorous
approaches for determining transition points between deep
learning and transfer learning methods, incorporating factors
such as sample similarity, data distribution, and the accuracy
requirements of specific applications.

(1]

(2]
(3]

(4]

(3]

(6]

(71

(8]

9]

[10]

(1]

[12]

[13]

[14]

[15]

[1e]

[17]

(18]

REFERENCES

Wong Jee Keen Raymond, Hazlee Azil Illias, Ab Halim Abu Bakar,
Hazlie Mokhlis,”Partial discharge classifications: Review of recent
progress”’, Measurement, vol. 68, pp. 164-181, 2015.

High-voltage test techniques — Partial discharge measurements, IEC
60270:2000, 2000.

S. Lu, H. Chai, A. Sahoo and B. T. Phung, "Condition Monitoring
Based on Partial Discharge Diagnostics Using Machine Learning
Methods: A Comprehensive State-of-the-Art Review," in IEEE
Transactions on Dielectrics and Electrical Insulation, vol. 27, no. 6, pp.
1861-1888, December 2020.

R. Bruetsch, M. Tari, K. Froehlich, T. Weiers and R. Vogelsang, "High
Voltage Insulation Failure Mechanisms," Conference Record of the
2008 IEEE International Symposium on Electrical Insulation,
Vancouver, BC, Canada, 2008, pp. 162-165.

L. Li, C. Wang and M. Yang, "Research on Partial Discharge Detection
and Evaluation Method for High Voltage Switchgear Based on AHP-
Fuzzy Comprehensive Evaluation," 2024 7th Asia Conference on
Energy and Electrical Engineering (ACEEE), Chengdu, China, 2024,
pp. 144-149.

T. Hoshino, S. Maruyama, K. Nojima and M. Hanai, "A unique
sensitivity verification combined with real-time partial-discharge
identification method," in IEEE Transactions on Power Delivery, vol.
20, no. 3, pp. 1890-1896, July 2005.

Q. Khan, S. S. Refaat, H. Abu-Rub and H. A. Toliyat, "Partial
discharge detection and diagnosis in gas insulated switchgear: State of
the art," in /EEE Electrical Insulation Magazine, vol. 35, no. 4, pp. 16-
33, July-Aug. 2019.

L. Duan, J. Hu, G. Zhao, K. Chen, J. He and S. X. Wang, "Identification
of Partial Discharge Defects Based on Deep Learning Method,"
in IEEE Transactions on Power Delivery, vol. 34, no. 4, pp. 1557-1568,
Aug. 2019.

N. Pattanadech, P. Nimsanong, S. Potivejkul, P. Yuthagowith and S.
Polmai, "Partial discharge classification using probabilistic neural
network model," 2015 18th International Conference on Electrical
Machines and Systems (ICEMS), Pattaya, Thailand, 2015, pp. 1176-
1180.

T. Cheypoca, W. Promphanich, A. Y. Thway, A. P. Hankae, S.
Jeenmuang and N. Pattanadech, "Partial Discharge Classification with
Transformer Neural Networks," 2024 TEEE 14th International
Conference on the Properties and Applications of Dielectric Materials
(ICPADM), Phuket, Thailand, 2024, pp. 93-96.

IS. Mantach, H. Janani, A. Ashraf and B. Kordi, "Classification of
Partial Discharge Signals Using 1D Convolutional Neural
Networks," 2021 IEEE Canadian Conference on Electrical and
Computer Engineering (CCECE), ON, Canada, 2021, pp. 1-5

Yuwei, Fu, et al. "Partial discharge pattern recognition method based
on transfer learning and DenseNet model." IEEE transactions on
dielectrics and electrical insulation 30.3 (2023): 1240-124.

Z. Tang and Z. Cao, "Application of Convolutional Neural Network
Transfer Learning in Partial Discharge Pattern Recognition," 2020
IEEE International Conference on High Voltage Engineering and
Application (ICHVE), Beijing, China, 2020, pp. 1-4.

N. F. A. Aziz, L. Hao and P. L. Lewin, "Analysis of Partial Discharge
Measurement Data Using a Support Vector Machine,"2007 5th Student
Conference on Research and Development, Selangor, Malaysia, 2007,
pp. 1-6.

N. He, H. Liu, M. Qian, W. Miao, K. Liu and L. Wu, "Gas-insulated
Switchgear Discharge Pattern Recognition Based on KPCA and
Multilayer Neural Network," 2021 6th International Conference on
Communication, Image and Signal Processing (CCISP), Chengdu,
China, 2021, pp. 208-213.

M. H. H. A. Majid, N. M. Samsuddin, A. S. A. Rahman, N. H. Nik Ali
and M. H. F. Rahiman, "Online Partial Discharge Monitoring In Gas
Insulated Switchgear (GIS) and Air Insulated Switchgear (AIS)," 2024
14th International Conference on System Engineering and Technology
(ICSET), Bandung, Indonesia, 2024, pp. 118-122.

Zawislak, Remy, Greiff, Marcus, Kim, Kyeong Jin, Berntorp, Karl, Di
Cairano, Stefano, Konishi, Mao, Parsons, Kieran, Orlik, Philip V.,
Sato, Yuki, "GNSS Multipath Detection Aided by Unsupervised
Domain Adaptation”, Proceedings of the 35th International Technical
Meeting of the Satellite Division of The Institute of Navigation (ION
GNSS+ 2022), Denver, Colorado, September 2022, pp. 2127-2137.

Ilya Loshchilov and Frank Hutter, “Decoupled Weight Decay
Regularization”, Proceedings of the 7th International Conference on
Learning Representations (ICLR 2019), New Orleans, Louisiana, May
2019.



	Title Page
	page 2

	Paper Title (use style: paper title)
	page 2
	page 3
	page 4
	page 5


