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Abstract

Repairing damages in high-value parts using additive processes can be more efficient than
using state-of-the-art high-skilled manual processes. We describe DamageEst, an efficient
computational geometry framework for detecting and estimating the damage volume (DV)
and the inner damage surface (IDS) using point cloud data (PCD) of damaged parts and their
original 3D models. DamageEst identifies points in PCD on the IDS to reconstruct the IDS. It
then encloses the reconstructed IDS and original part in a slightly scaled up background mesh,
from which the DV is reconstructed using Boolean operations. DamageEst also enables tar-
geted overestimation of damage for repair using additive manufacturing followed by milling
to guarantee high surface quality. Prior methods scale exponentially in both time and memory,
while DamageEst scales in polynomial time and memory. DamageEst enables precise identi-
fication and representation of damages with minimal human intervention.
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1 Introduction
Automatic repair of lost-material damages in high value parts could be cost-effective compared
to the current practice of using highly skilled laborers who carefully inspect and add metal to the
abraded, corroded, or missing-fragment damage sites. However, performing accurate damage re-
pair of lost-volume parts requires an accurate estimate of the damage volume followed by possibly
an additive process to add metal in the damage volume. In most of these applications, achieving
high accuracy while maintaining practical compute costs and use of machine time are critical. We
propose a method that can perform high accuracy, lost-volume damage estimation while achieving
cheaper computational costs. The proposed method makes use of a point cloud scan of the dam-
aged part and the mesh model of the undamaged part to estimate the damage volume. We describe
DamageEst, an efficient computational geometry framework for detecting and estimating the dam-
age volume (DV) and the inner damage surface (IDS) using point cloud data (PCD) of damaged
parts and their original 3D models.

The proposed estimation method makes use of a 3D solid model of the original, undamaged
part and a point cloud scan of the damaged part to construct an inner damage surface, together
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with its boundary. We then make use of a background mesh that fully encloses the mesh of the
original undamaged part. The boundary vertices of the IDS is then projected on this background
mesh which allows us to split the background mesh into a part containing the damage volume and
another part containing the undamaged part. Then, a more accurate estimate of the damage volume
is obtained by Boolean intersection between the original solid model and part of the background
mesh that contains the damage. Since we make use of the solid model of the original model,
we can preserve the sharp features (like edges and corners) on the outer surface of the damage
volume. The sharpness and accuracy of the inner damage surface will depend on the resolution of
the point cloud scan obtained for the damaged part. The proposed method is tested on objects and
damages of different shapes and size. We also compare the proposed method against an octree-
based decomposition method and show that our method can achieve better computational results.
We provide complexity analysis of each step of the proposed method to show that we can achieve
polynomial memory and time complexity.

The problem of damage volume calculation is one of efficiency rather than one of possibility.
The point cloud of even a relatively small part such as a plastic toy dragon may have over a million
points; doing an n ∗ n brute-force comparison is not a realtime possibility and some thought is
therefore required.

Over 30 years ago, Atallah et al approached the problem of combinatorial explosion in com-
parison of convex polygons [2], and Attene approached fast meshing. [3]. A similar issue applied
to fast alignment of 3D shapes, as considered by Besl and McKay [4]. A second presumption is
that the CAD model can be trivially converted to an accurate point cloud. Indeed, the reality is that
an accurate, detail-preserving conversion is not quite trivial, but it can be done. [6], [7].

Although the CAD model may generate a ”perfect” point cloud (every vertex and edge is
exactly represented by points in the cloud and no point in the cloud is not mappable to a point on
the surface of the CAD model), the damaged part’s point cloud will inevitably contain noise points,
either points significantly displaced from the actual measurable surface, or simply artifacts of the
scanning process. Fortunately, the DBSCAN algorithm provides not only density-based denoising,
but also clustering of the point cloud results enabling a part with multiple missing sections to be
properly processed [9].

In related work, Kanishka and Acherjee presented a systematic review of current AM-based
repair and remanufacturing techniques [11].

But only limited details of frameworks for damage estimation were presented. Lingling Li et
al. [13] developed a reverse engineering based approach that combined 3D surface data collection
of damaged part with a reconstruction of nominal model (if model for the original part is not
available) followed by the extraction of the patch to be repaired by AM using Boolean operations.
The appropriate toolpath was then generated depending on whether the repair is to performed using
additive or subtractive approaches. While details of implementation in practice are presented,
computational efficiency and scaling behavior of the framework were not investigated.

Lan Li et al. [12] presented results on repairing damaged gear tooth using AM and quality of
the repaired part was evaluated using microstructure analysis and Vickers hardness test. Models for
both damaged and nominal parts were constructed using reverse engineering and are aligned using
a two-step process using surface alignment followed by convex hull centroid alignment. While one
could potentially generalize this framework for the repair of other types of objects or parts, details
were presented only for the case of gear teeth. Furthermore, complexity of the computational steps
in the framework were not investigated.



The work that is arguably the closest to ours is the framework of DUOADD presented by Perini
et al. [14] for damage identification and modeling followed by toolpath generation for repairing the
damage volume using the AM process of direct laser deposition (DLD). This framework models
the 3D volume of the part (original and damaged) using a voxel representation that is handled
using an octree data structure. Unfortunately, the computing time for building the octree grows
exponentially with the depth level, a measure of the resolution of the model. Storing and handling
the octree data structure for the entire volume of the part can also be memory intensive.

2 Problem Description
In this section, we briefly describe the problem we study in this paper (see Figure 1 for an illustra-
tion). We assume that we have access to a point cloud scan of the damaged part and a 3D model of
the original part. Our objective is to propose a method that can accurately recover an estimate of
the damage volume for arbitrary damage sites on the original part. In some applications, the parts
of interest could have sharp edges and corners. Several state-of-the-art methods for volume/surface
reconstruction from point cloud scan of damage sites assume smoothness such that these sharp ge-
ometric features could be lost during the reconstruction process. One objective of the proposed
method is to preserve these sharp features in the damage estimate so that the damaged parts could
be repaired properly. Furthermore, we also assume that we have the knowledge of the geometry
of the original object via the CAD model of the object. Since the proposed damage estimation is
based on the point cloud scan of the damaged part, we assume that the scanned point cloud does
not have any gaps larger than the threshold λ for the desired accuracy. For generality, we also
consider the scenario where there could be multiple damage sites in the part.

Figure 1: A part with the damage site in the form of a wedge (left) and the estimated damage
volume (right).



3 Proposed Method
The key steps of our framework termed DamageEst are illustrated in Figure 2. We first list the
sequence of all steps in Section 3.1 and then describe the details in Section 3.2.

3.1 DamageEst: Steps in the Algorithm
The sequence of steps involved in the proposed method are listed below:

1. Create a point cloud from the original CAD model of the undamaged object.
2. Scan the damaged workpiece with a 3D scanner, generating another point cloud.
3. Align the two point clouds.
4. Find the inner damage surface (IDS) point cloud using the Hausdorff distance.
5. Reconstruct the inner damage surface (IDS).
6. Find the boundary of this inner damage surface (IDS).
7. Create a background mesh with spacing distance λ.
8. Map the inner damage surface boundary onto the background mesh.
9. Connect the pieces of the mapped boundary to form a cycle.

10. Split the background mesh at the mapped boundary cycle.
11. Connect the undamaged component to the cycle of the inner damage surface to form an

accurate and watertight triangular mesh.
12. Take the Boolean intersection of the repaired damage component with the original CAD

model to estimate the damage volume.

3.2 DamageEst: Detailed Description
Consider the damaged part shown in Figure 1. The core idea of the proposed method is to first
estimate the inner damage surface of a damage site (see Figure 2). This surface can then be
used to extract the damage volume for the part using the CAD model of the original part using
a background mesh that contains the original model of the object and Boolean operations (see the
steps shown in Figure 2).

The first step for our proposed method is to estimate the point cloud corresponding to the
inner damage surface (IDS) of the damaged part. This is estimated using a set difference method
between the point cloud of the original workpiece and the damaged piece. We assume we have
access to the solid model of the original workpiece. We sample a point cloud from the surface of
the original CAD model. The vertices in this sampling are all exact and are precisely on the surface
of the CAD model. It is important that the density of points sampled from the correct CAD model
is adequately high. Ideally no gap should exist larger than a threshold of accuracy λ. Some such
gaps may exist; but if these gaps are rare enough, the error points generated subsequently will be
discarded as noise. Additionally, it is desirable to have sample points exactly on the sharp edges
and corners, again with spacing not larger than λ. It is noted that the accuracy of the estimated
damage volume will depend on the density of the point cloud sampled in this step.



Figure 2: Key steps in the DamageEst framework. DamageEst first reconstructs the inner damage
surface, and makes use of a background mesh to split the original model into two halves: one
containing the damage volume and the other one containing the undamaged part. The final damage
estimate is then obtained by taking Boolean intersection of the damaged mesh with the original
solid model of the object.

We assume that we do not have access to a solid model of the damaged work piece (in gen-
eral,it will be difficult to create a 3D model of a damaged workpiece as that would need accurate
information describing the damage). However, we can scan the damaged workpiece to generate a
second point cloud that includes the damaged region of the workpiece. Because the scanner is a
physical device that has a nonzero noise floor, this sampling will be somewhat inexact and may not
capture every edge and vertex exactly.

At this point it is important to note that the two point clouds should be aligned so as to avoid
any miscomputation of distances between the original and the damaged point cloud. This is a
common procedure in computer vision and could be done using standard techniques. An example
of the misaligned and aligned point clouds for the objects before and after the damage in shown in
Figures 3a and 3b, respectively.

In the case we use the exact triangulated CAD model directly below, we still may desire to use
the point cloud version for this alignment step because algorithms for aligning point clouds are
usually simpler and faster.

Once we have both the point clouds aligned, we estimate the point cloud for the IDS of the
damaged work piece using a set difference method. We take the Hausdorff distance of each point
in the damaged scan to the undamaged point cloud, and classify the points according to whether
their Hausdorff distance is greater or lesser than the threshold of accuracy λ as mentioned in the first
step. Alternatively, one could find the Hausdorff distance with the exact triangulated CAD model
directly and classify each points based on the threshold of accuracy λ, as above. In either case, if the
Hausdorff distance is below the threshold λ, we presume that the distance from the correct shape is
due solely to noise in the scanning sensor system and the workpiece is undamaged at that position.
In contrast, points in the damaged workpiece point cloud with a Hausdorff distance greater than λ
away from the points in the undamaged point cloud are considered part of the damaged surface.



(a) Point clouds before alignment (b) Aligned point clouds

Figure 3: The damaged and original point clouds before and after alignment; the two point clouds
are individually colorized in Z to assist visualization and color is not otherwise meaningful in this
figure.

We present the following discussion assuming a single damage site. An example scenario with
multiple damage sites is presented later for completeness.

Figure 4: The target damage site and original part.

After alignment of the point clouds, the next step is to reconstruct the inner damage surface
from the inner damage surface point cloud. This could be done with an existing algorithm such
as ”reconstruct surface()” from the open source ”pyvista” library in Python. Some reconstruction
algorithms work better for certain damage types, but the above algorithm has done well with our
tests. The reconstructed surface for the damage site considered above is shown in Figure 5.

The ”Ball Pivoting” algorithm (from the ”Open3d” python library) can work well for uniform
density surfaces, but if the scan is non-uniform, it usually will not work as well as pyvista’s ”re-
construct surface()”. The ”Poisson Reconstruction” algorithm (also from the ”Open3d” python
library) cannot be used since the reconstructed surface must have a distinct boundary as described
in the next steps. The ”Poisson Reconstruction” algorithm always returns a watertight surface (a
closed volume, which has no boundary),

In the next step, we estimate the boundary of the inner damage surface mesh. We estimate
the boundary by finding all the boundary vertices (see Figure 6). We find the boundary vertices
by finding all the boundary edges. To do this, we consider each edge in the inner damage surface
mesh and count the number of triangles associated with the edge. If an edge is a member of exactly
one triangle, it is classified as a boundary edge. (edges having membership in zero triangles can be



Figure 5: The reconstructed inner damage surface (IDS) using the point cloud scan of the damage
part.

considered to be noise artifacts and discarded; edges with membership in two triangles are typical
interior edges, and membership in three or more triangles indicates a bug in the mesh algorithm.)
Given the boundary edge data, we can now classify any vertex in a boundary edge as a boundary
vertex. The idea of boundary vertices is also shown in Figure 6. The boundary for the damage
workpiece example is shown in Figure 7. The fit of the reconstructed IDS with its boundary
vertices on the original solid model is shown in Figure 8. This also shows that the reconstructed
IDS may have some noise protrusions compared to the original solid model– however, we will
correct them in later steps of the method.

Figure 6: We find the boundary of the surface by finding edges in the mesh which are bound only
by a single triangle. A simplified scenario is shown here.

Once we estimate the boundary of the inner damage surface, we would like to find a bounding
mesh that contains the damage volume (see Figure 9). The main idea is to find an overapproxima-
tion of the damage volume which can help us estimate an accurate damage volume by performing
Boolean operations with the 3D model of the original part. In order to ensure this, we create a
background mesh. The background mesh will be a mesh that fully encloses the undamaged CAD
model, the undamaged point cloud, and the inner damage surface. Each of these objects must be
completely interior to the background mesh. For the example under consideration, we show the
background mesh in Figure 9.

This background mesh supplies us with a properly filled 3D volume of appropriately spaced
vertices and corresponding edges, with no holes or other irregularities. Since we control the cre-



Figure 7: The boundary of the inner damage surface for the part considered in this example found
by the definition provided above. The boundary points are marked in red.

Figure 8: The inner damage surface may have noise-induced protrusions compared to the original
part.



ation of the background mesh, we can make the node spacing anything we desire. In practice,
having the background mesh node spacing be approximately equal to the threshold of accuracy λ
is usually adequate.

The background mesh need not be based on the initial part shape. In principle, the background
mesh might be a space-filling 3D mesh with a size just slightly larger than the working volume of
the actual 3D printer, and with a maximum node spacing equal to the finest resolution available of
the printer’s deposition head. In this case, (and in principle) this is the only background mesh ever
needed, so computing it once and saving it ( perhaps on non-volatile media, and perhaps only once
for a particular version of a mass-produced repair system) is not unreasonable.

The decision to use a precomputed maximum size mesh versus a smaller (bounding box) mesh
is an interesting trade-off. Computationally, using the full maximal mesh is expensive unless
careful programming is used, such as dividing the vertices and edges of the maximum mesh into
subsections and only using those subsections that the CAD model and the damaged workpiece
point cloud intersect can greatly decrease the time required versus the naive implementation that
examines every vertex and edge in the maximum mesh. Given that the precomputed mesh can be
invariant with respect to the CAD model of the workpiece, it is possible that the actual enumeration
of the precomputed mesh is unnecessary and a functional ”generator” can produce all of the desired
precomputed mesh vertices and edges. This generator can either be a software function, or it could
be implemented on a GPU or other array-style computational engine, or it could be implemented
as a computational element on an FPGA or ASIC.

Another alternative exists for generating the background mesh. The previously described meth-
ods of generating the background mesh all create a 3D space filling mesh with nodes both inside
and outside of the part volumes. Most of these nodes will never be accessed during the compu-
tation and are subsequently thrown away. In this sense they represent unnecessary computation.
To minimize this wasted computation, it is possible to generate a background mesh that is a 2D
watertight triangular mesh embedded in 3D space. In this case, the 2D geometry conforms to the
correct part shape, but is spaced ”outward”. For parts with complicated geometries and concave
sections, a scaled up version of the original mesh tends to do well, but can lead to larger run times.
This scaling can be computed by expanded translating all of the vertices along the surface normals
by a scaling factor or by computing the surface of the Minkowski sum of the original surface with
a small scaling volume, and then repeatedly subdividing this mesh until no edge is longer than the
threshold of accuracy λ desired.

For simpler geometries, it’s often better to use a generic mesh generator that yields a mesh
that better approximates the original object and the damaged object. The particulars depend on
the original object, and some shapes work better than others. If the original CAD model is similar
in geometry to a rectangular prism, a bounding box works well. If the original CAD model is
rotationally symmetric, a capsule or cylinder tends to work well.

It is important the background mesh contains enough vertices to ensure the no edge is signifi-
cantly longer than the threshold of accuracy, λ. If the number of vertices is too small, then a linear
subdivision can be used to add intermediate vertices to the mesh. A few other subdivision methods,
such as ”butterfly” and ”Loop” subdivision (both from the ”pyvista” library in python) work well
for the scaled background mesh, but tend to do poorly when the background mesh contains sharp
corners. Additionally, adaptive subdivision methods, such as ”subdivide adaptive()” function in
”pyvista” sometimes work better for meshes with non-uniform triangulations.

We now map each vertex from the boundary of the inner damage surface onto the background



Figure 9: The background mesh encloses the damage surface and the original part.

mesh. Each boundary vertex is mapped to the vertex in the background mesh with the closest
Euclidean distance. As described before, adaptive gridding methods can reduce the runtime of this
step-and-compare greatly. This is shown for the damage we consider here in Figure 10.

Figure 10: The boundary of the reconstructed IDS is pushed to the background mesh. This is done
by creating a mapping from the boundary vertices to the mesh using Euclidean distances.

Once we have the boundary mapped to the background mesh, we would like to split the mesh
into parts, one of which encloses the damage volume. To do this, we connect the pieces of the
mapped boundary to get a cycle. For any two vertices in the boundary that share an edge, we find
the shortest path between their mapped vertices in the background mesh (as the background mesh
may be of finer resolution than the mesh of the inner damaged volume). The resulting cycle is
shown in Figure 11.

Take each of the vertices contained in a shortest path, and add them to a list. We will call this list
the pushed cycle, and it represents the edge of the repair deposit as described in the fine-resolution
background mesh. In the pushed cycle, we occasionally get multiple disjoint components. This
will occur if the boundary of the inner damage surface is not one contiguous cycle.

For example, consider a typical set of dress shoes after being worn a few times; the toe section
of the sole will be somewhat abraded, then a long section under the instep will be undamaged, and
finally the heel section will be abraded. This will result in two disjoint pushed cycles: one around
the toe zone, and another, smaller one around the heel.



If multiple cycles exist, there are a few methods to deal with this. The first method is to consider
each cycle individually for the steps below. We repeat the steps below for each cycle. In practice,
this usually isn’t helpful. In the event that the cycles are very small, the cycles tend to be artifacts
of the mesh reconstruction algorithm. These small holes in the reconstructed mesh are detectable
as the count of nodes and edges will be very small (vaguely, 10 or fewer nodes or edges). Such
small holes will be repaired in a later step and should be ignored.

If a workpiece has a hole worn all the way through the material, then there will be multiple large
cycles at the corresponding reconstructed surface. Again, the largest cycle is the important one and
should be connected to the background mesh. The other large cycles will be closed properly in a
later step. If all of the cycles are pushed to the background mesh, it will slow down the computation
of later steps without a significant change to the final result.

In the event there are multiple larger cycles, only one needs to be connected to the background
mesh for the algorithm to work properly. The other holes will be repaired in a later step, and
joining multiple cycles will lead to many damage components in the background mesh. Sorting
through the extra components requires more human intervention and can be avoided.

The second method is to throw out all cycles except the largest (by node count) cycle. Alter-
natively, the largest cycle could be found by considering the largest number of edges or the largest
linear extent. Node count is quickest to compute, and usually gives the same result as the other
methods.

Figure 11: Consecutive points in the pushed cycle and connected by paths to create a cycle on the
background mesh.

We use the projected cycle to split the background mesh to get two component sub-meshes
(the mesh is split at the cycle). To do so, we remove all vertices contained in the pushed cycle as
well as any edges and triangles in the background mesh containing these pushed-cycle vertices.
One connected component will correspond to the damage site, and the other will correspond to the
undamaged material of the workpiece. Usually the smaller component corresponds to the damage
site, but this is highly dependent on the nature of the damage. The two components for the given
example are shown in Figure 12 and 13.

Connect the component corresponding to the damage site to the inner damage surface. To do
this, create an edge between each vertex in the boundary cycle to the vertex in the background
mesh that is mapped to it. Then, create an edge from each vertex in the cycle to the image of the
the successive neighbor in the background mesh. Finally, fill in all triangles that appear with these



Figure 12: The damaged component of the split background mesh

Figure 13: The undamaged component of the split background mesh



joined edges (see Figure 14 for the example damage volume).
Mathematically speaking, let f : V → W be the mapping function from the boundary ver-

tices of the inner damage surface to the background mesh. Create an edge {v, f(v)} and an edge
{v, f(v + 1)}.

For all vertices Wv created in the pushed cycle between f(v) and f(v + 1), add the edges in

{{v, f(w)}|w ∈ Wv}.

To make sure the result is watertight and well defined, run a mesh repair algorithm, such as the
algorithm ”repair” from the open source ”pymeshfix” library in Python. Any mesh fix algorithm
should patch any holes, align any normal vectors, and fix any self intersection issues.

Regardless of what method is chosen, it is essential the chosen method results in a watertight
mesh. If a mesh is not watertight, it is not possible to compute Boolean operations.

Figure 14: The rejoined mesh

Figure 15: The rejoined mesh and original part

Take the Boolean intersection of the repaired damage component mesh with the original CAD
model to get the damaged surface. This step pushes the extended size of the background mesh back
to the correct surface of the workpiece, and preserves any complicated geometry in the original
CAD model’s surface (see Figure 15).

Unlike existing methods of reconstruction, this allows highly detailed surfaces to be preserved.
Rather than the pushed surface or the noisy 3D sensor data surface reconstruction, the original



CAD-modeled detailing is restored exactly because those points are passed through without any
modification or low-pass filtering.

This yields a highly accurate model for the damaged volume of the workpiece. Every point
in the to-be-deposited repair is either the most accurate estimate of the damage surface obtainable
from the 3D scanner, or is derived directly from the original CAD model without any modification.

If the original CAD model is not available, it is possible to estimate the original part, by re-
constructing the surface of the undamaged scan using a reconstruction algorithm, such as those
mentioned in step 5. If the reconstructed surface is not watertight, a mesh repair algorithm such
as the aforementioned ”repair” function must be run. Subsequently, taking the Boolean intersec-
tion of the repaired damage component with the reconstructed surface to get the damage volume
estimate.

To recover the undamaged volume of the workpiece, take the Boolean difference of the original
CAD model (or the reconstructed original surface) with the damage volume estimate. Alterna-
tively, apply step 10 to the component that doesn’t correspond to the damage volume, then take
the Boolean intersection with this second component and the original CAD model (or the recon-
structed original surface). The estimated damage volume and its fit with the original solid model
are shown in Figure 16 and 17 respectively. As could be seen, we can get rid of the protrusion
noise that was not present in the damage volume in the final estimate. Another point to note is
that we are able to retain the sharp geometric features on the outer surface (like the corners and the
edges) in the reconstructed surfaces.

Figure 16: The estimated damage volume for the damage site considered in the example.

Figure 17: The estimated damage volume with the original part for the considered example.

Once we have the final damage mesh, we save the reconstructed surface as an STL file and



send it to slicing software and then the 3D printer.

3.3 Parts with Multiple Damage Sites
In cases, where we might have multiple damage sites, we first estimate the number of damage
sites using a clustering algorithm and then, repeat the previously described damage estimation
technique. An example part with multiple damage sites and the corresponding point cloud scan
is shown in Figure 18a and 18b. At this point, it is important to note that the inner damage point

(a) Damaged part (b) Point cloud scan of damaged part.

Figure 18: A part with four damage sites used for describing the proposed algorithm and a point
cloud scan of the same.

cloud has been estimated without the knowledge of number of damage sites while using the set
difference method. Thus, before we estimate the damage volume, we need to estimate number of
damage sites, if there are more than one site. This is to make sure that we can estimate the damage
volume at each of the sites independently. Once we have compared all points in the damaged
workpiece point cloud and partitioned them into representing damaged and undamaged zones on
the workpiece being repaired, we can discard the points representing undamaged surfaces. The
union of all points classified as representing damage points forms the inner damage surface point
cloud.

We cluster the points in the inner damage point cloud using a clustering algorithm, preferably
the open-source DBSCAN algorithm [9]. DBSCAN classifies each point into one of n possi-
ble clusters or into noise. The advantages of using DBSCAN over other clustering methods are
twofold. First, the number of clusters does not need to be known in advance. For a damaged work-
piece, such as a lattice or grill, there could be many isolated damage sites and counting them may
be impractical; forcing the algorithm to join or split independent damage sites to conform with a
predetermined but incorrect n leads to an incorrect repair. Second, DBSCAN can automatically
detect outlier points (caused by sensor noise) and will not include them in any clusters. This acts
as a noise filter without any additional steps. With a noisy 3D sensor signal, filtering is essential.

The DBSCAN algorithm starts by finding seed points. These are points that possess at least k
neighbors within a 3D sphere of radius ϵ. Each of these seed points as well as their ϵ neighbors
will be added to the same cluster. Denote the set of neighbors of point v as Nv.



For each point w ∈ Nv find the ϵ neighborhood of w and add each of the points in Nw to
the cluster. If a point is found that is within ϵ of k or more points in more than one cluster, then
the two clusters are actually one cluster and we relabel both clusters as a single cluster (a speed
optimization step is to not relabel all the points in this phase; instead keep a table of relabelings
and after all points are labeled go through the point list linearly applying the relabel table).Repeat
this seed-growing process until either all points are in a cluster or do not have at least k neighbors
no more than ϵ distance away and therefore are considered to be noise.

Picking the optimal value of k and ϵ is nontrivial, but in practice, setting ϵ to the same value as
the damage threshold λ and setting k to values between 5 and 20 have worked well in our testing.

A heuristic method for picking ϵ is to sort each of the points from the lowest average distance
to its k-nearest neighbors to the highest average distance to its k-nearest neighbors. In this plot,
the distance where the sharpest curvature appears is usually chosen for ϵ (more mathematically
speaking, where the second derivative is maximized). One method for computing this is to find

m̄ = argmaxm {f(m− 1)− 2f(m) + f(m+ 1)}

where f(m) is the average distance of point m from its k-nearest neighbors, and where the points
are sorted from least to greatest average distance. The value of ϵ can be set to f(m̄).

This will remove any noise points and the clusters will give the individual damage sites for
each component of the damage surface. If there are multiple damage sites, simply repeat the steps
below for each damage site to get the full damage volume. An example case for the detected
clusters (or damage sites) and the noise in the point cloud is shown in Figure 19. Once the clusters

Figure 19: Each damage site forms a cluster. The black points are noise and will be ignored.

are detected, we estimate the damage volume for each site. The damage estimates superimposed
over the damaged part model is shown in Figure 20.

4 Results

4.1 DamageEst: Computational Complexity
We present a complexity analysis of the key steps in our framework (as listed in Section 3.1),
each of which runs in polynomial time and memory. Hence, we conclude that DamageEst runs in
polynomial time using polynomial memory. Here we used the same step numbering as in Section
3.1.



Figure 20: The final estimation for all damage sites

For clarity of presentation, we list the variables used (Var) and their descriptions.

Var Description
Nd Number of points in the damage scan
Nw Number of points in the workpiece point cloud
Ni Number of points in the IDS
Ti Number of triangles in the IDS
λ Distance threshold for background mesh
Tλ Number of triangles in output mesh as determined by λ
Nb Number of vertices on the boundary
Nbm Number of vertices on the background mesh
Ebm Number of edges in the workpiece mesh
Tr Number of triangles in the repaired mesh
To Number of triangles in the original part mesh

3. Align the two point clouds: The ICP method [4] for 3D registration runs in O(NdNw)
time.

4. Find IDS using Hausdorff distance: As the original mesh is a triangulated surface, this can
be done in linear time [2].

5. Reconstruct the IDS: We used the method of Hoppe et al. [10], which runs in O(N2
i ) time.

6. Find the boundary of IDS: This step can be implemented in O(Ti) time. [8].
7. Create a background mesh with distance threshold λ: Delaunay mesh refinement algo-

rithms [6] can be used for this step, which run in O(Tλ log Tλ) time where Tλ is the number
of triangles in the output mesh as determined by the threshold λ. But this step usually runs in
linear time in practice [6]. For our current implementation, we used the simple barycentric
subdivision repeated a few times (each round runs in O(T ) time).

8. Map the IDS boundary onto the background mesh: This can be done naively in O(NbNwm)
time



9. Connect pieces of mapped boundary to form a cycle: This can be done by running a
shortest path algorithm for each vertex in the boundary to find nearest vertices to close the
loop. While the shortest path algorithm can theoretically be run in almost-linear time [5],
using Dijkstra’s algorithm in practice is almost as efficient [1]. Hence, this step runs in
O(Nb(Ebm +Nbm log(Nbm)) time.

10. Split background mesh at boundary cycle: This step involves examining the neighborhood
of each vertex in the boundary cycle and can be done in O(Nb) time.

11. Connect undamaged component to the boundary cycle to form watertight mesh: Sim-
ilar to the previous step, this step also involves examining the neighborhoods of vertices in
the boundary cycle, and runs in O(Nb) time. More generally, such repair operations can be
implemented efficiently using lightweight or local approaches [3].

12. Boolean intersection of the repaired damage component with original CAD model:
While the worst case complexity of Boolean intersection is O(TrTo). This step typically
runs much faster in practice, as most triangles in the two meshes will not intersect [7].

Note that DamageEst will always compute up to floating point precision. The accuracy of our
method is affected only by the surface reconstruction method and the selected background mesh.
On the other hand, the voxel method DUOADD [14] depends on the depth of the octree and will
scale exponentially in memory as well as runtime.

4.2 Instances of DamageEst Applications
To illustrate the versatility of DamageEst, we present its damage estimation computed on parts
with various geometries: a gear with damaged teeth in multiple pieces (Figure 21), a cylinder with
damages from two sides (Figure 22), and a half ring with damage (Figure 23). In these examples,
we see that DamageEst is able to recover the damage volume accurately.

Figure 21: Application of DamageEst on the gear with missing teeth and the estimate obtained by
DamageEst.

5 Discussion
Repairing damages in high-value parts using additive processes can be more efficient than using
state-of-the-art high-skilled manual processes. We describe DamageEst, an efficient computational



Figure 22: Another example where we show damage estimation at multiple sites where DamageEst
can recover accurate damage estimates.

Figure 23: Result of DamageEst on a half torus which is a challenging work piece due to its non-
convex geometry.

geometry framework for detecting and estimating the damage volume (DV) and the inner damage
surface (IDS) using point cloud data (PCD) of damaged parts and their original 3D models. Dam-
ageEst identifies points in PCD on the IDS to reconstruct the IDS. It then encloses the reconstructed
IDS and original part in a slightly scaled up background mesh, from which the DV is reconstructed
using Boolean operations. DamageEst also enables targeted overestimation of damage for repair
using additive manufacturing followed by milling to guarantee high surface quality. The proposed
method is verified on various objects with different geometry for damage. Furthermore, we verify
that we are able to also preserve sharp features like corners and sharp edges present in the original
object in the reconstructed damage volume.

5.1 Future Work
The biggest computational bottleneck of our current implementation of DamageEst comes from the
subdivision of the background mesh (Step 7 in Section 4.1). We use barycentric subdivision just for
its simplicity and ease of implementation. Some possible speedups of the current implementation
may come from “pushing” each vertex of the boundary to the closest point of the background mesh



rather than the closest vertex of the background mesh. If the subdivision of the background mesh
occurs only at these closest points, i.e., in an adaptive fashion, there may be a speedup without
significant increase in the background mesh complexity. The alternative is to implement more
sophisticated Delaunay mesh refinement algorithms [6].

Path planning algorithms for 5D printers will also allow the damaged region to be filled with
repair material. The path planning would require reasoning about collision with the damaged part
and would be an important future research direction for automatic damage correction.
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